355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Г. Шипов » Теория физического вакуума в популярном изложении » Текст книги (страница 3)
Теория физического вакуума в популярном изложении
  • Текст добавлен: 21 сентября 2016, 17:25

Текст книги "Теория физического вакуума в популярном изложении"


Автор книги: Г. Шипов


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 3 (всего у книги 9 страниц)

1.9. Вращательная относительность и вращательные координаты.

В повседневной жизни мы наблюдаем два типа движений тел – поступательные и вращательные. Например, автомобиль, который движется по горизонтальной поверхности, движется поступательно. Движение колес автомобиля относительно его корпуса является вращательным. Поступательное движение тел описывается в физике поступательными координатамих, у и z. Для описания вращательного движения используют вращательные координаты ф 1, ф 2, ф 3(ими могут быть углы Эйлера).

Механика Ньютона, электродинамика Максвелла-Лоренца-Эйнштейна, теория гравитации Эйнштейна и геометризированная электродинамика построены так, что используемые этими теориями системы отсчета образуют множество относительных поступательных координат (см. таблицу № 1). В таблице также указаны относительные физические величины, причем каждая более сложная теория включает в себя все предыдущие относительные величины и добавляет свои. Например, в электродинамике Максвелла-Лоренца-Эйнштейна, которая использует четырехмерные инерциальные системы отсчета, кинетическая энергия равномерного движения зарядов относительна, так же как и в механике Ньютона. Но в ней дополнительно оказываются относительными длина объекта и время его жизни. В теории гравитации Эйнштейна и геометризированной электродинамике относительно все то, что и в электродинамике Максвелла-Лоренца-Эйнштейна, плюс относительными оказываются гравитационные и электромагнитные поля соответственно.

Таблица № 1.

Легко видеть, что в эту таблицу не входят вращательные координаты ф 1, ф 2, ф 3. Это и понятно, поскольку все перечисленные в таблице системы отсчета по определению не вращаются. Поэтому можно сказать, что до сих пор теория относительности развивалась как теория поступательной относительности.

Следующий шаг в развитии теории относительности потребовал введения многообразия относительных координат ускоренных систем отсчета, которые испытывают вращение при своем движении. Такие системы отсчета движутся не только в трансляционных координатах, но также и во вращательных. Теория, в которой используются вращательные координаты, требует увеличения размерности пространства событий. Например, если рассматриваются трехмерные вращающиеся системы отсчета с трансляционными координатами х, у и z, то они дополнительно описываются тремя вращательными координатами. В этом случае пространство событий шестимерно.Если же мы будем рассматривать четырехмерные вращающиеся системы отсчета, то пространство событий будет уже десятимерным, поскольку в четырехмерном пространстве трансляционных координат х, у, z, ct имеется шесть вращательных координат: три пространственных угла ф 1, ф 2, ф 3и три псевдоевклидовых угла q 1, q 2, q 3.

Трансляционные и вращательные координаты существенно отличаются по своим свойствам. Трансляционные координаты относятся к классу голономных (или интегрируемых). Движение в голономных координатах характерно тем, что оно не зависитот направления пути в одну и ту же точку пространства.

Рис. 8.Результат движения в голономных координатах х, у,и zне завит от последовательности пути движения.

Наглядно это свойство изображено на рис. 8,где показано движение в голономных координатах х, у, и zиз начала координат О до точки Р по отрезкам 1, 2 и 3 вдоль осей Ох, Оу и Oz. Ha рис. 8 а)движение начинается вдоль оси хна величину отрезка 1, затем вдоль оси уна величину отрезка 2 и, наконец, вдоль оси zна величину отрезка 3. В результате мы приходим в точку Р. На рис. 8 б)порядок движения изменился: сначала движение происходит вдоль оси уна величиау отрезка 2, затем вдоль оси хна величину отрезка 1 и, окончательно, вдоль оси zна величину отрезка 3. И опять мы приходим в точку Р. Этот же результат мы получим, если начнем движение вдоль оси z, как это показано на рис. 8 в).

В отличие от голономных координат х, у, и z, при движении в неголономных координатах ф 1, ф 2, ф 3результат двух поворотов на конечные углы зависит от последовательности этих поворотов. Для иллюстрации этого утверждения, рассмотрим два последовательных поворота вокруг осей х, и z на углы 90° (рис. 9и 10).

Рис. 9.Два последовательных поворота на угол 180°:а) – поворот на 90°по часовой стрелке вокруг оси z; б) – то же, вокруг оси у; в) – результат двух последовательных поворотов.

Рис. 10.Смена порядка последовательных поворота на угол 180°: а) -поворот на 90°по часовой стрелке вокруг оси у,б) – то же, вокруг оси z; в) – результат двух последовательных поворотов.

Из рисунков видно, что результат двух конечных поворотов вокруг осей у и z зависит от последовательности этих поворотов (положения квадрата со звездочкой на рис. 9 ви рис. 10 вне совпадают).

1.10. Торсионные поля и относительность вращения.

Самый простой пример вращательного движения представляет собой вращающийся диск.

Рис. 11. На центр масс однородного вращающегося диска по всем направлениям действуют скомпенсированные центробежные силы инерции. По определению, такая система представляет собой ускоренную локально-инерциальную систему отсчета второго рода.

На рис. 11изображен однородный диск, который вращается с постоянной частотой wвокруг оси, проходящий через его центр масс О. Сразу отметим, что если поместить вращающийся диск в идеальные условия, когда внешние воздействия отсутствуют, то он будет вращаться сколь угодно долго(по инерции). Мы имеем здесь очень наглядный случай ускоренного движения по инерции. Действительно, каждый малый участок диска, обладающий массой Dm, движется по круговой орбите, т.е. ускоренно.

Перед этим мы рассматривали ускоренные локально инерциальные системы отсчета первого рода, в которых локально на тело отсчета действует внешняя сила, скомпенсированная силой инерции (см. рис. 4).Было показано, что в этом случае тело отсчета хотя и движется ускоренно, но движется по инерции согласно уравнениям геодезических риманова пространства. Свободное вращательное движение диска демонстрирует нам другой пример ускоренного движения по инерции. Однако в этом случае мы имеем другой класс ускоренных систем отсчета, а именно – ускоренные локально инерциальные системы отсчета второго рода.

Такие системы образуются тогда, когда на центр масс тела отсчета действуют скомпенсированные силы инерции.

На рис. 11представлен пример ускоренной локально инерциальной системы отсчета второго рода. Единичные вектора е 1, е 2, е 3системы Вжестко связаны с вращающимся диском. В системе Вна центр масс диска действуют скомпенсированные центробежные силы инерции симметрично по всем направлениям в плоскости диска. В результате центр масс диска покоится или движется равномерно и прямолинейно (но уже с вращением) относительно другой такой же системы А (см. рис.11).

Предположим теперь, что система Ане вращается, а движется прямолинейно и равномерно, т.е. является инерциальной. Наблюдатель в системе Авидит, что диск вращается относительно его системы отсчета с угловой скоростью w. Он также видит, что начало О системы отсчета В(только одна точка) покоится или движется относительно его прямолинейно и равномерно, хотя система отсчета Вявляется ускоренной! Кроме того, наблюдатель Авидит, что вращающийся диск подвержен действию сил инерции, которые действуют на каждый малый элемент диска. Если бы диск был абсолютно твердым телом (расстояние между точками такого тела не меняется, какие бы силы на него не действовали), то его форма осталась бы неизменной. Однако при вращении реального диска его форма меняется из-за действия сил инерции (см. рис. 12).

Рис. 12.На резиновом диске нанесена сетка: а) – диск не вращается; б) – диск вращается с некоторой угловой скоростью w. В результате вращения увеличивается ( d < D) диаметр резинового диска и его внутренняя геометрия изменяется.

Поскольку силы инерции действуют на все точки вращающегося диска, то имеет смысл говорить о поле сил инерции.В свою очередь, силы инерции порождаются торсионным полем,которое возникает тогда, когда происходит вращение каких-либо объектов. Слово торсионноепроисходит от английского слова torsion,что означает кручение.Впервые в науке кручение было связано с вращением французским математиком Ж. Френе, который связал угловую скорость вращения wс кручением cпо формуле:

w = cv,

где v– линейная скорость. При вращении диска в каждой его точке образуется поле кручения c, которое вызывает поле сил инерции. Когда угловая скорость вращения диска wпостоянна ( w= const), кручение принимает вид:

c = 1/r,

где r– расстояние от оси вращения до некоторой точки на диске. В результате из формулы Френе мы получаем известную в механике формулу вращательного движения:

c = v/r

На рис. 12изображен вращающийся резиновый диск, который деформируется и изменяет свою внутреннюю геометрию из-за появления на вращающемся диске торсионного поля (поля кручения). Остается только установить геометрию пространства событий и соответствующие уравнения геодезических, которые описывают движение ускоренных локально инерциальных систем отсчета второго рода.

Проведенные исследования показали, что внутренняя геометрия диска с кручением cсоответствует геометрии немецкого математика Р. Вайценбека. В отличии от геометрии Римана, геометрия Вайценбека обладает не только кривизной пространства но и его кручением.

Из формулы w = cvвидно, что кручение обращается в нуль, когда равна нулю угловая скорость вращения w .Если использовать преобразования трансляционных координат х, у и z, то обратить угловую скорость вращения в ноль невозможно. Для этого необходимо использовать преобразования неголономных угловых координат ф 1, ф 2, ф 3. С помощью этих преобразований можно перейти в систему отсчета, которая вращается в ту же сторону и с такой же угловой скоростью как и система В, и начало которой совпадает с началом системы В. В этой системе w=0 и, следовательно, угловая скорость оказывается величиной относительной. Заметим, что при этом координатное пространство событий должно быть по крайней мере шестимерным.

1.11. Относительность сил и полей инерции.

Со времен Ньютона физиков озадачивали самые загадочные силы природы – силы инерции,которые проявляют себя в ускоренных системах отсчета. Более чем триста лет назад И. Ньютон поставил перед учеными вопрос, почему поверхность воды в ведре искривляется, если, взявшись за ручку, начать вращать ведро над головой. Причиной этого искривления является центробежная сила инерции

F i= – mrw 2,

действующая на массу воды в ведре. В этой формуле m – масса воды, w– угловая скорость вращения ведра, r– радиус вращения. Эта же сила действует во вращающемся барабане стиральной машины на капельки воды в мокром белье, обеспечивая быстрое отжимание белья при вращении барабана.

Для объяснения природы сил инерции И. Ньютон вводит в механике некое ненаблюдаемое в опыте абсолютное пространство.По представлениям ученого именно при ускоренном движении относительно ненаблюдаемого абсолютного пространства возникают силы инерции. Фактически для объяснения сил инерции И. Ньютон впервые вводит понятие абсолютного вакуума, о котором мы говорили ранее. Физикам трудно было оперировать с объектом, который не наблюдается в эксперименте непосредственно. Кроме того, введение абсолютного пространства было эквивалентно утверждению, что в природе существует класс выделенных абсолютных систем отсчета,связанных с абсолютным пространством.

Эти представления сдерживали развитие теории относительности. Поэтому в начале двадцатого века Э. Мах предложил физикам отказаться от абсолютного пространства и выдвинул другое объяснение причины появления сил инерции.

Он предположил, что силы инерции возникают всякий раз, когда начинается ускоренное движение относительно удаленных звездных масс, распределенных во Вселенной.

С позиций здравого смысла принцип Маха так же страдает существенным недостатком, поскольку предполагает, что источник сил инерции не локален и удален от нас на огромные расстояния. В тоже время нам известно, что силы инерции начинают проявлять себя сразу же, как только начинается ускоренное движение. Следовательно, признание принципа Маха предполагает сверхсветовое распространение взаимодействий, в которых участвуют силы инерции.

Новая точка зрения на природу сил инерции состоит в том, что эти силы имеют локальное происхождение и порождены кручением пространства, интерпретируемым в механике как поле инерции. Всего физикам известно четыре типа сил инерции и все они порождены полями инерции (полями кручения). Напомним, что в теории гравитации известна одна сила – ньютоновская сила гравитационного притяжения. В теории электромагнитного поля различают две силы – электрическую и магнитную. А сил инерции четыре и все они возникают при вращении материи, но именно вращение материи вызывает появление торсионных полей (или полей инерции).

Перечислим оставшиеся три силы инерции:

Сила Кориолиса:

F 2= – 2mwv

сила, возникающая при ускоренном вращении

F 3= – mer,

где e– угловое ускорение;

и, наконец, поступательная сила инерции:

F 4= – mW ,

где W – поступательное ускорение.

Поступательная сила инерции возникает при ускоренном поступательном движении. Например, вы сидите в кресле самолета и он начинает разгоняться для взлета. Вы чувствуете как вас вдавливает в кресло некая сила. Это и есть действие поступательной силы инерции. Казалось бы, какое отношение к вращению имеет поступательная сила инерции, если она возникает при поступательном ускорении? Тем не менее, с точки зрения четырехмерного пространства событий поступательное ускорение тоже есть вращение, но вращение в пространственно-временных плоскостях (см. рис. 3).

Физики экспериментально установили, что силы инерции действуют только в ускоренных системах отсчета. С помощью преобразований координат, которые соответствуют переходу из ускоренной системы отсчета в инерциальную, силы инерции обращаются в нуль. Таким образом, силы инерции имеют относительную природу.Это их свойство заставляет некоторых исследователей считать их нереальными. Дело доходит до курьеза. В одном из технологических университетов студентам читают лекцию по теоретической механике и говорят, что силы инерции фиктивны, поскольку их можно обратить в нуль преобразованиями координат. Их удобно использовать в ускоренных системах отсчета для решения некоторых задач. Через некоторое время студентам читают лекцию по деталям машин, где рассматривают устройство турбины реактивного двигателя, которая вращается с большой угловой скоростью. При этом говорят, что если не учесть возникающих при вращении турбины сил инерции, то при недостаточной прочности металла они могут разорвать ее лопасти. Бедные студенты! Они никак не возьмут в толк, как это фиктивные силы могут разорвать металлические детали турбины.

Безусловно, силы инерции надо рассматривать как реальные. Но порождены эти силы особыми полями – полями инерции. Эти поля можно рассматривать как проявление торсионных полей в нашей повседневной жизни.

Если в инерциальных системах отсчета силы инерции обращаются в нуль, то, как оказалось, порождающие их поля инерции в инерциальных системах отличны от нуля.Такое в физике обнаружено впервые. Обычно обращение, например, гравитационной силы в нуль означает равенство нулю гравитационного поля, которое порождает эту силу. Это правило выполняется и для других физических полей. Поля инерции представляют собой разновидность торсионного поля, для которых обращение в нуль вызванных им сил не означает равенства нулю самого поля.

Поле инерции может быть обращено в нуль с помощью преобразований вращательных координат. Это наглядно видно из формулы Френе w = cv, которая устанавливает связь между угловой частотой вращения wи кручением c(одной из компонент торсионного поля). Выбирая вращательные координаты так, чтобы, w=0, мы обращаем в нуль кручение c(т.е. поле инерции). Следовательно, поле инерции относительно, поскольку всегда можно найти систему отсчета, где оно оказывается равным нулю.

1.12. Три вида пространств Вайценбека.

Введение вращательной относительности в физику позволило обнаружить новые физические поля, названные торсионными. Эти поля наблюдаются во вращающихся системах отсчета. Как было отмечено ранее, пространство событий относительных координат вращающихся систем отсчета (ускоренных локально инерциальных систем второго рода) имеет структуру геометрии Вайценбека. В общем случае пространство Вайценбека обладает отличной от нуля римановой кривизной и кручением, введенным впервые итальянским математиком Риччи. Одной из компонент кручения Риччи является рассмотренное нами ранее кручение Френе c. Пространство Вайценбека (в математике оно иногда называется пространством абсолютного параллелизма)устроено таким образом, что в общем случае кручение пространства выступает как источник римановой кривизны (см. рис. 13 в).

Простейшим пространством абсолютного параллелизма является трехмерное пространство Евклида или четырехмерное псевдоевклидово пространство. Кручение и кривизна этих пространств равна нулю, поскольку они описывают абсолютный вакуум (см. рис. 13 а).

Напомним, что пространство событий относительных координат инерциальных систем отсчета обладает структурой пространства Евклида (трехмерный случай) или псевдоевклидова пространства (четырехмерный случай).

Рис. 13. Различные виды пространств абсолютного параллелизма: а) плоское пространство (риманова кривизна Rи кручение Риччи Травны нулю), б) пространство с нулевой римановой кривизной Rи отличным от нуля кручением Риччи Т; в) пространство с не нулевой римановой кривизной Rи не нулевым кручением Т.

Эти пространства представляют собой простейший вид геометрии абсолютного параллелизма и не несут какой-либо содержательной физической информации.

Рассмотрим теперь ситуацию, когда отсутствуют все поля кроме полей инерции. Можно, например, рассмотреть пространство событий относительных координат ускоренных локально инерциальных систем отсчета второго рода (см. рис. 11).Конечно, мы рассматриваем идеальный случай, когда гравитационным, электромагнитным и другими полями тела отсчета (в данном случае диска) можно пренебречь. Тогда риманова кривизна пространства событий оказывается равной нулю. В результате мы получаем пространство событий со структурой геометрии абсолютного параллелизма, у которой кручение Риччи отлично от нуля, а риманова кривизна равна нулю (см. рис. 13 б).

В отличие от бессодержательной плоской геометрии, соответствующей абсолютному вакууму, эта геометрия наделена структурой, которая описывает некие первоначальные вихри (или первоначально возбужденный вакуум).Теперь у нас появляются содержательные уравнения, которым подчиняются первичные торсионные поля, не создающие риманова искривления пространства, но приводящие к его закрутке. Искривление пространства связано с появлением силовых полей, т.е. таких полей, которые порождают силы, создающие кривизну траекторий частиц в инерциальных системах отсчета. Первичные торсионные поля действуют на частицы так, что их траектория не искривляется, при этом меняются вращательные свойства материи. Например, взаимодействие спинирующей частицы с первичным торсионным полем может привести к изменению ее собственной частоты вращения или направления вращения.

Самый общий случай геометрии Вайценбека соответствует пространству событий относительных координат ускоренных локально инерциальных систем отсчета первого и второго рода, т.е. фактически произвольно ускоренных систем. В этом случае, как риманова кривизна, так и кручение Риччи отличны от нуля (см. рис. 13 в).

Перечислим некоторые важные свойства пространства Вайценбека:

а) для случая четырехмерных систем отсчета размерность этого пространства равна десяти;

б) в пространстве существуют две метрики – метрика Римана, описывающая бесконечно малое расстояние между двумя точками, и метрика Киллинга-Картана, представляющая собой поворот на бесконечно малый угол. Эта метрика исчезает, если кручение Риччи пространства обращается в нуль;

в) имеется десять уравнений движения (уравнений геодезических) – четыре поступательных и шесть вращательных;

г) из шести структурных уравнений геометрии Вайценбека следуют уравнения Эйнштейна с геометризированным тензором энергии-импульса материи, роль которой играют торсионные поля.


    Ваша оценка произведения:

Популярные книги за неделю