355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Феликс Зигель » Вселенная полна загадок » Текст книги (страница 6)
Вселенная полна загадок
  • Текст добавлен: 6 мая 2017, 06:30

Текст книги "Вселенная полна загадок"


Автор книги: Феликс Зигель



сообщить о нарушении

Текущая страница: 6 (всего у книги 17 страниц)

ПРИЗРАЧНЫЙ СВЕТ

Ранней весной на западе, вскоре после захода солнца, можно заметить слабое свечение в виде конуса, острием направленного вверх. Подобную картину легко наблюдать и осенью, но не по вечерам, а на рассвете, незадолго перед восходом солнца.


Зодиакальный свет.

Свечение это настолько слабо, что сквозь него свободно просвечивают даже наименее яркие звезды. В южных странах оно наблюдается чаще и легче: о его существовании знали еще древние египтяне, которые изобразили загадочное сияние на некоторых из своих памятников.

В XVIII веке астрономы заметили, что конусы как утреннего, так и вечернего сияния простираются вдоль эклиптики – видимого годового пути Солнца среди звезд. Так как эклиптика проходит через двенадцать созвездий, называемых зодиакальными, то и таинственный свет с тех пор стал называться зодиакальным светом.

Легко сообразить, почему зодиакальный свет в наших широтго света становятся наиболее благоприятными.

В экваториальных странах, где эклиптика в любое время годах виден только весной по вечерам или осенью по утрам. Ведь именно в эти периоды эклиптика располагается под большим углом к горизонту, а следовательно, и условия для видимости зодиакальноа образует с горизонтом большой угол, зодиакальный свет представляет собой постоянно наблюдаемое явление. Однако и в умеренных широтах зодиакальный свет не всегда кажется призрачным – иногда он настолько ярок, что намного превышает яркость Млечного Пути.

Исследованием зодиакального света в течение многих лет занимается академик В. Г. Фесенков. Те сведения о зодиакальном свете, которыми мы теперь располагаем, были получены в основном им и его сотрудниками.

Что же такое зодиакальный свет?

Уже несколько десятков лет назад спектральный анализ зодиакального света показал важную особенность этого свечения. Спектр зодиакального света оказался сильно ослабленной копией солнечного спектра. Иначе говоря, загадочное свечение, по крайней мере в значительной своей доле, является отраженным солнечным светом. Следовательно, где-то в межпланетном пространстве должна существовать чрезвычайно разреженная среда, способная отражать солнечные лучи.

Детальные исследования яркости зодиакального света привели и к другому открытию. Выяснилось, что вечерний и утренний конусы зодиакального света – это только наиболее яркие его части. Оба конуса смыкаются светящейся полосой, следующей вдоль эклиптики. В направлениях, перпендикулярных к эклиптике, яркость светящейся полосы сходит на нет так постепенно, что, строго говоря, зодиакальный свет должен распространиться на все небо. Это означает, что Земля находится внутри среды, порождающей явление зодиакального света.

Все данные наблюдений свидетельствовали, что эта среда является исполинским облаком мельчайших твердых пылинок, обволакивающих значительную часть солнечной системы. Если бы мы могли извне взглянуть на Солнце и окружающую его семью планет, мы, вероятно, увидели бы, что колоссальное сплющенное и потому похожее на диск облако мельчайших твердых частиц окутывает со всех сторон солнечную систему. Составляющая зодиакальный свет пыль концентрируется к плоскости, близко от которой движутся планеты. Именно поэтому свет, отраженный пылевым облаком, мы наблюдаем главным образом вблизи эклиптики.

По мере приближения к Солнцу облако утолщается. Вот почему вблизи Солнца зодиакальный свет особенно широк и ярок.

Исследования, проведенные В. Г. Фесенковым, показали, что наибольшего сгущения пылевое облако достигает между орбитами Марса и Юпитера, то есть как раз там, где обращается вокруг Солнца множество малых планет – астероидов. Этот факт наводит на мысль, что кольцо астероидов связано с зодиакальным светом. Точнее говоря, пыль, порождающая этот свет, быть может, является продуктом распада астероидов, результатом того непрекращающегося дробления малых планет, о котором мы уже говорили.

Планета Фаэтон, или, лучше сказать, ее осколки, продолжает разрушаться. И, может быть, мельчайшие частички, сплошным облаком обволакивающие солнечную систему, также есть осколки погибшей планеты. Мы потом увидим, что это предположение, кажущееся естественным, встречает некоторые серьезные затруднения. Но, независимо от происхождения пылевого облака зодиакального света, следует выяснить, какие причины заставляют это облако существовать, по-видимому, весьма продолжительное время.

Частицы облака не могут быть неподвижными относительно Солнца, ведь иначе все они давно были бы притянуты Солнцем и, стянувшись к его чрезвычайно раскаленной поверхности, обратились бы в газ. Значит, частицы зодиакального облака (будем так называть это образование) движутся. Но как?

Известно, что движение крупных тел солнечной системы – больших планет и наибольших из астероидов– определяется законом всемирного тяготения. Все они обращаются вокруг Солнца по эллипсам и будут двигаться так еще неопределенно долгое время.

Иначе ведут себя мелкие твердые частички, в частности та мельчайшая твердая пыль, которая является основной составляющей частью зодиакального облака.

На мелкие твердые тела заметное воздействие оказывает световое давление солнечных лучей. Как и силы тяготения, световое давление изменяется обратно пропорционально квадрату расстояния от Солнца. Если притяжение, действующее со стороны Солнца на твердую частичку, направлено к Солнцу, то световое давление играет роль отталкивательной силы. Оно всегда направлено в сторону, противоположную Солнцу.

Борьба этих двух сил определяет судьбу частички.

Допустим, что обе силы равны по величине. Можно подсчитать, что такое равенство будет иметь место для крохотных частичек с поперечником порядка 0,0001 миллиметра. На такие частицы фактически силы не действуют (равнодействующая равна нулю) и потому относительно Солнца они должны двигаться прямолинейно и равномерно. Любопытно, что это единственный реальный случай, когда в пределах солнечной системы становится возможным прямолинейное и равномерное движение.

Если частица будет иметь меньшие размеры, то солнечный свет станет отталкивать ее. В результате частица со все возрастающей скоростью полетит прочь от Солнца в межзвездное пространство по орбите, представляющей собой гиперболу. Рано или поздно солнечные лучи «выгонят» такую частицу за границы солнечной системы.

Иначе сложится судьба тех частиц, поперечник которых превышает 0,0001 миллиметра. Для них сила тяготения Солнца преобладает над отталкивательным действием его лучей. Поэтому такие частицы начнут обращаться вокруг Солнца по эллиптическим орбитам как самостоятельные крошечные планетки. Правда, разыгрывать роль планет им придется не так уж долго. Световое давление, не смогшее «выгнать» их из семьи настоящих больших планет, сумеет «расправиться» с ними не менее жестоко.

Представьте себе, что вы бежите под проливным дождем. Даже если капли дождя летят на землю строго вертикально, дождь будет бить вам в лицо, как бы сопротивляясь вашему движению.

Нечто подобное произойдет и с небольшой частицей, обращающейся вокруг Солнца. «Дождь» солнечных лучей будет бить ей «в лоб», оказывая на частицу боковое световое давление. Это явление, известное в физике под названием эффекта Пойнтинга – Робертсона, в судьбе частицы сыграет решающую роль. Боковое давление света будет медленно, но верно тормозить полет частицы вокруг Солнца. Скорость ее постепенно уменьшится, и частица начнет приближаться к Солнцу по некоторой спиралеобразной кривой.

Конец ее предопределен – рано или поздно частица упадет на Солнце, и тогда в его атмосфере возникнет микроскопически маленькое газовое облачко – остаток бывшей планетки.

Количественная сторона явлений всегда тесно связана с их качественной стороной. Для Земли и ей подобных планет эффект Пойнтинга – Робертсона так ничтожно мал, что практически световое давление на движение Земли никак не влияет. Но для частиц зодиакального облака этим эффектом пренебрегать нельзя. По расчетам В. Г. Фесенкова, частица поперечником 10 микрон и плотностью, равной единице, начавшая движение на расстоянии 150 миллионов километров от Солнца, упадет на его поверхность через семь тысяч лет.

В жизни человечества семь тысяч лет – срок немалый. Но в жизни тел солнечной системы тысяча лет означает примерно то же, что час в жизни человека. Значит, падение на Солнце частиц зодиакального облака– процесс сравнительно быстрый. Гораздо быстрее покидают солнечную систему те частицы зодиакального света, поперечник которых меньше 0,0001 миллиметра. Крупных частиц, как показали работы В. Г. Фесенкова, в зодиакальном облаке должно быть очень мало.

Вывод из сказанного может быть только один: вещество зодиакального облака должно непрерывно обновляться. Только в этом случае может быть понятно продолжительное существование зодиакального света.

Можно подсчитать, какова масса зодиакального облака, например, в пределах земной орбиты. Такие под счеты, проведенные В. Г. Фесенковым, дают с первого взгляда внушительную величину – 1 000 000 000 000 (1012) тонн, что по отношению к массе Земли (1027) составляет всего 1/1 000 000 000 000 000 долю.

Из этой части зодиакального облака можно было бы слепить астероид поперечником всего лишь 10 километров. Такое количество вещества, по расчетам В. Г. Фесенкова, выпадает на Солнце за миллион лет.

Вели считать, что зодиакальный свет существует уже несколько сотен миллионов лет, то за это время он должен был полностью обновиться не менее нескольких сотен раз. Иначе говоря, на его образование должна была уйти значительная доля массы распавшегося Фаэтона.

Может быть, в образовании зодиакального света Фаэтон и не замешан. В 1955 году, основываясь на новейших наблюдениях, бельгийский астроном Колман пришел к выводу, что некоторые свойства частиц зодиакального света сильно отличаются от свойств метеорных тел. В частности, зодиакальные частицы должны быть гораздо плотнее тех метеорных частиц, которые порождают «падающие звезды». Поэтому возможно, что зодиакальный свет вызван твердыми частицами, выделяющимися при распаде комет. Могут быть мыслимы и иные пути его происхождения.

Недавно астрономы снова убедились, что их представления о зодиакальном свете далеко не полны. При детальном изучении призрачного света с помощью специальных инструментов – поляриметров – обнаружилось, что в состав зодиакального света, помимо твердой пыли, возможно, входят свободные электроны. Облако электронов в целом имеет такую же форму, как и облако пылевых частиц. Как пыль, так и электроны распределены в межпланетном пространстве очень редко. Вблизи Земли в 1 кубическом сантиметре пространства должно находиться не более тысячи электронов, между тем как в том же объеме комнатного воздуха их число фантастически велико.

Частицы пыли, образующей зодиакальное облако, встречаются еще реже. На том же расстоянии от Солнца одна ничтожно малая твердая пылинка отдалена от другой в среднем на 1 километр.

Откуда взялись электроны в зодиакальном облаке?

Источником их может быть Солнце. Оно, как известно, постоянно выбрасывает в мировое пространство колоссальное количество электрически заряженных частиц (корпускул), среди которых не последнее место занимают электроны.

В отличие от протонов, также в изобилии извергаемых Солнцем, электроны очень сильно рассеивают солнечный свет. Благодаря этому и было заподозрено их присутствие в зодиакальном свете.

Некоторые астрономы считают, что три четверти зодиакального света должно приходиться на пыль и около одной четверти – на электроны. Возможно, что в образовании зодиакального света некоторая роль принадлежит и свечению атмосферы.

По мнению академика В. Г. Фесенкова, подтвержденному наблюдениями, которые он провел в 1957 году в Египте, гипотеза о наличии в зодиакальном свете электронов является излишней. Оптические свойства зодиакального света могут быть объяснены взаимодействием солнечных лучей с твердой пылью, которая, по-видимому, и составляет зодиакальный свет.

Подробное изучение зодиакального света еще только начинается. Не вполне выяснено происхождение порождающего его облака. Остается открытым вопрос о причинах изменений яркости зодиакального света, реальность которых была недавно установлена.

Зодиакальный свет – благодарная область для научных исследований. Изучение этого призрачного света входит в программу научных работ международного геофизического сотрудничества.

Многого можно ожидать в этом вопросе от искусственных спутников Земли. С некоторых из них удастся (с помощью фотоаппаратов) «увидеть» зодиакальный свет, так сказать, в «чистом виде», то есть за границами земной атмосферы, которая заметно мешает его наблюдениям. Особенно ценным будут фотографии спектра зодиакального света, полученные со спутника. Они, несомненно, сделают этот призрачный свет гораздо более понятным.

МЕРКУРИЙ И ЕГО ДВИЖЕНИЕ

Уже много веков среди астрономов бытует поговорка «Felix astronomus, qui vidit Mercurium», которая в переводе с латинского на русский язык звучит так: «Счастлив астроном, видевший Меркурий».

Говорят, что этого счастья был лишен даже Коперник, который с туманных берегов Балтийского моря за всю свою долгую жизнь ни разу не видел Меркурия.

Причина плохой видимости Меркурия общеизвестна. Меркурий близок к Солнцу. Только 58 миллионов километров отделяют эту планету от центрального тела нашей солнечной системы, что составляет около 2/5 расстояния от Земли до Солнца. Впрочем, указанная величина является величиной средней. Благодаря сильной вытянутости своей орбиты Меркурий может иногда сближаться с Солнцем до 46 миллионов километров, между тем как в иные моменты его расстояние от Солнца может возрастать до 70 миллионов километров.

На небе Меркурий всегда находится в непосредственном соседстве с Солнцем и потому почти постоянно скрывается в его ослепительных лучах. Только при наиболее благоприятном стечении обстоятельств Меркурий удаляется от Солнца на 28 градусов, что составляет пятьдесят шесть видимых поперечников Луны. В такие периоды его иногда удается наблюдать в лучах утренней или вечерней зари как желтоватую сравнительно яркую звездочку.

Кстати сказать, если бы можно было перенести Меркурий на ночное небо, его блеск почти не уступал бы блеску Сириуса – ярчайшей из звезд.

При наблюдении в телескоп Меркурий (как и Венера) напоминает крошечную Луну. Есть, однако, существенное отличие фаз этих планет от фаз Луны. Видимые размеры Луны в любых ее фазах одинаковы. Иначе выглядят Меркурий и Венера. Наибольших видимых размеров эти планеты достигают при наименьших фазах. Наоборот, когда Меркурий и Венера становятся полными дисками и, следовательно, земному наблюдателю их поверхность раскрывается в наибольших размерах, обе планеты, находясь за Солнцем, практически невидимы; кроме того, их видимые поперечники становятся наименьшими. К этому можно добавить, что вечером и утром Меркурий наблюдать тоже не вполне удобно, так как он виден низко над горизонтом сквозь запыленный и волнующийся от воздушных токов слой атмосферы.

Как это ни парадоксально, но лучше всего наблюдать Меркурий днем. Да, именно днем, при полном солнечном свете. Для этого необходимо направить телескоп на то место неба, где должен находиться Меркурий, и заслонить объектив телескопа от прямых солнечных лучей каким-нибудь экраном. При наблюдениях в телескоп звезды кажутся ярче, а фон неба темнее, чем невооруженному глазу, и потому, как известно, в телескопы днем можно наблюдать не только планеты, но и некоторые из наиболее ярких звезд.

Так и поступил знаменитый французский исследователь планет Э. Антониади, когда летом 1927 года он занялся систематическими наблюдениями Меркурия.

В распоряжении Антониади находился великолепный телескоп Медонской обсерватории, с поперечником объектива 83 сантиметра. Атмосфера в районе Медона отличалась достаточным спокойствием и сравнительной прозрачностью, а главное – это сам наблюдатель, к тому времени получивший всемирную известность как один из наиболее искусных исследователей планет.

Достоверные знания о Меркурии в те годы были весьма скудны. Кроме сведений о форме, размерах и положении в пространстве орбиты Меркурия, к числу достоверных данных можно было отнести результаты измерений диаметра планеты. Последний оказался близким к 5140 километрам, что составляет 0,403 поперечника Земли. Что же касается других результатов наблюдений, то они были по меньшей мере спорны.

Так, например, по наблюдениям одних астрономов, Меркурий постоянно обращен к Солнцу одной своей стороной. Другие наблюдатели уверяли, что им удалось обнаружить вращение Меркурия вокруг оси с периодом, почти равным земным суткам. Как те, так и другие ссылались при этом на пятна, которые им удавалось разглядеть на поверхности планеты. Однако эти пятна наблюдались не всегда отчетливо, да к тому же на рисунках разных наблюдателей они выглядели по-разному. Так же неясен был и вопрос о наличии вокруг Меркурия атмосферы.

Заметим, что, обращаясь вокруг Солнца по эллиптической орбите, несколько наклоненной к плоскости земной орбиты, Меркурий, как и Луна, подвержен либрации. Кроме того, благодаря близости к Солнцу и огромным размерам последнего Солнце освещает несколько больше половины Меркурия. Из-за либрации и этого эффекта разным наблюдателям при любой продолжительности суток на Меркурии могли быть доступны разные части его поверхности.

Очевидно, что задача, преследуемая Антониади – создание гермографии[3]3
  Гермография происходит от слова «Гермес» – греческое имя бога Меркурия.


[Закрыть]
, или географии Меркурия, – была весьма трудна.

В течение трех лет Антониади наблюдал Меркурий. Наблюдения велись днем в то время, когда, проходя над точкой юга, Меркурий занимал наивысшее положение над горизонтом. Этим почти устранялось вредное влияние атмосферы. Результаты, к которым пришел Антониади, весьма интересны.

На рисунке приведена карта поверхности Меркурия, составленная по наблюдениям Антониади. В отличие от земных полушарий, карта Меркурия изображает только одно полушарие планеты – как окончательно доказал Антониади, Меркурий всегда обращен к Солнцу одной стороной. В этом отношении он похож на Луну, которая никогда не показывает нам своего «затылка». Но если лунный «затылок» регулярно освещается Солнцем совершенно так же, как и лунное «лицо», то «затылок» Меркурия постоянно находится в тени.

Меркурий оказался миром своеобразных контрастов. Никакой смены дня и ночи там нет – вечный день на одной стороне и никогда не кончающаяся ночь на другой его половине.

Карта дневного полушария Меркурия, составленная Антониади, изобилует разнообразными пятнами – светлыми и темными. Нарушая традицию, по которой темным пятнам Луны, а затем и Марса было присвоено название морей, Антониади решил сероватые пятна на поверхности Меркурия называть пустынями.

Некоторые из этих пустынь весьма обширны. Например, пустыня Прометей (Promethei), находящаяся в левом верхнем углу карты, по площади превосходит Францию. Чернота пустынь различна – некоторые из них напоминают бледные тени, другие выглядят как резко очерченные темные пятна.


Карта. Меркурия по Антониади.

Светлые области на Меркурии также неодинаковы по своей яркости. Наиболее яркой областью на видимой стороне Меркурия является светлая пустыня Argyritis, тогда как наиболее темным пятном выглядит пустыня Criophori.

Пятна на поверхности Меркурия, как установил Антониади, занимают неизменное расположение по отношению к терминатору – границе света и тени на диске Меркурия. Это и означает, что Меркурий всегда обращен к Солнцу одной стороной.

Однако если расположение пустынь Меркурия в указанном смысле неизменно, то видимость их, наоборот, подвержена значительным изменениям. И Антониади и предшествующие ему наблюдатели не раз отмечали, что пятна на поверхности Меркурия иногда заволакиваются какой-то дымкой, каким-то легким туманом.

Эти «бледные туманы», как называет загадочные образования Антониади, – белесоватые, большей частью весьма прозрачные, но иногда достигающие такой густоты, что за ними полностью скрываются темные пустыни.

Туманы наблюдаются преимущественно на краях диска Меркурия, причем часто они кажутся беловатыми полосами длиной иногда до 5 тысяч километров.

Снимки Меркурия, полученные французским астрономом Ф. Кенюсэ в 1931 году, зафиксировали некоторые из его загадочных туманов.

Белизна этих туманов оказалась весьма далекой от белизны наиболее бледных земных облаков, но в реальности их Антониади не сомневался. Он был убежден, что Меркурий окружен атмосферой, хотя его туманы не имеют ничего общего с облаками и туманами Земли.

«Наличие водяных капель на освещенном Солнцем полушарии Меркурия, – писал он, – представляется невозможным в силу господствующей на нем страшной жары.

В этих условиях наиболее приемлемой гипотезой является объяснение характерных образований в атмосфере Меркурия наличием в ней облаков чрезвычайно мелкой пыли, взметаемой ветрами большой силы и вертикальными течениями, восходящими над обширными, выжженными Солнцем пустынями этого светила».

Выводы об атмосфере Меркурия, к которым пришел Антониади, долгие годы вызывали сомнения. Нужен был очень тренированный глаз, чтобы увидеть «бледные туманы» Меркурия, да, кроме того, размеры Меркурия, близкие к размерам Луны, исключали, казалось, всякую возможность существования вокруг него сколько-нибудь плотной воздушной оболочки. О каких же тогда ураганных ветрах могла идти речь? Правда, поперечник Меркурия на 1667 километров больше диаметра Луны, а по массе он превосходит ее в три раза, так что спор об атмосфере Меркурия далеко нельзя было считать решенным.


Современная фотокарта Меркурия.

Летом 1942 года систематические исследования Меркурия были продолжены соотечественником Антониади, астрономом А. Дольфусом. Обстановка, в которой велись эти наблюдения, была необычной. Обсерватория Пик дю Миди, где наблюдал Дольфус, находится в Пиренеях, на высоте 2870 метров над уровнем моря.

Чудесный горный воздух, исключительная прозрачность и спокойствие атмосферы содействовали успеху. Хотя вначале у Дольфуса был телескоп с поперечником 38 сантиметров, который в 1944 году был заменен телескопом с объективом диаметром 60 сантиметров, прекрасные атмосферные условия вполне компенсировали некоторое «инструментальное» преимущество Антониади.

После десяти лет непрерывных наблюдений Дольфус в 1953 году опубликовал полученные им результаты.

Дольфусу и его сотрудникам удалось сделать много фотоснимков Меркурия и на их основе составить первую фотокарту планеты. Ее сравнение с картами других наблюдателей обнаруживает достаточное общее сходство. В особенности это относится к рисункам Антониади. Сравнение фотографий Меркурия с рисунками, сделанными еще в 1889 году, вновь подтвердило, что год Меркурия равен его суткам и в нашей земной мере составляет восемьдесят восемь суток.

Дольфус в отличие от Антониади никаких «бледных туманов» не заметил. Но, с другой стороны, исследование солнечного света, отраженного Меркурием, с помощью специального прибора – поляриметра – привело Дольфуса к важному открытию: он обнаружил атмосферу Меркурия! Метод, примененный Дольфусом, дал возможность вычислить, что плотность ее, по-видимому, не превышает плотности земной атмосферы. Даже у самой поверхности Меркурия ртутный барометр показал бы давление всего в 1 миллиметр ртутного столба.

Но если все-таки атмосфера есть, то, значит, могут быть и ветры. Дуют же ураганные ветры в земной стратосфере на высоте в несколько десятков километров, где разреженность атмосферы еще больше, чем у поверхности Меркурия. Поэтому «бледные туманы» Меркурия нельзя считать иллюзорными. Может быть, и прав Антониади, говоривший о пылевых бурях на Меркурии. С другой стороны, вспомните, что на Луне, практически лишенной атмосферы, также наблюдаются загадочные туманы, быть может, вулканического происхождения. Кто может поручиться, что вулканизм полностью прекратился на Меркурии?

Дольфус, правда, не видел туманов. Но его свидетельству противостоит наблюдение не менее опытных исследователей планет, отлично владевших техникой визуальных наблюдений.

Загадки Меркурия еще не решены. Почти не изучена его поверхность, о составе которой мы ничего не знаем. Требуют дальнейшего изучения его таинственные «бледные туманы». Меркурий наряду с Плутоном является одной из наименее изученных планет.

В прошлом веке много шуму наделала история с открытием интрамеркуриальной планеты Вулкан. Повинен во всем Меркурий, точнее говоря – его сложное и в те времена казавшееся необъяснимым движение. Но… расскажем все по порядку.

Знаменитый французский астроном Урбан Леверье, открывший в 1846 году «на кончике своего пера» новую планету, Нептун, сделал попытку повторить подобное открытие. Обстоятельно исследовав движение Меркурия, он пришел к выводу, что в этом движении наблюдаются такие особенности, которые нельзя объяснить притяжением Меркурия только существующими планетами. В частности, оказалось, что ближайшая к Солнцу точка орбиты Меркурия – перигелий – движется в пространстве вместе со всей орбитой не совсем так, как это следовало из закона всемирного тяготения. Расхождение было очень малым: перигелий орбиты Меркурия двигался быстрее положенного всего на 43 секунды дуги за столетие. Иначе говоря, за год он смещался на такой угол, под которым копеечная монета видна с расстояния 50 метров. Но Урбан Леверье был строгим ученым, работавшим в области небесной механики – самого математизированного раздела астрономии, а потому пренебречь подобной невязкой он не мог.

Попытки объяснить загадочную невязку неточностью сведений о массах планет не увенчались успехом. Леверье подсчитал, что для устранения невязки массу Венеры пришлось бы увеличить на 10 процентов, что никак не согласовывалось с многочисленными фактами. И тогда Леверье высказал предположение, что между Меркурием и Солнцем есть одна или несколько неизвестных планет, которые и «возмущают» движение Меркурия.

Авторитет Леверье был так велик, что многие астрономы начали поиски новой планеты.

В конце 1858 года распространились слухи, что Вулкан (как уже назвали неизвестную планету) открыт. Увидел Вулкан любитель астрономии врач Лескарбо из местечка Оржер. Желая оградить себя от возможного обмана, Леверье инкогнито отправился в Оржер и там со всей присущей ему строгостью допросил Лескарбо, который и не подозревал, кто был этот неизвестный, так заинтересовавшийся его открытием.

Ответы Лескарбо настолько удовлетворили Леверье, что, вернувшись в Париж, ученый 26 марта 1859 года на первом заседании Академии наук официально заявил об открытии Вулкана. Он даже привел результаты собственных расчетов, по которым получалось, что Вулкан находится к Солнцу почти втрое ближе, чем Меркурий и обращается вокруг него всего лишь за двадцать суток.

Вслед за этим, при содействии Леверье, Лескарбо опубликовал подробный отчет о своих наблюдениях, в котором, между прочим, сообщал, что еще в 1845 году, до открытия Нептуна, ему удалось впервые наблюдать Вулкан.

К сожалению, история, обессмертившая имя Леверье, не повторилась. Открытие Лескарбо не было никем подтверждено. Оказались иллюзорными и другие «открытия» Вулкана. В настоящее время строго доказано, что внутри орбиты Меркурия не может быть планетоподобных тел сколько-нибудь значительных размеров.

Вулкана, увы, не существует. Но открытая Леверье, казалось, незначительная невязка в движении Меркурия в истории науки сыграла исключительно важную роль.

В начале текущего века нашим великим современником, физиком Альбертом Эйнштейном (1879–1955) была выдвинута знаменитая теория относительности. К сожалению, в рамках этой книги совершенно невозможно изложить суть этой теории, не говоря уже о ее чрезвычайно сложном математическом аппарате.

Скажем лишь одно – теория относительности полностью объяснила движение Меркурия. Невязка в 43 секунды оказалась в точности такой, какой предсказывала эта теория. Поэтому объяснение движения Меркурия стало одним из главных опытных подтверждений теории относительности. Если вспомнить, с каким недоверием и подчас непониманием встречались первые работы Эйнштейна, то станет особенно понятным значение услуги, оказанной науке наименьшей из больших планет.

В наши дни теория относительности общепризнана. Без нее немыслимы расчеты современных сверхмощных ускорителей и атомных реакторов. Она стала основой для познания атомных процессов.

История с мнимым открытием планеты Вулкан показывает, что наука, несмотря на временные заблуждения, ь конечном счете всегда отыскивает правильный путь.


    Ваша оценка произведения:

Популярные книги за неделю