355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Феликс Зигель » Вселенная полна загадок » Текст книги (страница 14)
Вселенная полна загадок
  • Текст добавлен: 6 мая 2017, 06:30

Текст книги "Вселенная полна загадок"


Автор книги: Феликс Зигель



сообщить о нарушении

Текущая страница: 14 (всего у книги 17 страниц)

О КОНЦЕ, ЗА КОТОРЫМ ДОЛЖНО СЛЕДОВАТЬ НАЧАЛО

Жизнь человека занимает во времени некоторый отрезок. Один его конец отмечает рождение человека, другой– смерть. То же можно сказать и о любом живом организме и даже, более того, о любом отдельно взятом объекте, будь то атом, камень или планета.

«Все возникающее достойно гибели», – говорили древние философы. Ни одна из вещей, наблюдаемых нами в мире, не вечна. Она когда-то возникла, то есть имела начало, и, возникнув, рано или поздно неизбежно должна исчезнуть – таков конец всех вещей. Весь научный опыт человечества, вся многовековая человеческая практика подтверждает закон вечной изменчивости природы: возникающее должно погибнуть.

Все сказанное, относится, разумеется, и к звездам.

Возникнув однажды из какой-то дозвездной формы материи, каждая звезда должна прожить невообразимо долгую по человеческим меркам жизнь. Но ее жизненный путь, как и у человека, изображается во времени не лучом, исходящим из точки в бесконечность, а вполне определенным, но все же ограниченным отрезком.

Ни в чем, пожалуй, астрономы так не единодушны, как в вопросе о конце эволюционного пути звезд. Тут, собственно, и вопроса-то никакого нет. Рано или поздно, так или иначе, но каждая звезда непременно охладится и погаснет. Источники энергии, питающие звезды, только по земным масштабам кажутся неиссякаемыми. Время, однако, сделает свое дело – ядерные процессы, поддерживающие лучеиспускание звезды, иссякнут, и покрывшаяся вначале тонкой твердой корой погасшая звезда в конце концов превратится в огромный полностью затвердевший темный шар.

Можно спорить о том, какая форма агонии будет предшествовать этому концу. Некоторые астрономы полагают, что, исчерпав весь водород, звезда превратится в белого карлика. В состоянии белого карлика звезда может находиться очень долго – ведь расход энергии во внешнее пространство у этих звезд так невелик, что звезда может довольствоваться скудным запасом внутренней энергии.

Вещество белых карликов находится в так называемом вырожденном состоянии. Оно представляет собой смесь электронов и «ободранных» ядер атомов, находящихся под большим давлением, – то, что астрофизики называют вырожденным газом. В этом хаосе главенствующая роль принадлежит электронам, тогда как ядра атомов фактически не влияют на свойства вырожденного газа.

Существуют большие различия между газом в обычном состоянии и вырожденным газом. Чтобы уменьшить объем обычного газа в восемь раз, надо во столько же раз (при неизменной температуре) увеличить его давление. Сжать во столько же раз, вырожденный газ гораздо труднее – для этого давление надо увеличить не в восемь, а в тридцать два раза.

У обычных звезд с увеличением массы объем возрастает. У белых карликов все наоборот: чем массивнее белый карлик, тем меньше его объем.

Белые карлики практически полностью состоят из вырожденного газа. По теоретическим расчетам, окутывающая их обычная газообразная атмосфера должна иметь толщину не более нескольких метров!

Трудно представить себе, что произойдет с белым карликом после его полного остывания. Каким образом вырожденный газ сможет превратиться в молекулярные соединения, которые должны образовать твердое тело погасшей звезды? А может быть, погаснув, белый карлик останется газовым? Все это загадки, еще далекие от полного разрешения.

Путь гибели звезды, нарисованный нами сейчас, вероятно, не единственный. Звезды и «рождаются» и «умирают» по-разному. Но какова дальнейшая судьба погасших звезд? Есть ли в природе силы, способные возродить к новой жизни эти остывшие звездные трупы?

Вопрос о судьбе погасших звезд – один из самых трудных в современной астрономии. О нем обычно избегают говорить в популярных книгах по астрономии. Но в книге, посвященной загадкам мироздания, эту великую загадку обойти нельзя.

Наши выводы о погасших звездах имели пока умозрительный характер. Подтверждаются ли они какими-нибудь фактами, наблюдениями?

Вряд ли нужно доказывать, что погасшая звезда – очень трудный объект для наблюдений. Ее нельзя увидеть ни в один самый мощный телескоп, но проявить свое присутствие она все же может.

Когда звезда перестает излучать свет, то у нее по-прежнему сохраняется масса. Расчеты показывают, что за всю свою долгую жизнь звезды превращают в излучение сравнительно небольшую долю своей первоначальной массы. Поэтому погасшие звезды должны быть телами массивными. Обращаясь вокруг центра нашей звездной системы – Галактики, погасшие звезды своим притяжением должны оказывать влияние на движение еще «живых», светящихся звезд. По этому влиянию и можно приближенно подсчитать общую массу погасших звезд, которые входят в состав Галактики. Подобным методом может быть учтена и другая «темная материя», находящаяся в Галактике, но недоступная прямому наблюдению, – темные облака межзвездной пыли и газа.

По подсчетам, проведенным Π. П. Паренаго в 1945 году, общая масса «темной материи» нашей звездной системы составляет долю от общей массы входящих в нее светящихся звезд. Выделить из этой общей массы «темной материи» ту часть, которая приходится на погасшие звезды, – дело будущего.

Несколько легче обнаружить звезды, не полностью погасшие, а погасающие. На некотором этапе своей агонии звезда должна испускать невидимые глазом инфракрасные тепловые лучи. Так, во всяком случае, ведет себя остывающий кусок раскаленного железа, который, доведенный до белого каления, начинает затем желтеть, потом становится красным и наконец вовсе перестает светиться, хотя тепло от него (то есть посылаемые им инфракрасные лучи) еще продолжает исходить. Может быть, подобным образом ведут себя и некоторые остывающие звезды. Тогда среди них должны найтись такие, основное излучение которых будет сосредоточено в инфракрасной части спектра.

Инфракрасные звезды существуют. Они были обнаружены сравнительно недавно на фотоснимках, полученных в инфракрасных лучах. Температура их поверхности близка к 1000 градусов. Но среди инфракрасных звезд есть колоссальные полностью газообразные звезды-гиганты, которые никак нельзя причислить к умирающим звездам. Наоборот, по-видимому, это звезды-«младенцы», еще только начинающие жить. Пока «старичков» среди инфракрасных звезд не обнаружено. Все это, конечно, усложняет загадку, и картина конечной стадии жизни звезд остается, к сожалению, столь же таинственной и скрытой от наших взоров, как и картина их рождения.

Мы в изобилии наблюдаем и другое – непрерывное разрушение звезд. На наших глазах звезды любого возраста безжалостно расточают свое вещество. Они выбрасывают его с поверхности в форме сверхбыстрых и покидающих поэтому звезду протуберанцев. Они испускают непрерывные потоки корпускул – ядер атомов различных элементов – и свободные электроны. Они, наконец, непрерывно превращают часть своего вещества в излучение, в те потоки света и тепла, которые и являются главным выражением жизнедеятельности звезды.

Но материя неуничтожима, и потому за «смертью» одних вещей должно следовать «рождение» других. Наблюдаемые нами процессы разрушения должны непременно где-то и когда-то сопровождаться противоположными процессами – процессами созидания и возрождения. С этих единственно верных принципиальных позиций и следует подходить к решению загадки о дальнейшей судьбе погибших звезд.

Здесь еще многое неясно. Сознаемся, что мы еще не знаем, как и во что превращаются «звездные трупы». В прошлом веке шведский астроном Сванте Аррениус полагал, что погасшие звезды могут затем, случайно столкнувшись, превратиться в молодую – новую – раскаленную звезду. По его мнению, вспышки так называемых новых звезд и есть вестники возрождения погибших миров.

Гипотеза Аррениуса не выдерживает критики. Во-первых, столкновения звезд крайне маловероятны, и если бы возрождение звезд происходило таким способом, наша Галактика, наверное, давно уже состояла бы почти только из погасших звезд. Во-вторых, вспышки новых звезд вызваны вовсе не столкновением «погасших солнц», а совсем другими причинами. К сожалению, другой способ возрождения погасших звезд нам пока неизвестен.

Лучше известна дальнейшая судьба того вещества и излучения, которые выбрасываются звездами в окружающее их пространство.

Газы, покинувшие звезды, рассеиваясь в межзвездном пространстве, образуют затем туманности и облака межзвездного газа. Возможно, что из газовых туманностей образуется твердая космическая пыль, которая совместно с газом выполняет роль «дозвездной материи» хотя бы для некоторых из звезд.

Выброшенные звездой корпускулы частично оседают на планетах (это мы видим в солнечной системе), частично дополняют собой межзвездную среду.

Что же касается потоков излучения, то, с первого взгляда, они беспредельно рассеиваются в бесконечной Вселенной без всякой надежды на какое-нибудь обратное возрождение.

Вещество превращается в свет – это мы видим на примере Солнца и за счет этого процесса мы и существуем. Но может ли происходить обратное, может ли свет превратиться в частицы вещества?

Современная физика отвечает на этот вопрос утвердительно. В естественных условиях (в космических лучах) и при лабораторных экспериментах «порция света»– фотон – иногда может превращаться в две частицы вещества – позитрон и электрон[6]6
  Подробнее см. книгу: Г. С. Жданов Лучи-разведчики. Изд. «Молодая гвардия», 1957.


[Закрыть]
.

Излучение, свет может превращаться в вещество! Следовательно, энергия, излучаемая звездами, не пропадает бесследно, но где-то, говоря словами Энгельса, «она должна снова накопиться и функционировать».

Во Вселенной происходит вечный круговорот материи. На смену отжившим мирам возникают новые. Рождение и смерть всегда сопутствуют друг другу. За концом жизни звезды (как и любого предмета) обязательно должно следовать какое-то новое начало – ведь именно в этом и выражается круговорот вещей.

Мы еще не знаем, как выглядит картина круговорота материи хотя бы в наблюдаемой нами части Вселенной. В этой картине нам удается пока разглядеть лишь отдельные мазки. Но мы уверены, что круговорот материи не есть простое повторение уже пройденного этапа в ее развитии.

Нет, не простое и однообразное движение по кругу, а реальное восхождение по спирали – таково образное изображение круговорота материи, совершаемого во Вселенной.

Материя никогда не повторяется, и в этом выражается ее неисчерпаемость. То, что было, уже никогда полностью и во всех деталях не повторится. На новом этапе круговорота непременно возникнет что-то новое, небывалое.

Это усложняет задачу исследователя. Но это и дает ему уверенность в том, что во Вселенной нет конца, за которым бы не следовало какое-то новое, пусть пока неведомое, но вполне познаваемое начало.

ШАРЫ ИЗ ЗВЕЗД

Мы познакомимся теперь с такими объединениями звезд, которые по многим свойствам диаметрально противоположны звездным ассоциациям. Речь пойдет о так называемых шаровых звездных скоплениях.

Звездные ассоциации трудно выделить среди общего звездного фона. Наиболее близкие и яркие из шаровых звездных скоплений отлично видны в хороший бинокль и даже невооруженным глазом. Самым известным и, пожалуй, наиболее эффектным из них является шаровой звездный рой, видимый в направлении созвездия Геркулеса.

В телескоп средней силы он являет собой изумительное по красоте зрелище. Легко понять, но трудно ощутить, что перед вами редкая «диковинка» природы – многие десятки тысяч солнц, образовавших в пространстве по каким-то причинам колоссальный звездный шар.

В том же созвездии Геркулеса есть и второй шар из звезд, лишь немногим уступающий главному скоплению по яркости и красоте. Есть яркие шаровые звездные скопления в созвездиях Гончих Псов, Пегаса, Змеи и Стрельца. На южном небе выделяется шаровой звездный рой созвездия Центавра, в котором он хорошо виден даже невооруженным глазом, как маленькая туманная звездочка.

Всего в настоящее время известно сто шесть шаровых звездных скоплений. Есть основание думать, что почти все они уже открыты. В отличие от рассеянных звездных скоплений, типичным представителем которых являются общеизвестные Плеяды, шары из звезд – большая редкость. На каждое шаровое скопление нашей Галактики приходится сто пятьдесят – двести разнообразных рассеянных скоплений.

В небольшие телескопы шаровые звездные скопления выглядят круглыми туманными пятнышками. Такой же внешний вид имеют и кометы, когда они находятся вдалеке от Солнца.

Астрономов XVIII века, занимавшихся поисками новых комет, смущали эти подозрительно похожие на кометы объекты. Чтобы выяснить, действительно ли они открыли новую комету, надо было подождать несколько часов, а иногда и сутки. Если за это время пятнышко сместится среди звезд, значит, это комета, если же оно останется неподвижным, следовательно, произошла ошибка и за комету приняли шаровое звездное скопление или небольшую туманность.


Шаровое звездное скопление.

Чтобы избавить себя и своих коллег от этих досадных недоразумений, французский «ловец комет» астроном Мессье в конце XVIII века составил первый каталог звездных скоплений и туманностей. В него вошел сто один подозрительный объект, ни один из которых теперь уже не мог быть спутан с кометой. Сами туманности и скопления интересовали Мессье очень мало – с помощью своего небольшого телескопа никаких подробностей в этих объектах он рассмотреть не мог. Составленный им каталог был, собственно, списком помех, из которых самыми коварными были шары из звезд. Но обозначения каталога Мессье сохранились и в современной астрономии. Так, например, главное шаровое звездное скопление в созвездии Геркулеса имеет обозначение М13, что читается, как Мессье 13. Второй шар из звезд, видимый в том же созвездии, в каталог Мессье был занесен под номером 92 и потому имеет обозначение М92, и т. д.

Любопытно, что в каталоге Мессье наряду с шаровыми звездными скоплениями встречаются и такие объекты совершенно иной природы, как, например, диффузная газовая туманность Ориона (М42) или ближайшая к нам исполинская звездная система – туманность Андромеды (М31). Мессье не делал между ними различия – для его работы все это были одинаково досадные помехи!

Хотя на небе шаровые звездные скопления концентрируются к средней линии Млечного Пути (так называемому галактическому экватору), некоторые из них ветречаются и недалеко от галактических полюсов – точек неба, удаленных от галактического экватора на 90 градусов. Другой интересной особенностью видимого распределения звездных шаров является то, что большинство из них находится вблизи созвездия Стрельца, в направлении которого, как известно, находится ядро нашей Галактики.

Все эти факты были объяснены после того, как удалось определить расстояния, отделяющие нас от шаровых звездных скоплений. К счастью, сделано это было сравнительно легко.

В шаровых звездных скоплениях много цефеид – пульсирующих звезд, с удивительной ритмичностью меняющих свои объем, температуру и яркость. Как уже говорилось, светимость цефеиды, то есть количество излучаемого ею света, тесно связано с периодом изменения ее блеска. Чем ярче и, следовательно, чем массивнее звезда, тем медленнее совершаются ее пульсации. Но период пульсации хорошо виден с Земли по изменению видимого блеска.

Определив период, находим светимость звезды, а зная светимость и видимый блеск, можно легко определить расстояние до цефеиды.

Шары из звезд оказались очень далекими объектами. Даже от самых близких из них свет до нас доходит за два-три десятка тысяч лет! От самого заметного из шаровых звездных скоплений в созвездии Геркулеса (М13) лучи света доходят до Земли за тридцать четыре тысячи лет! Иначе говоря, этот шар из звезд мы видим таким, каким он был во времена первобытного человека. Не подумайте, что за тридцать четыре тысячи лет что-нибудь существенно изменилось в этом скоплении; ведь в космической мере времени тридцать четыре тысячи лет – это всего полтора космических часа!

Некоторые шаровые звездные скопления так далеки, что они находятся фактически за пределами нашей Галактики, выполняя роль как бы ее спутников. К их числу относится, например, шаровое скопление в созвездии Рыси. Оно так далеко, что даже на фотоснимках с экспозицией в три часа, сделанных с помощью крупных современных телескопов, его невозможно разложить на отдельные звезды. И неудивительно – нас отделяет от него расстояние в сто семьдесять пять тысяч световых лет!

Основная часть шаровых звездных скоплений образует как бы костяк нашей Галактики. Их совокупность также напоминает собой шар невообразимо больших размеров. Внутри этого «шара из шаров», как в некоторой клетке, заключена главная часть звезд нашей Галактики.

Если бы мы могли наблюдать систему шаровых звездных скоплений из центра Галактики и если бы нашим наблюдениям не мешала межзвездная поглощающая свет материя, эта система казалась бы нам почти симметричной. По всем направлениям мы видели бы почти одинаковое число шаров из звезд. Но фактически этого нет. Солнце вместе с планетами расположено в Галактике эксцентрично, благодаря чему и распределение шаровых звездных скоплений на небе кажется неравномерным.

Зная расстояние до скопления и его видимые размеры, легко найти действительный объем, занимаемый в пространстве данным звездным шаром. Выяснилось, что шаровые скопления почти однотипны – поперечники их отличаются друг от друга сравнительно мало. Самые меньшие из звездных шаров имеют поперечник, равный ста тридцати световым годам, наибольшие из них достигают в поперечнике трехсот световых лет. Иначе говоря, самые большие шаровые звездные скопления имеют диаметр в семьдесят пять раз больший, чем расстояние от Солнца до ближайшей из звезд – Альфы Центавра.

В таком относительно небольшом объеме пространства заключено непомерно большое количество звезд. Определить их общее число непосредственно нельзя – в центральных областях скопления отдельных звезд не видно. Но, измеряя количество света, которое излучает данный звездный шар, можно выразить силу его света в солнечных свечах, то есть приняв светимость Солнца за единицу. Тогда в среднем получается, что каждое шаровое скопление светит, как сто шестьдесят тысяч новых солнц. Значит, примерно столько же звезд образует каждый из звездных шаров.

Звездное население шаровых звездных скоплений своеобразно. Это преимущественно звезды-гиганты, среди которых, впрочем, нет очень горячих и сверхгигантских экземпляров. Наиболее яркие, бросающиеся в глаза звезды шаровых звездных скоплений – это холодные красноватые гиганты с температурой поверхности от 2 до 4 тысяч градусов. Многие из шаровых звездных скоплений богаты переменными звездами, в частности цефеидами.

Найти, как распределены звезды внутри скопления, не такое простое дело, как может показаться с первого взгляда. Ведь то, что мы видим на фотографии шарового звездного скопления, есть проекция звездного шара на плоскость, перпендикулярную к лучу зрения. Задача состоит в том, чтобы от видимого распределения звезд на плоской картине перейти к их распределению в пространстве.

Наиболее полно и обстоятельно эту задачу решил в 1949–1953 гг. московский астроном Η. П. Холопов. Его исследования показали, что распределение звезд внутри шаровых скоплений носит весьма сложный характер. Но, в общем, можно утверждать, что каждый звездный шар имеет плотное звездное ядро, по мере удаления от которого число звезд в единице объема быстро уменьшается. Внешние, поверхностные слои скопления обладают другой особенностью: звезды распределены в них почти равномерно. Переход от плотного ядра к разреженной поверхности происходит постепенно.

Трудно подсчитать, насколько густо располагаются звезды в центре шарового звездного скопления. Но можно быть уверенным, что вид неба там совсем иной, чем на Земле.

Вообразите, что мы очутимся на какой-нибудь из неведомых нам планет, обращающихся вокруг одной из центральных звезд шарового скопления в Геркулесе. Дивное зрелище представляет собой там ночное небо! Тысячи звезд, превосходящих по своему блеску Венеру, усеивают небосвод от зенита и до горизонта. Иначе говоря, если бы на нашем земном небе все звезды, видимые невооруженным глазом, мы заменили бы звездами, по блеску не уступающими Венере, тогда, вероятно, наше небо могло бы сравниться с тем воображаемым небом, о котором мы говорим.


Вид неба из центра шарового скопления.

Добавьте к этому многие тысячи звезд более слабых, но, впрочем, иногда не уступающих по блеску Сириусу или Веге, и вы согласитесь, что наше небо не принадлежит к числу самых красивых.

Но у нас, жителей Земли, есть одно бесспорное преимущество перед обитателями центральных областей шарового скопления. Мы видим Вселенную несколько лучше, чем они. Несмотря на отсутствие в шаровых скоплениях пылевых и газовых туманностей, поглощающих свет, звезды скопления своим количеством и блеском оттесняют на второй план остальные звезды Галактики. Здесь сама природа располагает к ложному представлению о центральной роли во Вселенной именно этого звездного шара.

На периферии шарового звездного скопления картина неба иная, хотя и не менее феерическая. Одна его половина занята скоплением. Тут видно множество различных по яркости звезд. Другая половина неба должна казаться по контрасту какой-то мрачной черной бездной, в которой светятся лишь редкие звезды.

Есть ли существа, которые наблюдают и осознают эти картины, мы, конечно, не знаем. Возможно, что некоторые звезды шаровых скоплений окружены планетами, быть может, обитаемыми. Все это пока предмет догадок, а не точного знания. Но зато мы знаем, что движение звезд в шаровых звездных скоплениях может в отдельных случаях иметь сложный характер.

Представьте себе звезду, находящуюся где-то внутри звездного шара.

Можно доказать, что притяжение звезд, более далеких от центра скопления, чем данная звезда, влиять на ее движение не будет. Остается только действие более близких звезд.

Если звезда приближается к центру скопления или удаляется от него, то количество и общая масса влияющих на ее движение других звезд изменяется. Методами высшей математики можно найти, по какой же орбите в этом случае будет двигаться выбранная нами звезда. Оказывается, ее орбитами будут эллипсы, один из фокусов которых всегда совпадает с центром скопления, а другой движется в пространстве, как бы обращаясь вокруг того же центра. Теоретически возможно и другое движение звезд – их колебания по прямой, проходящей через центр скопления, колебания, при которых наибольшую скорость звезда получает, пролетая через центр скопления. Таким образом, и в отношении движения звезд шаровые скопления представляют собой образования необычные.

Некоторые из шаровых звездных скоплений не имеют строго шарообразной формы. Они слегка сплюснуты, что может быть вызвано вращением звездных шаров вокруг оси (вспомните о сплюснутости Земли и планет). Вращение это происходит, по-видимому, так медленно, что заметить его с помощью спектрального анализа пока не удалось.

В отличие от звездных ассоциаций шаровые звездные скопления имеют весьма почтенный возраст. Это, пожалуй, самые древние из всех образований, которые мы видим в Галактике. Звезды в них расположены так густо, что притяжение других звезд разрушить скопление практически не может. По подсчетам В. А. Амбарцумяна, звездные шары могут существовать без каких-либо коренных изменений биллионы лет. Трудно даже сказать, от каких причин они могли бы разрушиться.

Еще труднее узнать, как возникли удивительные шары из звезд. Замечено, что чем дальше расположено шаровое скопление от плоскости галактического экватора, тем больше его диаметр. Возможно, что этот факт связан с происхождением и развитием звездных шаров, но как именно связан – этого мы пока не знаем.

В отношении некоторых шаровых звездных скоплений есть подозрение, что это не составные части нашей Галактики, а пришельцы из других звездных систем – уж очень велики их скорости по отношению к центру Галактики. К тому же, как уже говорилось, некоторые из звездных шаров находятся далеко за границами нашей звездной системы, то есть фактически в межгалактическом пространстве.

Было время, когда пространство между галактиками считали почти идеальной пустотой. За последнее время в этом выводе пришлось усомниться. В некоторых случаях непосредственно видны исполинские светящиеся ленты, соединяющие между собой галактики, – так называемые межгалактические коридоры, состоящие, по-видимому, из звезд. В других случаях между галактиками могут встречаться облака разреженной газовой и пылевой материи.

Все то, что заполняет межгалактическое пространство, может быть названо межгалактической плазмой. Как считает профессор Б. А. Воронцов-Вельяминов, в межгалактической плазме могут возникать, образовываться не только отдельные межгалактические звезды, но даже некоторые из шаровых звездных скоплений. По его мнению, то, что мы называем галактиками, есть просто сгущения в мировой плазме, в которых меньшие скорости вещества приводят к возникновению таких плотных тел, как звезды и планеты. В межгалактическом пространстве беспорядочные, или, как их называют, турбулентные, скорости вещества значительно больше. Поэтому и звезды, образовавшиеся где-то между галактиками, должны иметь большие собственные (пекулярные) скорости, чем звезды, составляющие огромные звездные системы.

Что же будет, если такие «межзвездные скитальцы» влетят в нашу Галактику? Они должны выдать свое происхождение как необычным направлением движения, так и необычной, повышенной скоростью.

И ведь такие звезды есть! За последнее время советские астрономы Π. П. Паренаго, Л. Л. Икауниекс, П. Г. Куликовский и другие открыли около двух десятков звезд, движущихся навстречу другим звездам Галактики. Они напоминают тех нарушителей общественного порядка, которые на катке движутся в сторону, обратную общему движению остальных конькобежцев.

Есть и такие звезды, которые как бы пронизывают нашу Галактику с огромной скоростью. Мы, конечно, не можем проследить, как такая «космическая пуля» вылетит из нашей звездной системы, но что это непременно должно рано или поздно произойти – в этом нет сомнения.

Некоторые из шаровых звездных скоплений ведут себя вроде описанных звезд. Значит, источник их происхождения надо искать вне нашей Галактики.

В 1945 году зарубежный астроном Мак-Лофлин опубликовал список новых звезд, вспыхнувших, по-видимому, не в каких-нибудь галактиках, а между галактиками. Сначала его список казался многим какой-то трудно объяснимой ошибкой. Но с тех пор получены новые факты, подтверждающие существование межгалактической плазмы, и теперь выводы Мак-Лофлина не кажутся столь удивительными.

Исследование мировой плазмы – интереснейшая проблема современной астрономии. Возможно, что решение многих загадок, волнующих исследователей Вселенной, заключено во взаимодействии галактик и межгалактической плазмы.

В мире нет безусловно изолированных вещей и явлений. Представление о Галактике, как о системе, изолированной от других ей подобных систем и межгалактической плазмы, надо считать безнадежно устаревшим.


    Ваша оценка произведения:

Популярные книги за неделю