Текст книги "Вселенная полна загадок"
Автор книги: Феликс Зигель
сообщить о нарушении
Текущая страница: 12 (всего у книги 17 страниц)
У новой звезды Т Северной Короны вспышка впервые наблюдалась в 1866 году. В максимуме блеска она стала звездой 2-й величины, а потом по фотоснимкам выяснилось, что до вспышки Т Северной Короны имела блеск звезды 11-й величины. При амплитуде в 9 звездных величин средний период между вспышками должен быть близким к восьмидесяти годам. И действительно, в 1946 году советский любитель астрономии А. С. Каменчук первым заметил незнакомую ему яркую звезду в созвездии Северной Короны – то была повторная новая звезда, вспыхнувшая точно по расписанию.
Применим теперь открытый закон к типичным новым звездам. Считая, что амплитуда их вспышки равна в среднем 12 звездным величинам, легко найти, что средний период между отдельными вспышками обычных новых звезд близок к пяти тысячам лет!
Не часто повторяют свои вспышки яркие новые звезды. Неудивительно поэтому, что за всю историю астрономической науки, насчитывающую три-четыре тысячи лет, не замечено, что какая-нибудь из очень ярких новых звезд снова вспыхнула. Но что новые звезды за миллиарды лет своего существования вспыхивают десятки и сотни тысяч раз – в этом нет сомнения.
Напрягите теперь ваше воображение и попробуйте наглядно представить себе то, о чем пойдет речь. Ничего более удивительного, фантастически грандиозного и непонятного мы в Космосе не знаем.
Сверхновые звезды – еще одно неуклюжее название, скрывающее за собой, быть может, самые мощные из наблюдаемых нами в природе изменений. Оно введено для обозначения тех звезд, вспышки которых невообразимо грандиознее вспышек обычных новых звезд.
В соседней с нашей Галактикой исполинской звездной системе, видимой в созвездии Андромеды, в 1885 году заблистала необыкновенная звезда. Ее вспышка во многом напоминала вспышки обычных новых звезд, но масштабы явлений были совсем иные. В максимуме блеска удивительная звезда сияла почти так же ярко, как вся звездная система, к которой она. принадлежала! Одна звезда сияла, как сотни миллионов солнц! Было чему удивляться не только человеку, далекому от астрономии, но даже и астроному-специалисту.
Сверхновые звезды – большая редкость. В среднем в каждой звездной системе (галактике) только раз в четыреста лет вспыхивает одна сверхновая звезда. Может быть, это и неплохо. Если бы какая-нибудь из сверхновых звезд вспыхнула по соседству с Солнцем, ее излучение, возможно, нанесло бы вред обитателям Земли.
В нашей Галактике наблюдались вспышки нескольких сверхновых звезд. Одной из них была уже известная нам таинственная звезда Тихо Браге.
Есть основания полагать, что сверхновые звезды при вспышке увеличиваются в яркости на 20 звездных величин. Это означает, что их блеск изменяется в сто миллионов раз! Самые же яркие из сверхновых звезд сияли, как пятнадцать миллиардов солнц!
Анализ спектров сверхновых звезд показывает, что при вспышке эти «сверхзвезды» чудовищно раздуваются. Если бы Солнце превратилось в сверхновую звезду, то оно, раздувшись, охватило бы собой всю планетную систему. Это все равно как если бы булавочная головка раздулась до размеров, сравнимых со зданием Московского университета! Любопытно, что скорость расширения звезды достигает шести тысяч километров в секунду!
Столь невообразимо мощный взрыв сопровождается выделением колоссального количества энергии – 1050 эрг!
Допустите на мгновение, что за эту энергию мы должны были бы платить по той же, скажем, таксе, как и за электроэнергию. Какую же сумму пришлось бы тогда внести в воображаемый «космический банк»?
Может быть, вы подумали, что слитком золота величиной с земной шар задолженность была бы ликвидирована?
Ошибаетесь! Чтобы уплатить за вспышку одной сверхновой звезды, пришлось бы такие золотые земные шары вносить в банк каждую минуту в продолжение полутораста тысяч лет!
Не ожидали?
Увы, таковы «астрономические масштабы», которыми нас удивляет природа.
Как и новые звезды, сверхновые «чудовища» после своих вспышек оказываются окутанными газовыми туманностями. Только в данном случае они гораздо более мощны, чем у новых звезд. Примером их может служить знаменитая Крабовидная туманность, названная так за некоторое внешнее сходство с крабом.
Установлено, что Крабовидная туманность образовалась при вспышке в созвездии Тельца в 1054 году сверхновой звезды. Выброшенные звездой газы до сих пор продолжают расширяться со скоростью около 1300 километров в секунду. В настоящую эпоху поперечник Крабовидной туманности равен шести световым годам, что в полтора раза больше расстояния от Солнца до ближайшей звезды – Альфы Центавра. Масса туманности в пятнадцать раз больше массы Солнца, то есть в полтора миллиона раз больше массы газовых оболочек, выбрасываемых новыми звездами. Все это подчеркивает грандиозность катастрофы, породившей Крабовидную туманность.
Крабовидная туманность.
Мы пока не знаем, что именно «взрывает» сверхновую звезду. Астрономы всегда обнаруживают катастрофу уже в «разгаре», когда причину обнаружить нелегко. Неизвестно так же, во что обращаются сверхновые звезды после своей вспышки. В центре Крабовидной туманности наблюдается необычная звездочка. По спектру выяснилось, что температура ее поверхности не ниже 14 тысяч градусов, а может быть, даже равна полумиллиону градусов.
Если это бывшая сверхновая звезда, то, видимо, для нее тысячелетие оказалось недостаточным, чтобы успокоиться и остынуть. Плотность звезды необыкновенно велика– наперсток, наполненный ее веществом, весил бы 300 килограммов!
Весьма возможно, однако, что видим мы не бывшую сверхновую звезду. По теории, защищаемой американским астрономом Цвикки, энергия вспышек сверхновых звезд не может быть объяснена обычными источниками звездной энергии. По мнению Цвикки, в процессе вспышки сверхновая звезда сжимается так сильно, что электроны «втискиваются» в ядра атомов, где, соединяясь с протонами, образуют нейтроны, и, таким образом, после вспышки сверхновая звезда становится «нейтронной» звездой.
У такой звезды поперечник должен быть равен всего 10 километрам. Зато плотность ее так велика, что булавочная головка, сделанная из вещества нейтронной звезды, весила бы 100 тысяч тонн!
Теория Цвикки объясняет многие факты. К сожалению, сами нейтронные звезды пока недоступны прямому наблюдению – слишком далеки они от нас и слишком слаб их свет. Вот почему некоторые астрономы вообще сомневаются в их существовании.
Поживем – увидим. Увидим, быть может, нейтронные звезды, чудо из чудес, на которые способна природа.
Наше знакомство с тайнами звездных вспышек было бы неполным, если бы мы прошли мимо по-своему удивительных звезд типа UV Кита. Большую часть времени эта звезда имеет блеск звезды 15-й звездной величины, но иногда ее яркость возрастает на 3 звездные величины, причем в колебаниях блеска не было обнаружено какой-нибудь периодичности.
В сентябре 1952 года в одну из ночей блеск звезды UV Кита внезапно возрос на 2,5 звездной величины и затем снова спал до прежнего уровня всего за четыре минуты.
В ночь на 25 сентября того же года UV Кита снова вспыхнула, увеличившись в блеске за двадцать секунд на пять звездных величин, то есть в сто раз! Таких быстрых колебаний яркости ни у одной переменной звезды раньше не наблюдалось.
В настоящее время известно еще несколько звезд, похожих на UV Кита. Они необычайно быстро вспыхивают и вновь погасают, причем никакой регулярности в этом процессе не замечено.
Пока трудно объяснить, в чем причина этих вспышек. Может быть, у них есть много сходного, кроме масштабов, с известными нам хромосферными вспышками на Солнце. Академик В. А. Амбарцумян считает звезды UV Кита молодыми, еще не вполне сформировавшимися объектами. По его мнению, из недр этих звезд на их поверхность время от времени извергается «дозвездное вещество», распад которого сопровождается выделением большого количества энергии.
Все это – лишь догадки. Связь между отдельными типами вспыхивающих звезд еще полностью не выяснена. Тайны звездных вспышек во многом остаются пока нераскрытыми.
СТРАННЫЕ ТУМАННОСТИ
Наблюдатели XVIII века, разыскивая в бездне ночного неба интересные объекты, иногда обнаруживали крохотные слабосветящиеся круглые пятнышки, внешне несколько напоминающие диски планет. Однако их неподвижность по отношению к звездам показывала, что эти объекты находятся далеко за пределами солнечной системы. Тем не менее за свой внешний вид они были названы планетарными туманностями.
В настоящее время известно около трехсот этих необычных объектов. Большинство из них так далеко от нас, что на фотоснимках почти неотличимо от звезд. Только призма, поставленная перед объективом телескопа, выявляет различие: спектры планетарных туманностей не похожи на спектры звезд. В них на темном фоне выделяются яркие линии излучения, принадлежащие газам – водороду, гелию и атомам ионизированного кислорода.
Планетарные туманности не всегда похожи на диски планет. В большие телескопы ни одна из них не кажется равномерно освещенным правильным диском. Только в самых общих чертах и в немногих случаях можно говорить о кругообразной форме некоторых из туманностей. В большинстве же своем это неправильные по форме и неравномерные по яркости газовые облака, в центре которых, по-видимому, всегда имеется очень горячая звезда– ядро планетарной туманности.
Некоторые из планетарных туманностей сравнительно близки к Земле и потому даже в небольшие телескопы можно рассмотреть подробности их строения.
Вот, например, классическая планетарная туманность, видимая почти посередине между звездами γ и β из созвездия Лиры. Она находится от нас на расстоянии две тысячи двести световых лет, то есть почти в сто раз дальше Веги – главной звезды того же созвездия. Внешне туманность напоминает собой колечки дыма от папиросы, которые могут пускать искусные курильщики. Однако масштабы этих двух явлений, конечно, несоизмеримы. Светящееся зеленоватое «колечко» из созвездия Лиры имеет поперечник около 70 тысяч а. е., то есть в семьсот раз больший, чем диаметр нашей планетной системы. В центре кольцеобразной туманности из созвездия Лиры видна сравнительно яркая звездочка – ядро туманности.
Около трети всех известных планетарных туманностей принадлежит к числу кольцеобразных. Думать, что все эти газовые кольца случайно повернуты к нам «плашмя», а не ребром, это значит верить в невозможное. Теория вероятностей совершенно исключает такое практически невероятное сочетание стольких случайностей. Кольцеобразные туманности повернуты к земному наблюдателю по-разному. Но если при этом они всегда сохраняют форму кольца, то, следовательно, на самом деле кольцеобразная туманность является огромным газовым шаром с очень толстой стенкой и почти полым внутри.
Когда мы смотрим на края такой туманности, наш взгляд проникает через большую толщу ее газовой «скорлупы», чем при наблюдении ее центральных областей. А чем большую толщу газа мы видим, тем более яркой эта масса газа нам кажется. Так и возникает иллюзия газового кольца.
Может быть, конечно, и другой случай. Представьте себе, что пространство между газовой оболочкой («скорлупой») планетарной туманности и ее ядром сплошь заполнено газом. Такая туманность уже не будет казаться кольцеобразной. Если к тому же внутри этой шарообразной газовой массы газы распределены неравномерно, а внешние, «поверхностные» слои туманности имеют сложную, нешарообразную форму, то планетарная туманность при наблюдении в телескоп может удивить астронома сложностью своей структуры.
Типичная планетарная туманность.
К числу таких некольцеобразных планетарных туманностей принадлежит широко известная туманность из созвездия Лисички. Легко различимая на черном фоне ночного неба даже в сильный бинокль, она кажется еле светящимся прозрачным облаком неправильной формы. На рисунках наблюдателей прошлого века эта туманность по своей форме напоминает спортивный снаряд – гантель. Современные фотографии, сделанные с помощью крупных телескопов, обнаруживают ее в общем кругообразную форму с очень неоднородным распределением газов. Кстати сказать, по своему поперечнику туманность в созвездии Лисички почти втрое превышает кольцеобразную туманность в Лире.
А есть планетарные туманности, которые даже отдаленно не напоминают диски планет. Подобные аномальные (то есть ненормальные), необычные туманности недавно изучены советским астрономом Г. А. Гурзадяном.
При всем многообразии форм планетарных туманностей их объединяет нечто общее: сходство химического состава и наличие центральной звезды – ядра.
Нет сомнений, что каждая планетарная туманность тесно связана со своим ядром. Звезда-ядро не случайно находится в центре туманности. Другое дело те звезды, которые на снимках кажутся окружающими туманность.
Эти звезды на самом деле (в пространстве) не имеют ничего общего с планетарной туманностью. Они образуют фон, передний или задний, на котором и наблюдается туманность.
Какова же все-таки связь между планетарной туманностью и ее ядром?
Прежде всего заметим, что свой свет планетарная туманность заимствует от ядра. Но это заимствование – не простое отражение. Подсчитано, что планетарная туманность излучает света в сорок – пятьдесят раз больше, чем ее центральная звезда. Значит, здесь происходит нечто иное, чем отражение.
Ядра планетарных туманностей очень горячи. Это, пожалуй, самые горячие из известных нам звезд. Даже их поверхностные слои имеют температуру, близкую к 100 тысячам градусов, тогда как у Солнца и ему подобных звезд фотосфера имеет температуру всего около 6 тысяч градусов. При такой сверхраскаленности ядро планетарной туманности излучает энергию главным образом в форме невидимых глазом ультрафиолетовых лучей. Атомы туманности, поглотив ультрафиолетовые лучи центральной звезды, излучают затем потоки видимого глазом света. Благодаря такому переизлучению туманность и кажется несоразмерно яркой по сравнению со своим ядром.
Свечение планетарных туманностей, таким образом, холодное. Здесь, как и в кометах, мы снова встречаемся с люминесценцией – весьма распространенным явлением в мире небесных тел.
Планетарные туманности кажутся зеленоватыми. В их спектре выделяются очень яркие зеленые линии, которые долгое время приписывались неизвестному на Земле веществу небулию. Слово «небулий» означает в переводе «туманный», и, когда астрономы назвали таинственное вещество небулием, от этого их знание, разумеется, не увеличилось. Только в 1927 году загадка небулия была разрешена. Тщательным анализом спектров туманностей было доказано, что небулий – это всем хорошо известный кислород. Астрономы его сразу не узнали только потому, что в планетарных туманностях он находится в ионизированном состоянии. Потеряв часть своих электронов, атом кислорода стал неузнаваем, как старый знакомый, неожиданно сбривший бороду и усы. Посылаемые ионизированным кислородом зеленые лучи, совсем нехарактерные для нормального кислорода, были сначала объяснены астрономами как лучи загадочного небулия.
На связь планетарной туманности и ее ядра указывает также другой факт. Планетарные туманности расширяются от ядра, как от некоторого центра. Конечно, из-за удаленности туманностей расширение непосредственно не видно. Его можно обнаружить, только исследуя спектр туманности. Но факт расширения несомненен. В среднем скорость расширения составляет два-три десятка километров в секунду. Это значит, что диаметр большинства планетарных туманностей должен увеличиться за столетие на две-три секунды дуги – величину, практически пока не обнаруженную.
Несомненно, однако, что через несколько десятков лет «раздутие» некоторых из планетарных туманностей можно будет увидеть по их фотоснимкам.
Итак, планетарные туманности расширяются во все стороны от своего ядра. Казалось бы, чего яснее: центральная звезда когда-то выбросила газы, которые со временем и образовали туманность.
Но тут-то и начинаются странные противоречия, выбраться из которых до сих пор еще не удалось.
Звезды, находящиеся в центре планетарных туманностей, можно разделить на два типа. Примерно половину из них составляют обычные, хотя и весьма горячие звезды, которые астрономы причисляют к спектральному классу О. По общим чертам своей природы напоминая наше Солнце, эти звезды отличаются от него, во-первых, значительно большими размерами и, во-вторых, более высокой температурой, которая на поверхности звезд класса О достигает 30 тысяч градусов.
Другая половина ядер планетарных туманностей – это звезды совершенно необыкновенные. По имени ученых, впервые исследовавших их спектры, звезды такого типа называют звездами Вольф – Райе.
Большинство астрономов считает, что звезды Вольф– Райе буквально истекают газом. Их чрезвычайно пухлые, протяженные атмосферы состоят из атомов водорода, гелия и других элементов, непрерывно извергающихся в окружающее звезду мировое пространство. В отдельных случаях атомы, по-видимому, покидают свою звезду со скоростью, близкой к 2 тысячам километров в секунду!
Чудовищный по масштабам и непрерывно извергающийся газовый «дождь наизнанку» истощает звезду. Природа демонстрирует пример редкого расточительства, которое, конечно, неизбежно приведет к краху.
Нетрудно подсчитать, как это сделал советский астроном Н. А. Козырев, что за один год звезда Вольф – Райе выбрасывает такое количество вещества, которое по массе составляет около одной десятитысячной доли массы Солнца. Учитывая, что массы всех звезд мало отличаются друг от друга, можно сделать вывод, что «прожигание жизни», которое мы наблюдаем у звезд Вольф – Райе, может продолжаться не более ста тысяч лет.
По земным меркам сто тысяч лет – срок солидный. Но для звезд, продолжительность существования которых измеряется, по-видимому, десятками или сотнями миллиардов лет, сто тысяч лет – почти мгновение. Значит, если звезды Вольф – Райе не собираются полностью «рассосаться» в пространстве, если от них должно остаться что-то, напоминающее обычную спокойную звезду, то продолжительность безумного расточительства должна быть, очевидно, значительно меньшей, чем сто тысяч лет.
Мы пока не знаем, что именно заставляет некоторые из звезд вступать на путь гибельного расточительства. Но все факты говорят, что это расточительство является кратковременным эпизодом в их жизни.
Понять, почему звезды Вольф – Райе истекают газом, нетрудно. Ведь поверхность этих наиболее горячих звезд имеет температуру до 100 тысяч градусов. При такой температуре звезда излучает столь мощные потоки света и, в частности, ультрафиолетовых лучей, что световое давление со стороны поверхности звезды на ее атмосферу колоссально. Оно-то и «сдувает» атомы атмосферы в окружающее звезду мировое пространство.
Следует заметить, что некоторые астрономы не согласны с нарисованной сейчас картиной. По их мнению, как будто подтверждаемому некоторыми фактами, звезды Вольф – Райе вовсе не истекают газом, а особенности их спектра могут быть объяснены некоторыми сложными физическими процессами, протекающими в атмосферах этих загадочных звезд. Вывод о молодости звезд типа Вольф – Райе не должен считаться бесспорным.
Итак, ядра планетарных туманностей – это либо звезды типа Вольф – Райе, либо более спокойные и менее горячие звезды спектрального класса О. Можно ли отсюда сделать вывод, что планетарные туманности неизбежно должны порождаться именно этими звездами?
Нет, нельзя. Есть много звезд, ничем не отличающихся от ядер планетарных туманностей, вокруг которых туманности отсутствуют. Значит, не все горячие звезды непременно образуют планетарную туманность. Да к тому же строение планетарных туманностей (в особенности кольцевых) показывает, что туманность могла возникнуть при каком-то внезапном и неравномерном извержении из звезды больших количеств газа. Между тем у звезд класса О атмосферы сравнительно спокойны, а у звезд Вольф – Райе истечение газа происходит на редкость равномерно.
Может быть, так происходило не всегда. Может быть, в прошлом звезды типа Вольф – Райе испытывали нечто вроде взрывов, что приводило к скачкообразному выбрасыванию из них газового вещества. Никаких, однако, прямых фактических подтверждений такое предположение пока не находит.
Как и звезды типа Вольф – Райе, планетарные туманности– это образования недолговечные. Расползаясь в разные стороны от центральной звезды, планетарная туманность со временем потеряет симметричную форму и превратится в небольшую так называемую диффузную туманность – межзвездное облако разреженных газов с неправильными очертаниями, напоминающими земные облака. Подсчеты показывают, что превращение планетарной туманности в диффузную неизбежно совершится за короткий в астрономическом масштабе срок – какие-нибудь десять тысяч лет. Возможно, что за это время ее ядро остынет, «успокоится» и из звезды типа Вольф – Райе превратится в звезду класса О.
Факты как будто подтверждают эту мысль. Чем больше планетарная туманность, чем неправильнее ее форма и очертания, тем в среднем холоднее ее звездное ядро.
Трудно предполагать, что мы случайно появились на свет как раз в ту эпоху, когда возникли планетарные туманности. Гораздо вероятнее предположить, что процесс образования планетарных туманностей совершается непрерывно. Эти странные объекты и в далеком прошлом, и в настоящем, и в будущем возникали, возникают и будут возникать.
Нам, в общем, ясно, чем кончается жизнь планетарной туманности. Мы можем даже приблизительно указать дату рождения любой из них. Но сам акт рождения остается пока в тени. Мы не знаем, как и из чего рождаются планетарные туманности. Мы хотели бы глубже узнать подробности их жизни и уничтожения. А пока приходится считать эти странные туманности одними из наиболее загадочных представителей звездного мира.