Текст книги "Что нас ждет, когда закончится нефть, изменится климат и разразятся другие катастрофы XXI века."
Автор книги: Джеймс Кунстлер
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 9 (всего у книги 18 страниц)
Водородная экономика
Распространенное мнение о том, что водород сможет спасти технологическую цивилизацию от надвигающейся катастрофы, – типичный пример того, насколько недальновидно стало наше зависимое от нефти общество. Идея, конечно, привлекательная, поскольку при горении водорода выделяется лишь водяной пар и, соответственно, окружающей среде не причиняется вреда. К тому же самого водорода в избытке. Было бы замечательно, если бы вся механизированная инфраструктура и оборудование нашего общества просто перешли на водород, но такого не произойдет. Что-то можно перевести на водород, но не все. Водород не заменит нам нефть и газ в полном объеме.
План по переходу от нефти и газа на водородную экономику обычно связан с технологией топливных элементов. Сам топливный элемент представляет собой кусок пластмассы, помещенный между несколькими углеродными пластинами, которые проложены между двумя концевыми пластинами, действующими как электроды. Эти пластины имеют дорожки, которые распределяют топливо и кислород. Они модульные и могут быть размещены так, чтобы производить энергию. Топливные элементы действуют в 2–3 раза мощнее, чем двигатель внутреннего сгорания, и при этом не требуют никаких движущих частей. В процессе, обратном электролизу, водород, введенный через каталитическую металлическую мембрану, соединяясь с кислородом, производит пар и электрический ток. В автомобиле, работающем на топливных элементах, электричество от топливного элемента приводит в действие двигатель. Однако из-за того, что получать чистый водород очень дорого, в качестве топлива предпочитают использовать природный газ или метанол.
О топливных элементах известно уже давно. Сэр Вильям Роберт Гров продемонстрировал возможность получения электроэнергии с помощью кислорода и водорода в топливном элементе еще в 1893 году. В конце 1950-х годов НАСА начало создавать компактный электрогенератор на топливных элементах для использования его во время космических полетов. Расходы не имели значения. Расчетная масса энергоустановки из водородно-кислородных топливных элементов намного меньше, чем у батарей. И это очень важно, потому что в космосе каждый грамм на учете. Позднее в пилотируемом космическом корабле астронавты смогли даже пить воду, производимую топливными элементами.
Нет сомнения в существовании и пользе топливных элементов. Но возникают многочисленные и настораживающие вопросы по поводу водородной экономики. Проблема в том, что водород не совсем топливо. Это скорее «носитель» энергии, чем топливо. Для получения водорода требуется больше энергии, чем производит сам водород. Таким образом, сегодня производство водорода зависит от других известных источников энергии, которые по той или иной причине представляют собой проблему – это все те же нефть, природный газ, уголь, вода, солнце, ветер. В некоторой степени термин «водородная экономика» – это прикрытие для ядерной экономики, поскольку ядерная экономика предполагает масштабную выработку электроэнергии, подразумевается, что многочисленные современные атомные станции могут с экономической точки зрения производить огромное количество водорода. Я собираюсь вернуться к вопросу ядерной энергии позже.
Безусловно, водород производится сегодня в промышленном масштабе и имеет множественное применение. Но если сравнивать количество водорода, используемое промышленностью, с объемом сжигаемой нефти, то оно невелико. Применение водорода в качестве промышленного катализатора или химического компонента – это одна сторона вопроса, совсем другое дело рассматривать водород как энергетически ценный ресурс. Когда речь идет о сотнях миллионов автомобилей, водород, как говорят инженеры, не поможет. Если мы будем получать из водорода меньше энергии, чем затрачивать на его получение, стоит ли игра свеч? К тому же «водородная экономика» не сможет обогреть десятки миллионов жилых и производственных зданий.
Вселенная на 73 % состоит из водорода. Правда он не находится в свободном состоянии на планете Земля, а связан с другими элементами в химические соединения. Вода, Н 2O – самое распространенное соединение: два атома водорода соединены с одним атомом кислорода. Такие углеводороды, как нефть и природный газ (метан), естественные природные соединения, которые способны при горении высвобождать энергию.
Почему бы не попытаться синтезировать нефть и природный газ из водорода и углерода? Потому что для начала водород необходимо освободить, а уже потом соединить с углеродом. А это требует больше энергии, чем сможет дать конечное соединение. (Синтезирование бензина из угля – другой вопрос, так как здесь речь идет об очистке одного углеводорода с целью получения другого, что до сих пор остается очень дорогостоящим процессом.) Углеводороды, существующие в природе, представляют собой накопленную в течение тысячелетий солнечную энергию, впитанную растениями и очищенную геологической формацией. Вспышка, возникающая при воспламенении унции угольного топлива, длится пару секунд. А ведь это энергия, полученная от доисторического папоротника, накапливавшего солнечный свет в течение девяти лет. Сто лет нефтяной цивилизации – ничто по сравнению с геологическим временем. Нефть и газ – невозобновляемые природные ресурсы, запасы которых ограничены. Мы не можем создать их искусственным путем из свободных элементарных частиц водорода и углерода. В этом-то и проблема. Что касается загрязнения, то в процессе синтезирования метана (СН 4) из угля и метанола (СН 4ОН) из нефти и биомассы производится больше углекислого газа, чем если бы эти элементы просто горели.
Вода, с другой стороны, не воспламеняемая. Для того чтобы отделить легковоспламеняющиеся атомы водорода от атомов кислорода, требуется много энергии. Это можно сделать с помощью электролиза, пропуская электрический ток через сосуд с водой и захватывая «расщепленные» газы. Другой способ получить водород заключается в нагревании воды до очень высокой температуры с целью «вымывания» природного газа при очень высоком давлении, которое отделяет атомы водорода. Конечно же, это предполагает, что богатые месторождения природного газа будут использоваться как исходное сырье. Также потребуется много энергии для нагревания воды. Процессы «освобождения» водорода всегда ассоциируются с потерей чистой энергии. Энергетическая рентабельность в среднем составит примерно 1 : 1,4. То есть, вы получаете одну единицу энергии из 1,4 единицы вложенной энергии. Это нерентабельно. Вспомните, что в 1930-х годах в Техасе показатель ERoEI нефти составлял 20 : 1, и вы прекрасно поймете, почему нефть предпочтительнее.
Существует множество дополнительных проблем в отношении водорода как альтернативы углеводородного топлива. Речь идет о его хранении и транспортировке. Чрезвычайно низкая плотность водорода, дающая низкий атомный вес, означает, что ему необходимо много пространства. В автомобилях он должен находиться в сжатом состоянии и содержаться в резервуарах под высоким давлением. Такой «топливный» бак будет занимать много места. Сжимание газа требует много энергии – а это дополнительные расходы. Для того чтобы создать автомобиль, работающий на водородном топливе и не уступающий по своим техническим характеристикам современному автомобилю с бензиновым двигателем, потребуется 703 кг/см 2водорода, находящегося под сверхвысоким давлением. Этого можно добиться, используя сверхпрочные углеродные волокна для укрепления баков. Такой бак может выдержать удар от столкновения на большой скорости. Вопрос в том, сможет ли «устоять» более чувствительное внутреннее содержание. Если нет, то водород, находящийся под чрезвычайно высоким давлением, начнет быстро выходить. А это огнеопасное вещество. Смесь водорода с воздухом загорается в широком диапазоне концентрации от 4 до 75 % и взрывается от малейшей искры. Поскольку водород выделяет много тепла при снижении давления, он может самовозгораться от удара, когда газ начнет выходить из бака через поврежденные клапаны.
Чтобы поместить водород в бак, нужно решить еще две задачи. Во-первых, этот газ легко рассеивается. Его крайне тяжело удерживать. Кроме этого, водород чрезвычайно едкий. Он любит вступать в реакцию с другими элементами и соединениями. Внутренняя часть бака, соединительные муфты для труб, клапаны и пломбы – это те детали, которые намного быстрее разъедаются водородом, чем такими газами, как метан. К тому же, в отличие от бензина, который остается жидким при постоянной температуре воздуха, сжатые газы сложно перемещать из одной емкости в другую. Опять же, для того чтобы заправиться водородом на АЗС, потребуется дополнительная энергия.
Помимо прочего, возникает вопрос о доставке водорода на АЗС. Бензин транспортируется в негерметизированных цистернах на грузовых машинах. Жидкий водород необходимо доставлять в баках, где он находится под невероятно высоким давлением. Груженая 40-тонная автоцистерна предназначена для перевозки примерно 25 тонн бензина. Из-за того, что водород такой легкий, указанная цистерна сможет вместить только 0,5 тонны водорода. Если сравнить энергопотребление грузовой машины с энергоценностью ее груза, то становится очевидным, что в плане транспортировки водород неэкономичен практически на любом расстоянии.
Автозаправочная станция средних размеров на любой скоростной автостраде ежедневно продает минимум 25 тонн горючего. Это топливо может доставить один 40-тонный бензовоз. Для того чтобы доставить такое же количество водорода на станцию, то есть обеспечить топливом то же количество автомобилей в день, необходима 21 грузовая машина. Автомобили, работающие на топливных элементах, в какой-то мере изменят эти показатели, но не намного. Перекачка находящегося под давлением водорода из бензовоза в заправочную колонку требует намного больше времени, чем наполнение подземного резервуара бензином. Заправочная колонка в целях безопасности должна быть закрыта в течение нескольких часов в день. Сегодня примерно 1 из 100 грузовых автомобилей – бензовоз или грузовик, перевозящий дизельное топливо. Когда перевозится водородное топливо, из 120 грузовых машин 21 машина (или 17 % от общего числа) перевозит водород. В одной из шести аварий с участием грузовых машин присутствует грузовик, перевозящий водород. Такая ситуация неприемлема по политическим и социальным причинам.
Трубопроводы для распределения водорода представляют собой большие проблемы. Существующую систему для подачи природного газа нельзя просто так использовать. Газовые трубопроводы недостаточно широкие для водорода. Водород может разъесть стыки труб и разрушить смазку в насосах на насосных станциях, отвечающих за прокачку газа и расположенных через определенные интервалы на протяжении всей газовой трубы. Склонность водорода к рассеиванию может оказаться причиной большой протечки. Таким образом, для подачи водорода существующую систему трубопроводов необходимо реконструировать, а это будет стоить миллиарды долларов (при условии, что получится решить и другие технические проблемы). Маловероятно, что это произойдет. Добавьте к этому еще и то, что необходимо будет изменить инфраструктуру каждой отдельной заправочной станции.
Все это сводится к тому, что автомобиль, использующий в качестве топлива водород, и вся соответствующая инфраструктура не могут в равной степени заменить системы, основанной на нефтяном топливе. Особая сущность нефти и уникальность систем, которые мы создали для ее использования, ставят нас в затруднительное положение. Кроме этого, нынешняя система имеет огромный социальный смысл. Было продемонстрировано, что автомобиль, работающий на топливных элементах, построить можно, по крайней мере дорогой опытный образец. Но что будет, если начать его массовое производство? Продавать такой автомобиль придется по цене, которая для обычных людей окажется слишком высокой, – не менее, чем за $80 000 (в 2005 году). Таким образом, невозможность приобретения автомобиля станет проблемой для общества, в котором личный транспорт, по сути, представляет собой неотъемлемую часть повседневной жизни.
Чем больше вы узнаете подробностей о «водородной экономике», тем отчетливее понимаете, что она с трудом применима к нашей жизни.
Подводя итог, можно сделать вывод, что «водородная экономика» вряд ли будет существовать. Можно находить все новое применение водороду и даже продолжать производить химические продукты с его использованием. Расширенная атомная инфраструктура может снизить расходы на получению водорода путем электролиза. Но в наши планы не входит менять современные автомобили на машины, работающие на водородном топливе. И если вдруг появятся удивительные технологические достижения, которые изменят известные законы термодинамики и смогут сделать процесс получения водорода таким же дешевым, как добыча нефти, тогда период Глобальной Катастрофы нам известен – между «сегодня» и тем светлым будущим.
Уголь
Уголь стал топливом, давшим толчок промышленной революции. Впервые уголь обнаружили в Англии на морском побережье, где волны омывали скалы. Было трудно собирать это вещество в большом количестве. Гораздо легче было срубать деревья, конечно, если они вам принадлежали. Уголь использовали в основном те, у кого не было земли и, соответственно, леса. Из-за запаха, который уголь выделял при горении, его считали менее качественным, чем древесина, и менее подходящим для обогрева и приготовления пищи. Печи и камины, для которых уголь подходил как нельзя лучше, еще не были изобретены. Когда же в XIX веке лесные массивы Англии начали неумолимо сокращаться, и бедным, и богатым пришлось перейти на уголь. Основные энергетические характеристики угля, сравнимые с древесиной, обнаружились только тогда, когда леса стало мало, а также появилось усовершенствованное отопительное оборудование.
В один прекрасный момент уголь стал важным и ценным продуктом и его начали активно добывать. Появились угольные шахты, которые часто затапливало. Вскоре необходимость выкачивания воды из шахт побудила разработать паросиловые установки, работавшие на угле, которые, в свою очередь, привели к созданию паровых машин, приводящих в движение лодки, паровозы и производственное оборудование. Англия расслабилась. Продукты горения угля сильно загрязняли окружающую среду, но благодаря этому топливу столько всего делалось, что вопрос об экологии отошел на второй план. Несмотря на убивающий смог, состоявший преимущественно из угольной копоти, в Лондоне не появилось ни одного серьезного движения против использования угля. Однако к XX веку началось активное использование нефти и популярность угля постепенно падала. Нефть легче добывалась – особенно в начале – и была более универсальным топливом, чем уголь.
Сегодня, когда запасы нефти истощаются, возможно, уголь вернет былую славу. Лучше всего он подходит для запуска стационарных турбин, которые применяются на электростанциях. Исторически сложилось так, что уголь стал первым топливом для обогрева современного дома. Возможно, все вернется на круги своя, несмотря на то, что люди привыкли к чистым, удобным, фактически автоматизированным газовым обогревателям. Возвращение к обогреву углем будет означать потерю роскоши и комфорта. К тому же уголь в своей обычной твердой форме явно не применим к главному «потребителю топлива» – автомобилю.
Уголь можно использовать как топливо для локомотивов, но все же разумнее было бы применять электрическую тягу. Хотя бы по той причине, что окружающей среде в этом случае наносится меньше вреда.
На стороне угля выступает угольная добывающая промышленность. Она утверждает, что его запасов в недрах земли еще достаточно много. Хватит на сотню лет. Как знать. Мы уже добыли немало угля. Притом самого лучшего качества. И он находился ближе к поверхности, его было легко получить. Большую часть оставшихся запасов, возможно, будет трудно и энергетически затратно добывать. Существует несколько различных точек зрения на то, сколько угля мы действительно сможет использовать. Я не сомневаюсь, что частично мы вернемся к углю, когда наши проблемы с нефтью и газом постучатся в дверь, но уголь не будет дешевым и его качество оставит желать лучшего. Уголь не заменит нам нефть и газ, к тому же он сам когда-нибудь закончится. Использование угля частично зависит от того, какое будущее у атомной энергетики, о которой речь пойдет дальше. Если ее противники победят, тогда логично предположить, что для выработки электроэнергии станут использовать уголь. По крайней мере какое-то время, если мы захотим жить в освещенных домах.
Уголь способствует глобальному потеплению. При горении уголь выбрасывает в атмосферу большое количество токсичных веществ. Он оставляет невероятно много твердых отходов (от 5 до 20 %) по отношению к своему собственному объему. Одна электростанция, работающая на угле, может производить более 1 миллиона тонн твердых отходов в год. Уголь при горении выбрасывает в атмосферу 60 % от всего объема выхлопных газов (остальное выбрасывают легковые и грузовые автомобили). Уголь связан с ртутным загрязнением. Кроме этого, угольная пыль является одной из причин возникновения астмы. Однако есть возможность установить очистители, которые не позволят выбросам попадать в атмосферу, но тогда электричество станет намного дороже, и политическое желание очистить промышленность задавит более суровое желание экономии. В любом случае, даже если удастся избавиться от выбросов тяжелых металлов, уголь все равно будет загрязнять атмосферу, выделяя при горении огромное количество углекислого газа, главного виновника глобального потепления.
Помимо прочего, угольная промышленность крайне разрушительна для ландшафта и окружающей среды. На сегодня наиболее распространенный метод добычи угля – открытая разработка месторождений. Такой способ добычи уничтожает целые районные ландшафты местности и отравляет грунтовые воды на больших глубинах. Используя уголь как главный источник энергии, мы делаем большой шаг назад на пути человеческого прогресса. Но необязательно, что все произойдет именно так. Средневековье – мрачные времена – после достижений Римской империи тоже казалось шагом назад, но прогресс не остановился. То, с чем столкнемся мы, больше похоже на Смутные Времена.
Гидроэлектроэнергия
Гидроэлектроэнергия – энергия, получаемая за счет использования энергии водного потока. Гидроэлектростанции обычно размещаются вблизи рек. Сила потока воды воздействует на турбины, которые, вращаясь, приводят в движение генератор, вырабатывающий электроэнергию. Гидроэлектроэнергию можно также получить, используя энергию приливов, но такой способ более сложный и дорогостоящий.
При работе гидроэлектростанций не образуется углекислый газ (правда, он образуется при изготовлении гидрокомпонентов). Самое последнее поколение турбин дает до 90 % энергетического выхода. Воды много, на нее можно положиться. Но и здесь есть свои минусы. Например, проблемы заиления дамб. Почва и другие вещества, смываемые рекой, образуют ил позади дамбы, из-за чего она постепенно перестает выполнять свою функцию. Кроме этого, не все регионы одинаково обеспечены мощными водными потоками. Счастливчики те, кто живет рядом с бурными реками.
Более того, если мы примем воду за основной источник энергии, она лишь частично заменит нам газ и нефть. Сможем ли мы строить заводы и заниматься их техническим оснащением без основного дешевого природного топлива? Остается не так много времени до того момента, когда у нас не будет возможности ремонтировать вышедшее из строя оборудование. Во время Глобальной Катастрофы не будет и финансовой возможности заменить его. Тогда вся электроэнергия станет местной, и некоторым районам повезет гораздо меньше, чем другим.
Солнечная и ветряная энергия
Под солнечной энергией мы обычно подразумеваем либо пассивные,использующие солнечную энергию строительные технологии, которые позволяют зданиям накапливать солнечное тепло, либо активноепревращение солнечной радиации в электричество при помощи фотоэлементов. В более глубоком смысле понятие «солнечный» можно также отнести и к природному топливу потому что оно представляет собой солнечную энергию, накопленную за многие миллионы лет в углеводородных соединениях, а также к топливной древесине и коровьему навозу. Но я хотел бы поговорить о первых двух категориях.
Пассивная солнечная энергия мощная. Дом, который вы строите, становится жилым и комфортным. Ключевая особенность «домодернистской» архитектуры заключалась в использовании солнечного света для отопления и освещения зданий. Такие традиционные технологии развивались медленно на протяжении многих веков. А в наше время нефти и газа было так много, что архитекторы увлеклись вопросами стиля, забыв о традиционном подходе, основанном на использовании пассивной солнечной энергии. XX век стал эрой стеклянных стен в офисных зданиях, имитации окон, титановых фасадов и других модных штучек для «украшения» зданий, целью которых являлось заявить о гениальности их создателей. Такого рода снисходительное, самовлюбленное поведение было возможно лишь во времена дешевой энергии, когда мода, роскошь и популярность стояли на первом плане. Но, увы, все меняется.
Нужно заметить, что основная масса людей все же предпочитала традиционный вид зданий. Но подвох в том, что дома выглядели традиционно только внешне. В других аспектах они были чрезвычайно экспериментальными, особенно в плане строительных материалов. Такие материалы, как пенопластовые плиты, создали проблемы конденсата и гниения. Строители не учитывали региональные особенности.
Активная солнечная энергия – производство энергии на основе энергии Солнца – это другой вопрос. Существует проверенная технология. Она работает, хотя не так хорошо, как технологии, основанные на природном топливе. Я не уверен, что производство энергии от энергии Солнца может существовать без нефти и газа. Мы знаем, как сделать батареи с фотогальваническим элементом из силикона, пластика и металла, и также знаем, как изготовить свинцовые и пластиковые аккумуляторы, а еще мы знаем, как создать зарядные устройства, инверторы и другие приборы для накопления и передачи электроэнергии. Но сможем ли мы создавать подобные вещи в будущем без нефти, газа и угля? Наверное, нет. Для производства батарей многократного цикла глубокого заряда-разряда и солнечных панелей требуется много энергии и, соответственно, большое количество баррелей нефти. Кроме этого, чтобы запустить массовое производство всех компонентов со стандартными техническими характеристиками, необходимо задействовать целую группу отраслей промышленности – от металлургии до изготовления пластмасс. Я не уверен, что активная солнечная энергия нам поможет во время Глобальной Катастрофы, она лишь на какое-то время заменит природное топливо.
Кроме того, с бытовой, практической точки зрения, чрезвычайно много времени уходит на обслуживание батарей, которые приходится периодически менять. Даже при самом высоком качестве обслуживания аккумуляторный блок необходимо менять каждые десять лет, а это стоит тысячи долларов. Срок службы самих солнечных панелей немного дольше, но даже они подвержены негативному воздействию ультрафиолета, воды и льда. Таким образом, в определенных районах, где мало солнца, использование подобной системы бессмысленно даже в том случае, когда нет другого выбора.
Возможно, будут изобретены более совершенные батареи и более эффективно работающие солнечные элементы. Однако за последние годы, несмотря на постоянные исследования в данной области, не удалось совершить кардинального прорыва.
Распространено ошибочное мнение, что такие альтернативные источники энергии, как солнце, ветер и им подобные, смогут заменить систему, основанную на природном топливе. Сама по себе энергосистема, работающая на солнечном свете, не загрязняет атмосферу, но определенно атмосфера загрязняется при производстве компонентов. Производство батарей, панелей, электронной аппаратуры, проводов и пластмассы немыслимо без добычи полезных ископаемых и работы заводов, функционирующих на природном топливе.
Что же нас ждет, когда не станет природного топлива? Совершенно неясно, например, можно ли будет использовать атомную энергию для производства солнечных компонентов. Ведь до настоящего времени атомная энергия использовалась исключительно для получения электричества, а не для масштабного промышленного производства. Будет ли это возможным?
Что касается ветряной энергии, то, с одной стороны, она может то, чего не может солнечная энергия. Энергия ветра, поглощаемая ветряными турбинами, в отличие от солнечной энергии, накапливается иначе, особенно тогда, когда «ветряная ферма» (несколько ветровых энергоустановок – ветряков) производит намного больше энергии, чем необходимо. Можно закачивать воду в водохранилище, чтобы приводить в действие гидротурбины в автономном режиме. Но это зависит от благоприятных топографических условий. Кроме того, в процессе преобразования можно потерять значительное количество энергии. Идея в том, что сжатый воздух или газы подаются в соляные отложения или водоносные породы, из которых энергию можно забрать, чтобы приводить в действие электрические генераторы. Найти подходящее место для подземного хранения сжатого воздуха – это уже другой вопрос. А для достижения эффективности сжатый воздух необходимо использовать в сочетании с природным газом. Турбины, работающие на природном газе и сжатом воздухе, в три раза эффективнее, чем турбины, работающие только на газе. Существует вероятность того, что энергию ветра можно использовать для получения синтетического метана путем преобразования углекислого газа с помощью катализатора при соответствующей температуре и давлении. Но с другой стороны, опять же возникают вопросы экономичности и универсальности.
Вопрос о рациональности использования энергии ветра, так же как и энергии солнца, возвращает нас к уже известной проблеме: смогут ли эти источники энергии работать без поддержки нефти, угля и газа? Конечно, можно вырабатывать электричество, используя ветряные турбины. Да, европейцы много вложили в «ветряные фермы». Дания в 2003 году получала от ветровых энергоустановок 18 % всей электроэнергии. Ветряные установки Германии производили более 10 000 МВт электричества, Испании – более 3000 МВт. Существование ветряных ферм стало возможным потому, что мир находится на историческом пике нефтяного производства. Благодаря природному топливу стало возможным получение специальных легированных металлов, необходимых для изготовления турбин, а также строительство заводов для их массового производства и изготовления запасных деталей – ветряные турбины довольно хрупкие и часто ломаются. Что произойдет, когда мы лишимся огромной технологической поддержки нефтяной экономики?
Развитым промышленным странам необходимо создать инфраструктуру альтернативной энергии задолго до того, как основной источник нынешнего процветания исчезнет. Стоит уже сегодня задуматься о завтрашнем дне.
Что произойдет, когда люди всего мира столкнутся в борьбе за оставшиеся запасы нефти? Нарушится относительный международный порядок, который позволяет мировой экономике планомерно работать, – порядок, к которому мы привыкли. Возникнет взаимное недоверие, скорее всего, разразятся международные военные конфликты.
Я хочу подчеркнуть, что представление большинства людей об «альтернативной» энергии, основанной на передовых технологиях, довольно туманно. Многие полагают, что тактика использования оставшихся резервов для подготовки к постнефтяному будущему состоит в том, чтобы оттянуть время, пока «они» – ученые – зануды – новаторы – гении не предложат новый и более совершенный источник энергии. А вдруг такое чудо произойдет? В истории случались и более невероятные вещи. Но идея ожидания технологического чуда всего лишь своеобразная вариация культа карго. С точки зрения групповой психологии такая идея ставит человеческую расу в затруднительное положение, заставляя сдать последний экзамен с первого раза.
Когда исчезновение природного топлива лишит нас некоторых технологических достижений, это, возможно, повлечет за собой потерю технологических знаний. Римляне достигли чрезвычайно высокого уровня мастерства в технике железобетонного строительства. После того как империя пала, знания были утрачены. Величественные соборы средневековой Европы во всем своем великолепии представляют собой более примитивные строительные технологии – всего лишь соединение камней известковым раствором, – чем такие сооружения, как Пантеон, построенный на тысячу лет раньше. Тогда от основания до вершины свода применялись более тонкие кладки и более легкие смеси бетона. Такой уровень строительных технологий был достигнут вновь только в начале XX века. Проекты римской архитектуры не смогли бы воплотиться в жизнь без комплексной социально-экономической основы римского государства. Если разрушится современная социально-экономическая основа, сколько времени пройдет, прежде чем наши знания уйдут в небытие? Через 200 лет кто-нибудь будет знать, как построить или хотя бы починить обыкновенный двигатель? Уже не говоря о ветряной турбине.
Сегодня мы владеем достаточными знаниями для того, чтобы понять, насколько неприемлемый образ жизни ведем, и хотя бы попытаться подготовиться к непредсказуемым поворотам судьбы. Существующие знания, основанные на законах физики и химии, настолько обширны, что, вероятно, задержатся на какое-то время в будущем, и нам будет легче справляться с трудностями, чем людям XVIII века, обладавшим не такими большими познаниями. Я не предлагаю вернуться к допромышленному образу жизни. Современная жизнь сама по себе уже привела к огромной потере знаний об экологически безопасном существовании, которое мы вели на протяжении тысячи лет.
Существуют другие способы использования энергии солнца и ветра. И они не основываются на таких высокотехнологических устройствах, как солнечные панели и турбины. Например, трудовая лошадь – это сельскохозяйственное «орудие труда», подпитываемое солнцем, способное к самовоспроизводству, говоря техническим языком, оно самозаменяемое. И оно подразумевает совершенно другую систему ведения сельского хозяйства. Садоводство – вид деятельности с использованием энергии солнца. В наши дни садоводство превратилось в некое наружное украшение и не более того. Во время же Глобальной Катастрофы нам придется выращивать себе пропитание.