Текст книги "Почему мы не проваливаемся сквозь пол"
Автор книги: Джеймс Эдвард Гордон
сообщить о нарушении
Текущая страница: 17 (всего у книги 20 страниц)
Сталеварение
Производство стали, особенно современной, – дело весьма сложное. Мы расскажем о нем лишь весьма кратко. Углеродистыми сталями мы называем сплавы железа с углеродом, содержащие до 2% углерода. Кроме углерода, в стали может быть немного шлаковых включений, а также контролируемые добавки других элементов (например, кремния и марганца). Традиционное сварочное железо, как вы уже знаете, почти не содержало углерода, но имело значительные шлаковые включения, в небольшом количестве входили в него и другие элементы. Как мы уже говорили, самая большая трудность первых железоделателей состояла в том, что, удаляя углерод из чугуна, они повышали точку плавления его примерно с 1150 до 1500° C, то есть за'пределы возможностей их печей. Поэтому нельзя было удалить шлак, а чтобы получить нужную прочность и твердость, следовало вернуть в железо часть углерода; это можно было сделать, насыщая углеродом горячую, но уже твердую поверхность железа кузнечными методами.
Однако со временем температуру печей удалось несколько поднять, и примерно в 1740 году Бенджамин Хант научился плавить сварочное железо с небольшой добавкой углерода в установленных в печах глиняных тиглях. Ему удавалось проплавлять до 40 кг металла. При этом шлак, будучи более легким, всплывал на поверхность и его удаляли. Оставалось железо с небольшим количеством углерода и с прежними включениями. Содержание углерода можно было подогнать, так чтобы получить желаемую прочность и твердость, а свободную от шлака сталь вылить в изложницу.
Тигельная сталь была дорогой, отчасти потому, что исходным сырьем для нее служило довольно дорогое сварочное железо. Кроме того, качество ее было не всегда одинаковым, потому что никакие примеси, кроме шлака, не удалялись и не контролировались. Но даже и в таком виде тигельная сталь обычно была и дешевле, и лучше большинства “сталей”, из которых кузнецы ковали мечи, из нее делали высококачественный инструмент.
Если инструмент и оружие из прежних сталей имели дьявольски твердую поверхность и мягкую сердцевину, то из тигельной стали получались “насквозь” прочные изделия. Однако в некоторых случаях и эта сталь подвергалась науглероживанию (цементации), с тем чтобы уменьшить износ режущего лезвия. Так делается иногда и до сих пор. Правда, никто сейчас не получает обычную углеродистую сталь в тиглях, разве что делают это в экспериментальных целях или при выплавке дорогих легированных сталей в небольших количествах.
(обратно)
Бессемеровская сталь
Вплоть до середины XIX века тигельная плавка была единственным способом получения стали, для больших конструкций использовались лишь чугун и сварочное железо. Начало широкого промышленного производства стали связано с именами Генри Бессемера (1813-1898) и Роберта Мюшета (1811-1891). Бессемер был плодовитым изобретателем. Чутье бизнесмена позволило ему успешно запустить в дело несколько изобретений, в том числе способ изготовления “золотой” краски и уплотнения графита для изготовления карандашей. Получением стали он заинтересовался после истории с непрочными стволами чугунных пушек во время Крымской войны.
Поставив несколько опытов, Бессемер пришел к совершенно новой идее – удалять избыток углерода и других включений, продувая воздух через расплавленный чугун. В 1855 году он запатентовал этот способ. Вначале качество получаемой Бессемером стали было очень плохим, так как она содержала избыток окислов и серы. Но в 1856 году Мюшет получил патенты на очень сходный с бессемеровским процесс, отличие которого состояло в том, что содержание включений, не выжигаемых полностью потоком воздуха, регулировалось добавкой так называемого зеркального чугуна, содержащего марганец. Именно добавка марганца в конце продувки обеспечила успех бессемеровского процесса.
Весь процесс ведется в устройстве, называемом конвертером, который представляет собой тигель грушевидной формы, установленный на цапфах так, что его можно наклонять. Конвертер не имеет наружных источников тепла. Воздух продувается через отверстия в его дне.
Чтобы запустить конвертер, его наклоняют и через горловину заливают в него расплавленный чугун (от 5 до 30 т железа, содержащего около 4,3% углерода и небольшие добавки кремния и марганца при температуре около 1200° C). Наполненный конвертер остается лежать на боку, при этом его содержимое располагается так, что не блокирует донных отверстий, в которые под давлением подается воздух. Затем конвертер поворачивается в свое рабочее вертикальное положение – в этом положении воздух должен “пробулькивать” через расплавленное железо. Вначале он окисляет содержащиеся в расплаве марганец и кремний. Образующийся шлак всплывает на поверхность. По традиции процесс контролируется наблюдением за цветом и характером пламени, вырывающегося из горловины конвертера. На этой стадии оно короткое и красновато-коричневое.
Через несколько минут марганец и кремний полностью окислены, доходит очередь до углерода. Цвет пламени изменяется до слегка желтоватого, языки его становятся длиннее и беспокойнее. Наконец, весь углерод удален, пламя спадает, и продувка выключается. В период продувки сжигание углерода, марганца и кремния, которые все вместе составляют до 6% плавки, дает очень много тепла. Его с избытком хватает для того, чтобы поднимать температуру в конвертере и поддерживать ее выше точки плавления, возрастающей в процессе выгорания углерода, приходится даже добавлять железный лом, чтобы немного охладить расплав, иначе повреждается огнеупорная футеровка конвертера.
К концу продувки получается почти чистое железо. Обычно в него требуется добавить немного углерода и марганца, иногда – кремния. Для этого используется твердый углерод в том или ином виде и зеркальный чугун, который имеет высокое содержание названных элементов. Марганец нужен в стали сам по себе как легирующий элемент, а кроме того, он регулирует содержание серы которая не удаляется бессемеровским процессом.
Сера доставляет много забот сталеварам. Она не окисляется до SO2, как можно было бы ожидать а образует сульфид железа FeS, который имеет ту особенность, что растворяется в жидком железе и не растворяется – в твердом. Поэтому сульфид железа выделяется на границах зерен при охлаждении стали и ослабляет сталь (см. главу 3). Добавка марганца превращает FeS в MnS, который нерастворим в жидкой стали и поэтому переходит в шлак. Марганец снижает также растворимость кислорода в стали, что опять-таки полезно, поскольку кислород стремится осесть на границах зерен.
На конференции сталеваров в 1856 году Бессемер описал свой процесс в докладе “О производстве ковкого железа и стали без топлива”. Энтузиазм аудитории и авторитет Бессемера были таковы, что немедленно было собрано по подписке в счет патентного вознаграждения 27 тысяч фунтов стерлингов, после чего участники собрания разъехались по домам и принялись за устройство своих конвертеров.
Но случилось так, что никто из них не смог получить сколько-нибудь удовлетворительной стали: бессемеровский процесс был очень чувствительным к сорту чугуна и, кроме того, требовал некоторых навыков. Не удивительно, что репутация Бессемера значительно пострадала. Тогда он построил полноразмерную действующую модель своего конвертера у себя в лаборатории на Сент-Панкрас и стал демонстрировать процесс сталеварения тем, кто купил у него лицензии. Но при этом он не столько стремился “обменяться опытом”, сколько старался показать некомпетентность слушателей и зрителей. Поэтому антпбессемеровские настроения росли, и новый способ получения стали никто не хотел внедрять. В конце концов в 1850 году Бессемер построил собственный сталелитейный завод в Шеффилде, его сталь пользовалась большим спросом. Особенно покупали ее французское и прусское правительства для производства пушек. Явный успех бессемеровской стали заставил металлургов всего мира покупать у него лицензии.
Часть доходов Бессемера пошла на строительство парохода “Бессемер”, который должен был курсировать через Ламанш. Его большой роскошный салон первого класса был подвешен, подобно конвертеру, на цапфах. Предполагалось, что он будет всегда сохранять одно и то же положение относительно уровня моря. Бороться с морской болезнью пассажирам должен был помогать свежий воздух, в изобилии подававшийся в салон с помощью прихотливой системы труб, заделанных в пол. Однако на практике оказалось, что даже при весьма спокойном море салон раскачивался совершенно угрожающе. Едва судно вышло в свой первый рейс, как раздались истошные крики пассажиров. Салон “Бессемера” сохранился и до наших дней, но в качестве… оранжереи в каком-то саду неподалеку от Дувра.
В настоящее время сталь, полученная прямым бессемеровским путем, составляет лишь около 10% общего производства стали, но непрерывно развиваются модернизированные и более сложные варианты бессемеровского процесса. В процессе Калдо, например, конвертер продувается не воздухом, а кислородом; добавочное тепло, получающееся при этом, используется как для плавки флюса, изгоняющего из стали серу, так и для переплавки лома. Однако большой износ огнеупоров и стоимость кислорода могут свести на нет преимущества этого процесса.
(обратно)
Мартеновская сталь
Можно сказать, что бессемеровский процесс погубил сам себя. Дело в том, что он сделал сталь обычным и дешевым материалом. Столь же обычным и столь же дешевым стал и стальной лом. Наличие лома оказало важное влияние на всю экономику сталеварения. Это и понятно, ведь в настоящее время около половины выплавляемой стали возвращается на металлургический завод в виде лома. Бессемеровский процесс, однако, в своей традиционной форме в основном перерабатывает в сталь доменный чугун. В нем используются лишь небольшие количества лома для поглощения избытка тепла.
В мартеновском процессе большую часть шихты составляет стальной лом, его преимущества в том, что он дешев и из него уже удалены излишки углерода и других примесей. Кроме того, он содержит полезную в данном случае ржавчину. А бессемеровский конвертер не мог перерабатывать много лома, так как это потребовало бы больше тепла, чем получается при продувке.
В 1856 году братья Фредерик Сименс (1826-1904) и Чарльз Вильям Сименс (1823-1883), подобно Бессемеру наделенные изобретательским талантом и духом предприимчивости, разработали регенеративную печь. В этой печи вход и выход попеременно меняются ролями, они имеют форму извилистого лабиринта и насадки из огнеупорного кирпича. Дым из печи проходит по одной из насадок, отдавая кирпичу значительную часть своего тепла. Благодаря тому что газ подается в печь поочередно то через одну, то через другую насадку, он всегда проходит между нагретыми кирпичами, забирая с собою в печь часть тепла отработанных газов. Обычно эти печи топятся газом, и их конструкция позволяет поднять рабочую температуру до того предела, который может выдержать огнеупор. На практике она оказывается несколько выше 1500° C, что достаточно для плавки чистого железа.
Вначале использование печи Симменсов в сталеварении рассматривалось лишь как удобный и экономичный способ плавки тигельной стали. Но позже Симменсы применили регенеративный принцип к традиционному методу пудлингования и получали сталь, расплавляя чугун с железной рудой. В 1864 году Пьер Мартен предложил вводить в состав шихты большое количество лома.
Мартеновская печь загружается примерно равными количествами стального лома и чугуна, некоторым количеством железной руды (например, Fe2O3) и флюса (обычно известняка). При нагревании все расплавляется, и железная руда удаляет содержащийся в чугуне углерод. Флюс переводит в шлак не только нежелезные окислы руды, но также и содержащуюся в стали серу. Поэтому добавка марганца может оказаться ненужной. Одним из преимуществ мартеновского способа является возможность точнее следить за составом стали. В настоящее время в мартеновских печах получают около 85% рядовых углеродистых сталей.
Для еще более точного управления составом и чистотой стали применяют электрические печи. В таких печах выплавляется сравнительно небольшое количество очень важных высококачественных сталей.
(обратно) (обратно)
Глава 10
Материалы будущего, или как ошибаться в догадках
Мы не должны принимать вещи, даже на первый взгляд самые простые, как нечто ниспосланное свыше. Мы должны учиться, понимать природу, и не только для того, чтобы созерцать и терпеть то, чем она давит на нас. Глупость из невинного порока отдельных индивидуумов становится социальным злом.
New Scientist. 5.I.1967
Джон Бернал
Наука о материалах – изучение материала как целого, а не отдельных его физических, химических и технических свойств – довольно молода. Она прочно стала на ноги лишь совсем недавно. Но, несмотря на молодость, новая наука достигла известных успехов, и, я думаю, будет справедливым сказать, что сегодня мы значительно лучше, чем всего лишь несколько лет назад, понимаем механическое поведение твердых тел. Быть может, это произошло потому, что мы располагали уже большим количеством сырых необработанных наблюдений. Немало было накоплено физических и химических знаний и инженерного опыта, правда, в разрозненном виде. Собрать все это воедино, заставить одно объяснить и подтвердить другое – для этого потребовалось не так уж много новых экспериментов и свежих идей, стоило лишь достаточному числу людей серьезно заняться проблемой. Как это часто бывает, главная трудность состояла в том, чтобы осознать само существование проблемы.
Естественно, первым делом нужно было понять наблюдаемые явления – почему твердые тела вообще и широко используемые материалы в частности имеют те или иные свойства. Можно сказать, что с этим вопросом сейчас в основном покончено, хотя довольно много белых пятен все еще остается. Проблема, которая теперь возникла перед материаловедами, заключается в том, как использовать эти знания. Возможности здесь не беспредельны. Результаты предыдущих исследований как раз и убеждают нас в том, что значительная часть наших желаний просто невыполнима. Те же исследования показали, что некоторые пути улучшений были уже не только нащупаны, но и почти исчерпаны чисто эмпирическими методами еще до того, как они раскрылись перед учеными. Некоторые наши познания годны лишь на то, чтобы подсказать инженерам, чего они должны избегать – например, какого рода концентрация напряжений опасна.
Однако пытливые исследователи стремятся найти в материаловедении какие-нибудь радикальные пути – существенно изменить старые или изобрести новые и, быть может, лучшие материалы. Положение дел в сегодняшней науке таково, что сделать выбор среди множества возможных направлений работ очень нелегко. Как мы увидим, такой выбор рано или поздно может вызвать далеко идущие последствия за стенами лаборатории.
Прежде чем начать разговор о новых материалах, мы должны спросить себя: “Что в действительности мы разумеем под словами лучшие материалы? Лучшие – в чем?”
Ответ здесь далеко не очевиден, а сам вопрос вполне может быть центральным в современной науке о материалах. Технические проблемы, о которых мы поведем разговор, сами по себе очень трудны, но вопрос о целенаправленных изменениях материалов нельзя считать чисто техническим. Если мы интересуемся, а я думаю, мы должны интересоваться, возможностями получения новых или изменения старых материалов, мы должны учитывать социальные и экономические аспекты их производства. В конце концов техника призвана всего лишь обслуживать социальные и экономические потребности. О доминирующей роли материалов в обществе говорят названия исторических эпох – “каменный век”, “бронзовый век” и т.д.
Чрезвычайно сложные переплетения технического, социального и экономического аспектов еще более затрудняют всю проблему в целом. Правда, предприниматель твердо знает, что ему нужно: ему нужны дешевые материалы. Материаловеды значительную часть усилий вынуждены направлять на то, чтобы снизить стоимость производства материалов. Конечно, есть неоправданно дорогие материалы, их можно и должно делать подешевле. Однако это мое личное мнение, я не думаю, что то же самое справедливо для таких ходовых конструкционных материалов, как, например, сталь. Сталь сейчас очень дешева, и оставшиеся для нее резервы экономии, которые могут быть реализованы в будущем, не оправдывают затрачиваемых сегодня громадных научных усилий, особенно при нынешнем дефиците научно-технических кадров.
Если даже большое снижение стоимости конструкционных материалов было бы технически достижимым в недалеком будущем, то кто бы от этого выиграл? Прежде всего в большинстве изделий стоимость материала составляет малую долю стоимости готового изделия. Поэтому, даже если бы материал стал бесплатным, выигрыш потребителя по сравнению с другими изменениями, которые могли бы вслед за. этим последовать, оказался бы невелик.
Далее, сама дешевизна материала в действительности может иметь отрицательное влияние и на проект, и на характеристики готового изделия. Когда материал чересчур дешев, у конструктора нет стимула его экономить, а это может повлечь за собой не только утяжеление конструкций (которые, например, из-за этого будут впустую тратить горючее, повреждать дороги и т.п.), но и снижение профессионального уровня инженеров. Часто причиной плохого, тяжелого, неуклюжего проекта служит стремление снизить стоимость обработки, но, думается, порой это связано еще и с желанием конструктора уберечь себя от лишних размышлений. Экономисты утверждают, что существует оптимальное соотношение между стоимостью земли и труда, которое стимулирует развитие, и мне представляется, что те же соображения применимы к ценам на материалы.
Есть и еще одна важная сторона вопроса о ценах. Стоимость различных процессов обработки, материала часто во много раз выше стоимости исходного материала, но конечно же, стоимость обработки зависит не от цены, а от характеристик материала. Например, дешевле будет купить пластик по 8 шиллингов за килограмм и затем затратить еще 2 шиллинга на формовку его для получения конечного продукта, чем покупать сталь по 1 шиллингу за килограмм и тратить потом 25 шиллингов на штамповку, механическую обработку и доводку изделия. В этом корень коммерческого успеха пластиков, которые всегда были относительно дорогим исходным материалом.
Новые материалы должны обеспечить экономию именно на процессах обработки, производства и доводки готовых изделии.
С внедрением пластмасс наметилась четкая тенденция к уменьшению сложности и стоимости изготовления изделии. Большинство легко формуемых пластмасс довольно непрочны и нежестки, но принципы их обработки, очевидно, могут быть распространены на более прочные и жесткие вещества. Многие дешевые процессы формовки в настоящее время требуют значительных затрат на станки п штампы, но опять-таки я не уверен, что такое положение дел сохранится навсегда.
Можно дать лишь некоторые очень общие наметки того большого влияния, которое могут оказать принципиальные изменения материалов на общественную жизнь. Следствия здесь столь сложны, что были бы слишком опасными попытки выступить в роли пророка, предсказывающего в деталях возможный ход событий. Но я убежден, что мы должны быть достаточно мудры, чтобы не отвергать с легкостью возможность новой технической революции.
Моя работа отчасти связана с тем, чтобы выяснить, чего же на самом деле хотят (или думают, что хотят) люди от новых материалов. Меня угнетают здесь уж очень малые запросы в отношении долговечности материалов. Считается, что, если машины будут служить бесконечно долго, это может привести к технической и экономической закостенелости. Но я не думаю, что, если так называемая потребительская долговечность изделий будет продолжена, все будут роптать (исключая коммерсантов). В конце концов 20%-ное увеличение срока службы изделия более или менее эквивалентно 20%-ному повышению производительности.
Не сомневаюсь, сколько приложений имеют материалы, столько существует и определений “лучшего” материала. В то же время, если спросить нескольких конструкторов одного и того же изделия, какое именно качество используемого материала не позволяет им проектировать и делать лучшие изделия, ответы будут самыми разными, часто противоречивыми. Один и тот же конструктор через неделю может дать уже совсем другой ответ. Видимо, эти диалоги не поднимутся до уровня сократовых.
Все это на первый взгляд кажется удивительным, но, я думаю, найдет объяснение примерно в следующем. Вопреки обычным представлениям не материал выбирается для изделия, а скорее наоборот – изделие проектируется в расчете на материал. Следовательно, любое существенное изменение материала может повлечь полное переосмысливание изделия. В этом и кроется возможное объяснение того, в чем заключаются трудности конструктора, полагающегося только на интуицию. Основываясь на собственном опыте проектирования, я думаю, что обычно приходится выбирать какой-то удобный материал, а затем конструировать изделие с учетом его качеств и возможностей, которые он предоставляет. Свойства материала в значительной степени видятся как нечто неделимо связанное, и мысли об изменении отдельных этих свойств даже не возникает.
Так или иначе, но конструктор почти не направляет материаловеда в его работе. Больше того, даже подсказки конструктора материаловед обычно игнорирует. Я думаю, что причина здесь в том, что инженеру трудно оценить, сколь сложна разработка совершенно нового материала. Ведь она требует по крайней мере пятилетнего труда и стоит больших средств. К тому времени, как материаловед что-то сделает, вполне возможно, что инженер уже многое передумает. Следовательно, обычно материаловед должен подходить к разработке нового материала, полагаясь лишь на собственные познания и опыт.
Однако картина в целом не так уж беспросветна. Прежде всего область применения новых материалов ограничена их высокой первоначальной ценой и высокой стоимостью исследований. Позволить себе роскошь использовать такие материалы обычно могут лишь те, кто делает изделия для военных целей и авиации[52].
Стоимость разработки экзотических материалов может быть очень высокой, но порой такие материалы могут сберечь не только большие средства, но и жизни. И потом– вспомним историю. Сталь была получена как дорогой материал для мечей; алюминий пошел в ход для кавалерийских касок, когда килограмм его стоил 150 фунтов стерлингов; полиэтилен был разработан как дорогой материал для использования в локаторах.
Потенциальное воздействие новых, необычных для сегодняшнего времени материалов иллюстрируется некоторыми цифрами, приведенными ниже (табл. 1). Эти цифры показывают изменение веса самолета и полезной нагрузки с внедрением новых материалов, появление которых можно предвидеть. Они относятся к дозвуковым самолетам трансатлантических линий. Следовательно, полезная нагрузка самолета может увеличиться втрое, равно как втрое может, вероятно, уменьшиться и цена билета.
Таблица 1. Доля в общем весе самолета, %
Горючее / Двигатели / Планер / Полезная нагрузка
“Боинг-707” / 47 / 9 / 33 / 11
Проектируемый самолет / 40 / 4 / 23 / 33
Ясно, что подобное приложение новых материалов стоит внимания, поэтому оно является сегодня целью многих материаловедческих исследований. Каким же путем можно достичь нужных результатов? Какого сорта материалы необходимы?
Практически мы не в силах сколько-нибудь заметно повлиять на свойства природной древесины. Но, может быть, мы способны изменить свойства металла, например алюминия, или заменить его другим металлом, получше? На первый взгляд кажется, что стоит лишь увеличить прочность нашего металла – и все проблемы решены: ведь в конце концов самолеты проектируются так, чтобы запасы прочности были бы по возможности меньше, лишь бы обеспечить надежность. Следовательно, если бы материалы были прочнее, части самолета можно было бы делать более тонкими, а потому и более легкими. До известной степени это верно, но только до известной степени.
Следует помнить, что, хотя мы и можем значительно изменять прочность и вязкость твердых тел, их жесткость не поддается нашему контролю. Модуль Юнга зависит исключительно от химической природы твердого тела, и как с данным веществом ни возись, модуль упругости его не изменить. Если нам нужен другой модуль, мы должны взять другое вещество. Следовательно, если мы увеличиваем прочность какого-либо тела, например металла, то делаем это путем увеличения предельной упругой деформации. Поэтому, чтобы использовать более высокую прочность, мы должны работать при больших деформациях. Это означает, что перемещения в конструкции возрастут, и, если мы резко повысим напряжения с целью экономии веса, мы получим намного большие перемещения. Последствия такого рода усовершенствований видны на рис. 5; ясно, что такие формы крыла недопустимы.
Многие элементы конструкции самолета находятся в состоянии сжатия. Более того, сжатые элементы обычно имеют вид стержней и пластинок, тонких в сравнении с их длиною. А как уже говорилось в главе 1, элементы такого рода теряют несущую способность не потому, что они разлетаются на куски, а вследствие упругого выпучивания, связанного не с недостатком прочности, а с пониженной жесткостью. Это явление называется эйлеровой потерей устойчивости.
Кроме того, некоторые элементы самолетной конструкции выходят из строя не под нагрузкой, постоянно действующей в одном направлении, а вследствие так называемого флаттера. Это означает, что в определенных условиях обшивка ведет себя в потоке воздуха подобно полощущемуся на ветру флагу. Бороться с флаттером следует путем увеличения жесткости, а не прочности.
Получается так, что, когда мы начинаем увеличивать прочность материала, то есть вытаскивать нос, хвост оказывается увязшим – слишком мал модуль Юнга. Следовательно, увеличить модуль упругости столь же важно, как и увеличить прочность.
Далее, когда мы имеем дело с конструкциями минимального веса – например, с самолетом, – нас интересуют не столько абсолютные свойства материалов, сколько их удельные свойства; мы должны знать, сколько прочности и жесткости приходится на единицу веса. Удельные величины получаются делением абсолютных величин на удельный вес или плотность материала. С этой точки зрения полезно взглянуть на модули Юнга обычных технических материалов, которые приведены в табл. 2.
Таблица 2
Материал / Удельный вес γ, г/см3 / E, кГ/см2 x 10-4 / Е/γ условные единицы
Молибден / 10,5 / 3,0 / 2,9
Железо / 7,8 / 2,1 / 2,83
Титан / 4,5 / 1,2 / 2,7
Алюминий / 2,7 / 0,75 / 2,8
Кварц и обычное стекло / 2,5 / 0,70 / 2,8
Магний / 1,7 / 0,45 / 2,7
Древесина (ель, параллельно волокну) / 0,5 / 0,135 / 2,7
Из таблицы видно, что удельный модуль упругости E/γ всех этих материалов практически одинаков. Вероятно, в этом нет какого-либо глубокого философского смысла, совпадение здесь – дело случая. Но так или иначе, а сам по себе факт совпадения удельных модулей ставит инженеров и материаловедов в весьма затруднительное положение. Ведь как бы мы ни старались улучшить прочность принятых материалов, мы оказываемся привязанными к одному и тому же удельному модулю. Это означает, что, если мы хотим достичь поставленных целей, мы должны отказаться от всех ходовых материалов, в обращении с которыми накоплен большой опыт.
Что же остается делать? Что это за вещества, которые имеют более высокие модули? Оказывается, таких веществ не так уж много, но все же они есть. Лучшие из них приведены в табл. 3.
Таблица 3
Вещество / Удельный вес γ, г/см3 / E, кГ/см2 x 10-4 / Е/γ усл. единицы / Темп. плавл., °C
Нитрид алюминия / 3,3 / 3,5 / 10,6 / 2450
Окись алюминия / 4,0 / 3,9 / 9,8 / 2020
Бор / 2,3 / 4,2 / 18,0 / 2300
Окись бериллия / 3,0 / 3,5 / 11,6 / 2530
Бериллий / 1,8 / 3,1 / 17,2 / 1350
Углерод, усы / 2,3 / 7,7 / 33,5 / 3500
Окись магния / 3,6 / 2,9 / 8,0 / 2800
Кремний / 2,4 / 1,6 / 6,7 / 1400
Карбид кремния / 3,2 / 5,6 / 17,5 / 2600
Нитрид кремния / 3,2 / 3,9 / 12,2 / 1900
Нитрид титана. / 5,4 / 3,5 / 6,5 / 2950
Эта таблица в некотором смысле обнадеживает; она показывает, что есть в природе твердые тела, у которых удельный модуль Юнга больше, чем у традиционных технических материалов, грубо говоря, в десять раз. По-видимому, эти материалы открывают захватывающие перспективы. В то же время их список обескураживает. Все эти материалы в нормальных условиях весьма непрочны и хрупки, получать их можно обычно только при очень высоких температурах, некоторые из них токсичны.
Единственным металлом в этом списке является бериллий. Тот самый бериллий, который в опасной степени токсичен. Предположим на время, что нам удается побороть его токсичность, но сможем ли мы сделать бериллий прочным и вязким? По-видимому, в некоторых случаях бериллий может быть довольно прочным, предел прочности его может достигать 80-160 кГ/мм2. Но сделать его достаточно вязким очень и очень трудно. Причина этого главным образом в том, что при нормальных температурах дислокации в кристалле бериллия подвижны только в четырех плоскостях, в то же время, как мы видели в главе 8, кристалл должен иметь пять плоскостей скольжения, чтобы сопротивляться трещинам, бегущим в любой его плоскости. Несмотря на упорные попытки ученых заставить бериллий вести себя, как подобает “настоящему” металлу, заметных достижений в этой области нет. По-видимому, препятствия на этом пути связаны с особенностями кристаллической структуры этого металла. Остается подойти к проблеме по-иному. Может быть, можно уменьшить хрупкость бериллия, добавив в него немного волокон, как в случае льда и древесной пульпы (глава 8). Если такой эксперимент оказался бы успешным, можно было бы, я думаю, придумать какую-нибудь защиту от токсической опасности. Но тогда выплыло бы очередное препятствие: бериллий дорог, и с этим, кажется, ничего не поделаешь (отчасти из-за предосторожностей, необходимых при работе с ним). Остается только уповать на то, что последующий ход событий что-то из сказанного опровергнет.
Если нам не удается приручить бериллий, что бы мы могли предпринять еще? Ясно, что можно бы взяться за один из керамических материалов, приведенных в табл. 3. Из всех них только в окиси магния дислокации подвижны при комнатной температуре. И действительно, в лабораторных опытах можно получить очень правдоподобную имитацию пластичного поведения на достаточно чистых кристаллах окиси магния. На практике, однако, эта пластичность не заслуживает доверия: такие кристаллы рассыпаются под ударными нагрузками. Причина все та же – недостаточное число плоскостей скольжения.