355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Довид Ласерна » На волне Вселенной. Шрёдингер. Квантовые парадоксы » Текст книги (страница 8)
На волне Вселенной. Шрёдингер. Квантовые парадоксы
  • Текст добавлен: 21 сентября 2016, 15:51

Текст книги "На волне Вселенной. Шрёдингер. Квантовые парадоксы"


Автор книги: Довид Ласерна


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 8 (всего у книги 10 страниц)

Шрёдингер против Борна

Во время конференции, которая была организована до вручения Нобелевской премии и длилась несколько дней, Борн узнал, что большинство физиков приняли представленную им статистическую интерпретацию, но убедила она далеко не всех.

«Планк до самой смерти оставался на стороне скептиков, хотя Эйнштейн, де Бройль и Шрёдингер не перестали настаивать на сомнительных моментах квантовой механики, желая возвращения к классическим ньютоновским концепциям и предлагая для этого решения, не опровергающие экспериментальные результаты».

В ходе своей дискуссии с Бором и Гейзенбергом Эйнштейн писал Бору свое знаменитое: «Квантовая механика – теория, внушающая большое уважение. Но внутренний голос говорит мне, что это еще не то, что нужно. Эта теория дает много, но едва ли она подвела нас ближе к тайне Старика (Бога. – Примеч. ред.). Во всяком случае, я убежден, что тот не играет в кости». Этот намек на статистическую интерпретацию поразил Борна: «Мнение Эйнштейна о квантовой механике было словно нож гильотины». Более молодое поколение физиков не испытывало подобной озабоченности. В своей частной переписке Гейзенберг подшучивал над Эйнштейном, де Бройлем и Шрёдингером, называя их рыцарями постоянства.

Бог знает, что я совсем не люблю статистическую теорию.

На самом деле я ее возненавидел с того момента, как наш дорогой друг Макс Борн представил ее свету.

Шрёдингер о работах Макса Борна

В результате сформировались две фракции. С одной стороны, коалиция Гёттингена и Института Бора восхваляла каноническую версию квантовой механики, так называемую копенгагенскую интерпретацию. С другой – Эйнштейн и Шрёдингер и прочие радикалы прилагали все усилия, чтобы подорвать ее основы. Это была не личная вражда, а всего лишь поиск научной истины, во время которого противоборствующие лагеря то и дело обменивались перебежчиками. Шрёдингер никогда не принимал метод, которым Борн изменил его волновую функцию, и к концу жизни, наблюдая почти полную победу статистической интерпретации, упрекнул того в письме, полном юмора, сердечности и шутливого негодования:

«Ты, Максик, знаешь, как я тебя люблю, и здесь ничего нельзя изменить. Но да будет мне позволено устроить тебе хорошую головомойку. Ты так неделикатно кричишь о якобы универсальной копенгагенской интерпретации на всех научных углах и без всякой скромности утверждаешь это перед галеркой любителей включительно, и это граничит с нахальством. Ты действительно думаешь, что однажды человечество склонится перед этой чушью?»


Шрёдингер против Гейзенберга и Бора

В мае 1926 года невозмутимый Шрёдингер без остановок шел к своей цели. Он был убежден, что значение его работ утрачено, а претензии Гейзенберга привели к превращению квантовой механики в абстрактную территорию, и это беспокоило физика:

«Учитывая радикальные различия между отправными точками и концепциями квантовой механики Гейзенберга и <...> волновой механикой <...>, крайне странно, что известные факты этих двух теорий, в которых и состоит главное отличие от старой квантовой теории, будут объединены».

Шрёдингер использовал свои потрясающие способности к анализу и математическую интуицию, чтобы сравнить свои работы и работы Гейзенберга. Необходимо было решить парадокс: почему абстрактная и волновая теория достигали одинаковых результатов в исследовании одних и тех же проблем? Ответ был неожиданным: эти теории оказались идентичными с математической точки зрения. Так же как положение точки в пространстве может быть описано тремя декартовыми координатами (х, у, z) или при помощи радиуса г и углов (Θ, ф), матрицы и дифференциальные уравнения представляли собой два разных инструмента, игравших одинаковую роль. Так же как дом можно описать при помощи картинки или текста, эти теории передавали одно и то же сообщение двумя разными способами. И так же, как следует сравнивать слова, описывающие размеры комнаты или материала, из которого сделана мебель, с изображением на картинке, нужно было сравнить выражения анализа с алгебраическими. Оба метода содержали преимущества и недостатки и имели разную эффективность при передаче некоторых нюансов. Но в любом случае обе теории описывали один и тот же дом. И матрицы, и дифференциальные уравнения на разных языках описывали одно и то же.

Что означает это соответствие с технической точки зрения? Шрёдингер знал, что для некоторых ученых математический эквивалент «рифмуется» с физическим, но сам этого мнения не придерживался. Отшельники от математики, ведущие уединенную жизнь, были более склонны к абстракциям, чем ученые, открытые миру и приверженные физическому подходу. В этом плане волновая механика представляла собой идеальный компромисс. Для того чтобы теория могла развиваться, необходима система, способная как проектировать интуитивные модели, так и приближать их к реальности.

Мой молодой друг, вам еще многое предстоит выучить в физике... Поэтому устраивайтесь поудобней.

Замечание Вильгельма Вина, адресованное Гейзенбергу во время семинара в Мюнхене в 1926 году

Однако, несмотря на такое сближение волновой и матричной механики, красноречивый Шрёдингер критически отзывался о детище Гейзенберга: «Моя теория вдохновлена работой Луи де Бройля и некоторыми замечаниями Альберта Эйнштейна. <...> Я не вижу в ней никакой связи с представлениями Гейзенберга. Конечно, я знал о его теории, однако меня отпугивали, если не сказать отталкивали, казавшиеся мне очень трудными методы трансцендентной алгебры и отсутствие всякой наглядности». Это замечание оскорбило Гейзенберга, однако он промолчал и лишь наедине с Паули дал выход своим чувствам: «Чем больше я размышляю о физической части теории Шрёдингера, тем ужаснее она мне кажется». Из справедливости как матричного, так и аналитического подхода следовало, что математические основы квантовой механики были сформулированы. Однако науку ожидало решающее сражение относительно окончательной интерпретации теории.

Именно в Мюнхене 21 июля 1926 года состоялась первая дискуссия: Шрёдингер принял приглашение Зоммерфельда и Вильяма Вина и приехал, чтобы провести два семинара по своей новой волновой механике. Гейзенберг в это время находился у родителей в этом же городе и специально пришел послушать доклад коллеги. Когда начались прения, он заметил, что вследствие толкования Шрёдингера совершенно невозможно объяснить закон излучения Планка. Шрёдингер не нашел, что ответить, однако тут вмешался Вильгельм Вин, также присутствовавший на прениях. Он довольно резко заявил, что теперь с квантовым скачком покончено и что упомянутые Гейзенбергом трудности будут преодолены в ближайшем будущем.

Гейзенберг кипел от возмущения. Он попробовал продолжить спор, но Вин, который испытывал к молодому ученому некоторую неприязнь, едва не попросил его покинуть аудиторию. Гейзенберга оскорбила не только эта грубость, позже он говорил: «Шрёдингер просто выбрасывает за борт все квантово-теоретическое, то есть фотоэлектронный эффект, ионизационные толчки Франка, опыты Штерна, Герлаха и так далее. Не очень сложно построить теорию таким способом». Немного успокоившись, в этот же вечер Вернер встретился со своими наставниками, Борном и Бором, и обсудил ситуацию. А чуть позже Шрёдингер получил от Бора приглашение посетить в октябре Копенгаген, чтобы спокойно обсудить интерпретацию квантовой теории. Гейзенберг так вспоминал об этой встрече:

«Дискуссия между Бором и Шрёдингером началась прямо на вокзале в Копенгагене и продолжалась с раннего утра до поздней ночи каждый день. Шрёдингер остановился в доме Бора, так что никакие посторонние обстоятельства не мешали их разговорам. И хотя Бор в общении с людьми был всегда предупредителен и любезен, теперь он казался мне чуть ли не фанатиком, не идущим ни на какие уступки своему собеседнику и не прощающим ему малейшей неточности».

Непреклонный датчанин отметал все аргументы, сразу замечал уязвимые места в возражениях оппонента. Через эту экзекуцию прошел каждый довод Шрёдингера, а позднее – каждое наблюдение Эйнштейна. Однажды, почти в отчаянии, Шрёдингер воскликнул: «Если мы собираемся сохранить эти проклятые квантовые скачки, то я вообще сожалею, что имел дело с атомной теорией!» Словом, Бор все эти дни, не снимая с лица любезной улыбки, безжалостно терзал гостя:

«Через несколько дней Шрёдингер заболел – вероятно, вследствие чрезмерного перенапряжения. Он слег с простудой. Госпожа Бор ухаживала за ним, приносила ему чай с пирожными, а Нильс Бор сидел на краешке кровати и внушал Шрёдингеру: «Но вы же должны признать, что...»

При всем проявленном рвении Бор признавал вклад, сделанный Шрёдингером: «Ваша волновая механика принесла с собой такую математическую ясность и простоту, что явилась гигантским шагом вперед». Инструмент, предложенный Шрёдингером, также был бесценным, но он не соответствовал прилагаемой инструкции. Даже Гейзенберг оценил волновое уравнение по достоинству. Победив лихорадку и вернувшись из Копенгагена живым и здоровым, Шрёдингер надолго запомнил дар убеждения, присущий Бору. Он даже признался Вину: «Довольно скоро наступает момент, когда ты уже не понимаешь, должен ты принять позицию атакующего или сам атаковать ее». Словом, поездка в Копенгаген стала для Шрёдингера «действительно незабываемым опытом».

Гейзенберг все это время находился на втором плане. Поприсутствовав на поединке Бора и Шрёдингера, он перевернул страницу квантовой теории – эту главу он считал завершенной, а споры относительно нее – бесцельными.

Неопределенность

Осознавая последствия своей интерпретации волновой функции, Макс Борн принял рискованное решение: «Я готов отказаться от детерминизма ради атомного плана».

В 1927 году Гейзенберг предоставляет для такого отказа весомые аргументы и четко определяет границы детерминизма относительно квантовой физики. Своими мыслями он делится с Паули, написав тому письмо на десять с лишним страниц, которое впоследствии послужит основой для статьи «О наглядном содержании квантовотеоретической кинематики и механики». В работе была освещена статистическая интерпретация функции |ψ|², а ее публикация в марте этого же года ознаменовала конец эпохи классической механики. Кроме того, работа вводила в физику новое уравнение, которое станет таким же известным, как уравнение Шрёдингера.

Динамика Ньютона основывалась на следующих постулатах: расположение и скорость тела в любой момент могут быть определены с произвольной точностью. Теоретически траектория определяется решением дифференциального уравнения, а на практике достаточно определить время и положение объекта. Но для этого необходимо проследить за его движением. Это условие не создает трудностей, когда речь идет о мяче или космическом корабле. Но как увидеть электрон? Для начала его необходимо осветить. Однако осветить частицу – не то же самое, что осветить мяч. В случае с мячом существует значительное отличие в масштабах между размером структуры, которую рассматривают (мяч), и тем, что его освещает (фотон). А элементарная частица и фотон – это два квантовых объекта, которые вступают между собой во взаимодействие.

Мы можем проследить за траекторией мяча на теннисном корте. При этом свет воздействует на электроны, в изобилии встречающиеся в пространстве (затем эти электроны возвращаются на уровни с более низкой энергией и излучают фотоны, которые улавливаются клетками нашей сетчатки), но не смещает мяч с его траектории. Как мы видели в главе 1, Эйнштейн пришел к выводу, что фотоны должны себя вести как частицы. Затем Комптон доказал в лаборатории, что светящиеся кванты заставляют электроны изменить траекторию, словно при столкновении бильярдных шаров. Таким образом, простая попытка осветить частицу вызывает ее смещение относительно положения, которое мы хотели зафиксировать. Можно ли узнать, где находилась частица до того, как ее траектория была изменена? Нет. Единственный способ узнать положение частицы – это зафиксировать его, при этом сам факт наблюдения влечет изменение этого положения. Представим, что теннисный мяч, получив импульс от ракетки, меняет свою траекторию при каждом столкновении с фотоном. В этом случае было бы практически невозможно воспроизвести подобную хаотичную траекторию. Именно это и происходит на уровне атомов.

Можно попробовать уменьшить энергию света, чтобы сократить воздействие на электрон и избежать значительного изменения его траектории. Согласно формуле Планка (Е = h х v), уменьшение энергии света происходит путем снижения частоты или удлинения электромагнитных волн, что одно и то же. Но эта стратегия не срабатывает. Четкость изображения (оно формируется с помощью электромагнитных волн) зависит от длины волны, которая с ним взаимодействует. Чем сильнее волны удлиняются, тем более размытой становится картинка, которую они дают. Это какой-то заговор! Мы способны или определить траекторию электрона, но при этом сам факт наблюдения эту траекторию нарушает, или сделать так, чтобы энергия не влияла на траекторию частицы, но при этом мы не сможем частицу рассмотреть.

Вернемся к примеру с теннисным кортом. Предположим, что у нас есть очень простой прибор, позволяющий менять длину волны света, с которой мы хотели бы смотреть соревнования. В принципе, на короткий период мы можем обеспечить достаточную четкость изображения, но фотоны толкают мяч с такой силой, что световые частицы, проходящие перед нашими глазами, не могут зафиксировать его положение. Будем увеличивать длину световой волны, снижая таким образом их влияние на мяч. Изображение корта станет более размытым. В тот момент, когда начинает вырисовываться траектория мяча, мы превысим допустимое разрешение и снова окажемся погруженными в квантовый туман. Как видите, существует степень неопределенности, присущая наблюдению, которую нельзя уменьшить. А все потому, что свет (измеряющий субъект) и электрон (измеряемый объект) являются квантовыми сущностями, которые воздействуют друг на друга.


Неопределенность в цифрах

Возьмем отношение Δq · Δρ => h/, которое можно переформулировать, используя Δν, при этом р=m • у:

Неравенство показывает, что граница неопределенности для q и v зависит от отношения между постоянной Планка и массой т. Более того, для макроскопических объектов h будет незначительной, следовательно, Δq и Δρ тоже могут иметь малые значения. Таким образом, создается впечатление, что мы можем определить результат с желаемой точностью. Но с того момента как масса и размер приближаются к постоянной Планка, неопределенности начинают выходить на первый план. Чтобы доказать это, применим отношения неопределенности к трем различным объектам.

1. Автомобиль. Примем его массу примерно равной одной тонне:

Предположим, что автомобиль перемещается со скоростью 100 км/час (около 30 м/сек):

Разница между размером машины, который измеряется в метрах, и неопределенностью положения равна единице с 39 нулями перед ней. Невообразимо мало.

2. Пчела массой ОД грамма:

Это насекомое может перемещаться с максимальной скоростью 7 м/с:

Для пчелы длиной несколько сантиметров масштаб разницы между неопределенностью ее положения и размером – 10~30. Это очень мало.

3. Электрон массой около 9,11 х 10-31 кг:

Присвоим электрону среднюю скорость 10 6 м/сек, или примерно 1% от скорости света:

Радиус орбиты электрона водорода в фундаментальном состоянии (модель Бора), как правило, является величиной, лежащей в основе модели атома. Как мы уже увидели, радиус соответствует волновой функции Шрёдингера для той же энергии. Его значение r = 5,29 х 10-11 метров. Таким образом, в случае с электроном, неопределенность его положения – одного порядка с размером места, в котором он находится: невозможно его отследить.


Мы рассмотрели конкретный случай, но подобная неопределенность может наблюдаться в любом экспериментальном контексте. Физики обозначают степень неопределенности измерения с помощью символа Δ. Таким образом, Δx = 0 означает, что пространственная координатах частицы может иметь лишь одно значение, то есть положение частицы четко зафиксировано. Однако Δx = 5 означает, что частица может находиться где угодно в радиусе 5 метров. Гейзенберг не был удовлетворен изучением неопределенности и определил ее границы при помощи постоянной Планка:

где q означает положение частицы, а р – ее импульс. Речь идет о принципе неопределенности, в котором объединены две различные физики, и наше знание об одной обнаруживается через информированность о другой.


Заразительность неопределенности

Помимо импульса и положения, Гейзенберг присвоил свое соотношение неопределенности другим парам сопряженных величин, произведение которых измеряется в тех же единицах, что и действие, то есть, подобно постоянной Планка, определяется как произведение энергии на время:

М, L и Т– фундаментальные физические величины (масса, длина и время). Считается, что произведение времени на энергию выражается в тех же единицах, что и произведение длины на импульс, а также постоянная Планка:



Гейзенберг сделал следующий вывод: «Чем точнее определено положение, тем меньше мы можем сказать в этот момент об импульсе, и наоборот». Предложенное им уравнение позволяет играть с этими нечеткостями. Как только какое-либо значение присваивается Δq, Δр вынуждено соответствовать условию:

Когда Δq стремится к нулю, знаменатель очень быстро уменьшается, что устремляет Δр в бесконечность. Знать точное положение – игнорировать все, что касается импульса. На макроскопическом уровне, где h невозможно обнаружить, уравнение вводит нас в привычную ситуацию, когда q и р определены одновременно с желаемой точностью:

h → 0; Δq • Δp => 0; сравнимо с Δq – Δр – 0.

Принцип неопределенности Гейзенберга работает как качели, на которых то взмывают вверх, то опускаются «ниже уровня радара» волновые и корпускулярные свойства квантовых сущностей. Чем сильнее Aq уменьшается, тем лучше мы можем наблюдать частицы. Напротив, уменьшение р отправляет нас к волне, положение которой не может быть определено, но ее скорость v – четко определена (см. рисунок). Таким образом, каждый из элементов квантового мира меняется исходя из того, откуда на него устремлен взгляд наблюдателя.

Некоторые физики решили, что принцип неопределенности ставит под сомнение их квалификацию экспериментаторов, и принялись ставить опыты, определяющие положение и импульс, нарушая при этом установленные ограничения. Выдвинул свои аргументы против такого субъективного аспекта квантовой теории и Эйнштейн.

Однако все возражения потерпели неудачу.

Чтобы вычислить траекторию объекта, необходимо знать всего лишь две его характеристики: положение в определенный момент и импульс, указывающий направление, в котором объект перемещается. Отношения неопределенностей не связаны с траекториями и, таким образом, помогают воплотить давнюю мечту Гейзенберга, которая появилась у него еще на Гельголанде. Тогда физик предупреждал: «Я все силы отдам уничтожению понятия орбиты». Такая решимость пугала Эйнштейна, общая теория относительности которого основывалась на расчете траекторий в пространстве, в четырех измерениях. Но идеи Гейзенберга угрожали не только траекториям. В своей статье от 1927 года ученый пришел к выводу: «На самом деле, однако, в жесткой формулировке закона причинности, гласящей: «Если мы точно знаем настоящее, мы можем вычислить будущее», ложной является не вторая часть, а предпосылка. Мы принципиально не можем узнать настоящее во всех деталях». Это незнание подрывает нашу способность к предвидению. Разрыв связи между настоящим и ближайшим будущем, вычисленным благодаря знанию и положения, и импульса, повлек крах классической физики. Конечно, эта невозможность существовала в науке и ранее. Она ощущалась во всех теориях, касавшихся как атомов и молекул, так и определения положения и импульса мириада классических объектов. Однако этот провал закона причинности связан с человеческим несовершенством, а не с действием объективного природного механизма.

Отношения неопределенностей кроются в самых дальних уголках атомной физики и немного напоминают алеф Борхеса: они одновременно и отражение мира, и его центр, они облегчают интуитивное понимание самых разных ситуаций. Если электрон сталкивается с ядром, его положение известно, однако в связи с этим он приобретает огромное ускорение и, следовательно, тут же отдаляется от ядра. Ограничения на скорость накладывает только теория относительности. Если средняя скорость равна 1% скорости света, то отношения Гейзенберга предписывают электрону пространственную неопределенность, равную размеру детской игровой площадки. Именно таким образом неопределенность заботится о равновесии материи.


    Ваша оценка произведения:

Популярные книги за неделю