Текст книги "На волне Вселенной. Шрёдингер. Квантовые парадоксы"
Автор книги: Довид Ласерна
сообщить о нарушении
Текущая страница: 7 (всего у книги 10 страниц)
Квантовый язык
Матрицы – это особые математические объекты, которые могут быть представлены в виде таблицы, состоящей из строк и столбцов, с произвольным числом в каждой клетке.
5 | -1 | 52 |
7/3 | 8 | -21 |
0 | -19/7 | 1 |
Обычно их пишут в скобках и без клеток:
5 -1 52
7/3 8 -21
0 -19/7 1
С матрицами можно производить различные операции (сложение, вычитание, умножение или деление), которые дают новые матрицы в соответствии с особыми математическими правилами.
Одним из их основных свойств является некоммутативность матричного произведения: А • В =/= В • А. Это означает, что хорошо известный принцип, согласно которому «порядок множителей не влияет на произведение», не выполняется. Чтобы привести более наглядный пример некоммутативности какой-либо операции, рассмотрим вращения в пространстве. Повороты математически могут быть представлены как произведение матриц. Пусть М и S – это две точки на сфере; если мы осуществляем два последовательных оборота вокруг осей, которые проходят через них, результат будет зависеть от направления (см. рисунок).
Объясняя таинственные правила Гейзенберга при помощи старых алгебраических методов, Борн и Йордан сформулировали одно из самых важных уравнений всей квантовой механики:
где Р и Q являются матрицами, представляющими количество движений (Р) и расположение (Q, i – корень от -1, a h – постоянная Планка. I – это единичная матрица, которая играет такую же роль в алгебре матриц, что и число 1 в арифметике.
В первом случае конечное расположение М и S – это М1 и S1. Во втором – это М2 и S2. Как можно увидеть, они не совпадают. Второй случай переносит точку М2 на другую сторону сферы.
Уравнение (1) означает, что произведение Р х Q дает матрицу, отличную от Q • Р. Из этого можно сделать вывод: каждое измерение материального объекта (например, электрона) меняет его. Таким образом, если вначале определяют положение, а затем импульс, результат отличается от того, который мы получим при измерении сначала импульса, а затем положения. Это удивительное наблюдение говорит о принципе неопределенности, как мы это увидим дальше. На тех уровнях, где h появляется исчезающе малой величиной, мы имеем дело с феноменами, которые можем наблюдать с помощью наших органов чувств, и можно предположить, что постоянная равна нулю, как в хитрости Больцмана, которую Планк использовал, чтобы сократить спектр излучения внутри печи.
Таким образом, если h → 0, тогда: Р • Q– Q • Р = 0, откуда: P • Q = Q • P.
Произведение вновь становится коммутативным, и мы оказываемся в обычной ситуации. Аналогично, расстояние между дискретными значениями стремится к нулю и доходит до него, что позволяет вернуться к классическому подходу. Уравнение (1) играет такую же роль углового камня матричной механики, как и уравнение Шрёдингера для волновой механики. На самом деле значительные трудности, возникающие с некоммутативностью матриц, означают, что мы работаем с квантовым состоянием.
В титанической работе на более чем 30 страницах Вольфганг Паули рассчитал уровни энергии Еn стационарных состояний атома водорода (знаменитая формула Бора), применяя идеи Гейзенберга и Борна до того, как Шрёдингер сделал то же самое со своим волновым уравнением. Несмотря на успех, это нововведение было не очень принято в физических кругах.
В марте 1926 года Эйнштейн осторожно заявил: «Концепции Борна и Гейзенберга заставляют нас потерять дар речи, они переворачивают видение любого человека, склонного к теории. Мы, наблюдавшие за этим, ощущаем не столько смирение, сколько некоторое напряжение». Наедине он давал волю сарказму: «Гейзенберг снес огромное квантовое яйцо. Гёттингенцы верят ему, я – нет».
Шрёдингер был согласен с Эйнштейном. Его волновая механика была ответом на захватывающий поворот событий, который принимали квантовые теории, звучавшие в Гёттингене:
«Для меня крайне сложно подойти к проблемам, вроде уже упомянутых, если мы вынуждены по эпистемологическим причинам вычеркнуть видение атомной динамики и работать лишь с абстрактными концепциями, такими как вероятности перехода, уровни энергии и так далее».
Борн считал, что Шрёдингер ищет путь, который позволил бы вернуться к классической физике, дающей ясное понимание событий.
Физика матриц
Чтобы определить каждый из элементов матриц, мы прибегаем к тому же методу, который используется в игре в морской бой. Только вместо применения буквы и цифры (A1, G5) мы вводим две цифры: первая обозначает строку, вторая – столбец. Таким образом, в примере, приведенном выше, число -21 находится на позиции 23 (вторая строка, третий столбец), а число 0 – на позиции 31 (третья строка, первый столбец). Когда речь идет о произвольной матрице, ее элементы представляют буквами:
Элементы с двумя одинаковыми индексами составляют диагональ матрицы.
Классическая непрерывность естественно выражается функциями. Квантовая дискретность отлично сочетается с матрицами. Если представить уровни энергии атома водорода (по формуле Бора) с помощью горизонтальных линий:
получим схему, похожую на изображенную на следующем рисунке.
Значения для каждого уровня выражены в электронвольтах – единицах измерения энергии в малых количествах, адаптированных для масштаба атома. Например, 3,75 • 1020 eV необходимо, чтобы заставить работать электрическую лампочку мощностью 60 W в течение одной секунды.
Затем мы записываем данные в клетки матрицы, указывая значения для каждого уровня энергии вдоль диагонали, а возможные переходы – вне диагонали. Таким образом, элемент Еmn матрицы соответствует скачку Еn-Еm. Принимая во внимание, что n и m могут расти до бесконечности, матрица тоже увеличивается до бесконечности (смотри рисунок). Значения других наблюдаемых величин, таких как положение или импульс, также могут быть записаны в бесконечной матрице.
Подобного хотели также Планк и Эйнштейн, правда, они направлялись не назад, а вперед. Именно поэтому Шрёдингер на какое-то время отошел от гёттингенской группы, которая жонглировала матрицами и недоумевала, почему так много физиков хотят скорее завершить этот алгебраический кошмар. Шрёдингер даже не подозревал, что именно один из его научных оппонентов найдет ответ на вопрос, который так долго ему не давался: что такое ψ?
Паули – принципиально исключительный
Венский физик Вольфганг Паули (1900-1958) входил в число ученых, которые часто становятся героями анекдотов. Говорили, что в его присутствии чувствительное лабораторное оборудование переставало работать и даже ломалось (знаменитый эффект Паули). Невзирая на авторитет Эйнштейна или Бора, он резко критиковал их; доставалось и другим физикам. Гейзенберг, один из лучших друзей Паули, терпеливо сносил всю его язвительность, потому что Паули не только бранился, но и очень быстро умел определить, что в работе шло не так:
«Я не считаю, сколько раз он обозвал меня идиотом или как-нибудь еще.
Главное – что это мне очень помогло».
Коллеги иногда называли ученого «совестью физики», потому что, встретив откровенно слабую работу, он был безжалостен и не щадил ее автора. Стало знаменитым его высказывание об одном из таких опусов: «Это не только неправильно, это даже не дотягивает до ошибочного!» Разрушительная критика Паули помогала развитию науки, в которой, по мнению ученого, в отличие от религии, не место аргументам, которые нельзя оспорить. Физик любил работать по ночам. В студенческие годы Гейзенберг часто возмущался, видя Паули приходящим в университет после обеда.
Фундаментальная физика
Наследие Паули богато и разнообразно. Он способствовал формированию основ квантовой механики и ядерной физики. В1925 году Паули изложил свой знаменитый принцип запрета: в пределах одной квантовой системы два и более тождественных фермиона (протона, электрона, нейтрино и других частиц) не могут одновременно находиться в одном же квантовом состоянии. Принцип Паули заставляет частицы с одним квантовым состоянием сохранять расстояния между собой и объясняет наличие в структуре атома электронных оболочек, а соответственно, и многообразие химических элементов. Этот принцип объясняет, почему материя остается плотной, а не распадается на более мелкие части. В 1930 году физик предположил существование самой таинственной элементарной частицы – нейтрона (нейтрино). Через 26 лет экспериментальные физики наконец смогли открыть эту частицу, причем именно там, где предсказывал Паули.
Кризис абстракций
В 1921 году Макс Борн был назначен руководителем Института физики Гёттингена. Обладая природным дружелюбием, он всегда опекал молодых исследователей и помогал им достичь успеха. Тот факт, что трое его ассистентов получили Нобелевскую премию, не простое совпадение. Несмотря на свою скромность, Борн был одним из самых продуктивных ученых. Одна из его работ сразу стала причиной бурных научных споров и принесла своему автору известность – это была работа, в которой Борн нашел неизвестную ψ.
Как сочетается волновая функция Шрёдингера с корпускулярностью, которую Борн подтверждал опытным путем каждый день? Физики, исследуя микропространство, либо натыкались на какую-то частицу, либо не находили ничего, в том числе им не встречались и признаки плотности протяженного заряда. Как говорил Борн, «стало возможным пересчитать частицы с помощью детектора или счетчика Гейгера», и казалось маловероятным, что в момент измерения рассеянный заряд концентрируется в какой-то одной точке пространства. В действительности ответ на самый большой вопрос волнового уравнения находился не в функции ψ. Вообще говоря, решение уравнения Шрёдингера представляет собой комплексное число, то есть число вида а + bi, где r = sqrt(-1). Но это влечет новую квантовую головоломку: на практике со времен Архимеда (чтобы не заходить еще дальше вглубь веков) даже в самых сложных измерениях комплексные числа не применялись. Расстояние, время, давление или сила тока всегда характеризовались действительными числами – 7, —2/3, sqrt(5) или π. Какое-то время Шрёдингер считал, что сможет обойти этот подводный камень и использовать только действительную часть числа, как в других случаях, когда комплексные числа вводили для облегчения расчетов. Математический смысл операции заключался в том, чтобы выделить из комплексного числа часть без загадочной r. Например, действительная часть из 5 + 3i – это просто-напросто 5.
Но стратегия не принесла ожидаемых результатов, и нужно было придумать что-то другое, чтобы разрешить проблему функции ψ. Каждое мнимое число имеет симметричное, сопряженное число – зеркальное отражение относительно вещественной оси. Это воображаемое отражение записывают, изменяя знак комплексной части. Например, сопряженное число для 2 + Зi – это 2 – Зi. Если числа обозначены буквами, сопряженное число маркируется звездочкой.
Если а = 2 + Зi, тогда а* = 2-Зi.
Перемножая сопряженные числа, всегда получаем действительное число.
Если мнимая часть равна нулю (у = 0), произведение сводится к тому, чтобы просто вычислить квадрат числа.
Физическим смыслом была наделена не функция ψ, а произведение ψ х ψ*, которое также записывают в виде |ψ|². Как и в случае с ψ, это значение является функцией положения и времени.
Освободив электрон от корпускулярных свойств, Шрёдингер сделал эту величину частью заряженного облака, «размазанного» в пространстве. Значения |ψ|² определяли, какая порция электрического заряда находилась в каждой точке в каждый момент времени. Борн решил отказаться от использования подобных конкретных интерпретаций в пользу статистической перспективы. Он увидел в |ψ|² указание на вероятность события: когда физик в лаборатории определяет положение какой-либо частицы, вероятность найти ее в данной точке пропорциональна значению квадрата ψ.
Любопытно, что Шрёдингер в своей четвертой статье по волновой механике, которую он отправил в журнал Annalen der Physik («Анналы физики») в июне 1926 года, всего за несколько дней до Борна делает такой же вывод. Несложно догадаться, почему все же ученый отказался от этой идеи: его уравнение хорошо работало в комфортном окружении непрерывных функций и частных производных, но статистическая интерпретация добавила к ψ абстрактную сложность матричной механики, покончив с любой попыткой визуализации электронов. Когда речь идет о матрицах, вероятностях перехода или статистических функциях, случайный выбор управляет законами природы, что размывает любое изображение атома. Волновая вероятностная функция была совершенно непригодна для того, чтобы следовать за электроном, повторяя классические траектории или описывая последовательность его положений.
Игра в прятки
В примерах, рассмотренных в предыдущей главе и касающихся радиальной зависимости ψ в стационарных состояниях атома водорода, отношение между R(r) и вероятностью Р(r) найти электрон в радиусе г ядра изображено на рисунке. Максимумы функций Р(r) указывают места, где электрон находится вероятнее всего. Пик первой функции, соответствующий фундаментальному состоянию, находится на расстоянии, равном радиусу, который Бор присвоил самой маленькой кольцевой орбите своей модели. Однако, согласно Борну, существует вероятность – пусть незначительная – найти электрон даже в галактике Андромеды. Иначе говоря, частица может находиться практически в любом месте, но очень велика вероятность, что она располагается в особых местах, на которые указывает |ψ|². Это дополнение означает, что уравнение Шрёдингера совершенно точно объясняет поведение волновой функции.
Слева: Радиальная волновая функция R(r) справа: Радиальное распределение вероятностей Р(r)
В казино природы
В квантовой системе уравнение Шрёдингера рассматривает все возможные состояния и рассчитывает вероятность каждого, точно как шансы игрока в карты. Игрок знает свои шансы выиграть, но он не знает, какой будет следующая карта, выданная крупье. Вероятности продиктованы структурой и элементами системы. Играть 40 картами и восьмью или девятью, двумя джокерами или сразу двумя колодами – все это не одно и то же. Зная структуру и элементы системы, статистика позволяет проанализировать игру и разработать выигрышную стратегию. В жизни нам в этом анализе помогает некоторый уровень знаний об игре. А еще можно открыть все карты и запомнить, где находится каждая из них. Теперь, если мы опять положим карты рубашкой вверх, больше нет необходимости в статистике: мы уже знаем, какой будет следующая карта и где лежит туз. Возможно ли такое в наших знаниях о квантовом мире? Существует ли уровень реальности, на котором можно увидеть все карты природы, тот детерминистический уровень, на котором использование квантовой статистики объясняется лишь нашим частичным незнанием? Большинство физиков считают, что такого уровня не существует. А Эйнштейн был прямо-таки убежден в том, что квантовая механика характеризуется определенной неполнотой.
Безусловно, вероятности с помощью этой функции определялись отлично, но тень от них мешала физику «увидеть» происходящее. Была ли такая неизмеримость само собой разумеющимся построением? Борн считал, что уравнение Шрёдингера соответствовало критериям Гейзенберга: при лабораторном анализе все квантовые измерения распределялись согласно моделям, описанным с помощью волнового уравнения. По мнению Гейзенберга, Борн «соединил математику Шрёдингера с удачной интерпретацией».
Функция |ψ (х, у, 2, t)|² зависит от трех пространственных координат и одной временной, но она неприменима для реального пространства. Чтобы объяснить это, используем аналогию. Если человек находится перед мишенью так близко, что может дотронуться до нее, вероятность того, что он попадет в цель, максимальна (присвоим ей значение 1). При удалении стрелка от мишени вероятность попасть в цель уменьшается в зависимости от расстояния и угла выстрела. Если игрок находится позади мишени или на расстоянии одного километра от нее, вероятность попадания равна 0. Таким образом, следует сформулировать статистическую функцию, которая зависит от пространственных координат, присваивая каждой точке пространства вероятность попасть в цель, находящуюся в промежутке между максимумом и минимумом (1 и 0).
Что происходит, если цель движется? Распределение вероятностей в пространстве также меняется. Координаты, для которых функция равна 1, перемещаются вместе с целью. Вероятности для положений, откуда стрелок имел все шансы проявить меткость, уменьшаются по мере удаления мишени, тогда как вероятности других точек растут (смотри рисунок). Мы можем сделать следующий вывод: значения вероятностей распределяются в пространстве, следуя за мишенью, и меняются с течением времени, однако никакой прибор не может их зафиксировать. Нашей функции соответствуют определенные значения, но она не имеет никакого физического смысла и не применяется в реальном пространстве.
Два положения движущейся мишени и связанные с ними изменения вероятностей в каждой точке.
Функция ψ, словно частный детектив, определяет обычное положение электрона или его последние известные точки пребывания. Однако она не позволяет сделать некоторые прогнозы относительно его поведения в зависимости от изменений в его окружении. Зоны, где вероятнее всего может находиться частица, с течением времени меняются, но это изменение не может быть зарегистрировано приборами. Реальность мира электронов гораздо тоньше привычной нам реальности.
Модели атомов
Новая интерпретация ψ влечет различный расчет вероятностей в зависимости от уровня энергии атома водорода. Проведем такой мысленный эксперимент: возьмем 100 независимых атомов, находящихся в одинаковом энергетическом состоянии, и попытаемся определить положение их электронов. Каждый займет определенную точку пространства с зафиксированными координатами. Затем внесем данные в компьютер и объединим 100 атомов в одну целостную картину. Мы заметим, что в одних зонах атомы располагаются менее, а в других – более концентрированно, образуя, таким образом, облака нерегулярной плотности (рисунок 1).
Количество точек в каждой зоне дает представление о вероятности найти в ней электрон в ходе нового эксперимента. Если бы нужно было предположить, в какой зоне будет находиться электрон 101-го атома, то мы однозначно остановились бы на одном из таких мест концентрации атомов. Это зоны, в которых |ψ|² достигает максимального значения. С уменьшением плотности точек функция тоже уменьшается; там, где точек нет вообще, функция равна нулю. Если бы мы проводили этот опыт с другими 100 атомами водорода с одинаковым уровнем энергии (но этот уровень отличался бы от уровня в предыдущем опыте), облака точек были бы организованы другим образом (рисунок 2).
РИС. 1
РИС. 2
Благодаря ψ и |ψ|² эти данные можно представить в виде чисел. Мы уже знаем, что невозможно визуализировать ψ в трех измерениях; это же справедливо и для |ψ|². Чтобы представить часть информации, содержащейся в этих функциях, графически, обычно изображают облака точек или нечто подобное.
Технически термин «орбитальный» является синонимом волновой функции, но на практике он используется для описания этих представлений. Функции – решения уравнения Шрёдингера математически определяют контуры всех уровней энергии, на которых электрон может находиться в атоме водорода.
Любопытная деталь: существуют различные варианты форм орбиталей, однако их не бесконечное количество, скорее мы имеем дело с повторяющимися шаблонами, которые имеют разные размеры или другие незначительные отличия друг от друга. Все типы форм физики распределили по группам: s-орбитали соответствуют облакам со сферической симметрией; p-орбитали похожи на лопасти пропеллера; d– и f-орбитали состоят из множества лепестков и напоминают цветок. Буквенные обозначения соответствуют терминологии, которую используют спектроскописты: s – от sharp («резкий»), р – от principal («главный»), d – от diffuse («диффузный») и f – от fundamental («фундаментальный») (рисунок 3, стр. 125).
В функциях – решениях ψ также находят отражение квантовые числа n, m и l, как и в модели Зоммерфельда. Каждое из них означает определенный параметр, позволяющий смоделировать орбитали. Число / обозначает модель: l=0 соответствует s-орбитали; l = 1 соответствует р-орбитали; l = 2 – d-орбитали; l = 3 – f-орбитали. Число п дает представление о масштабе, то есть является ли орбиталь для данной модели большей или меньшей. Число т определяет ориентацию орбитали. Меняя эти параметры, в итоге получаем модель s-орбитали, трех р-орбиталей, пяти d-орбиталей и семи f-орбиталей, расположение которых будет зависеть от уровня энергии (рисунки 4 и 5).
По мере роста п увеличивается и энергия, и в каждой модели мы наблюдаем изменения, которые напоминают манипуляции продавца воздушных шариков, когда он скручивает свои шарики-колбаски, превращая их в маленькую собачку. Эти перегибы играют роль узлов на колеблющейся струне, и с ростом энергии их количество также увеличивается. В структуре атомов эти узлы обозначают зоны, в которых вероятность найти электрон равна нулю. Некоторые из этих частиц построены на основании радиальных функций, рассмотренных в предыдущей главе, и функции радиального распределения вероятностей Р(r) в рассматриваемой площади. Если бы мы решили рассмотреть различные орбитали во время описанного мысленного эксперимента со 100 атомами, то смогли бы увидеть узлы, совершив поперечное сечение облака распределения атомов: узлы соответствовали бы пустым зонам, свободным от точек (рисунок 6, стр. 126).
За исключением самых простых случаев (таких как атом водорода) листа бумаги и карандаша недостаточно для поиска решений уравнения Шрёдингера, поскольку это выражения, сформулированные с помощью известных функций, в которых участвуют различные переменные и постоянные показатели. Однако когда уравнение уже сформулировано, можно пойти путем приближений. Самое простое предположение, возможно, заключается в том, что атом, состоящий, например, из семи электронов, мы могли бы представить, накладывая друг на друга (словно слои в фотошопе) семь отдельных атомов водорода, причем состояние всех семи электронов отличалось бы.
РИС.З
Орбиталь s Орбиталь р Орбиталь d Орбиталь f
РИС. 4
Три р-орбитали при n = 2 Три р-орбитали при n– 3
РИС. 5
Пять d-орбиталей при n = 3 Семь f-орбиталей при n = 4
РИС. 6
Облако и Р(r) для s-орбитали, n = 1 (0 узлов)
Облако и Р(r) для s-орбитали, n = 2 (1 узел)
Облако и Р(r) для р-орбитали, n = 2 (1 узел)
Облако и Р(r) для р-орбитали, n = 3 (2 узла)
Облако и Р(r) для р-орбитали, n = 4 (3 узла)
Таким образом, основываясь на строении атома водорода, мы можем предполагать, как устроены более сложные атомы. Чтобы сделать последний штрих, нам не хватает главного ингредиента – им является принцип запрета Паули. Применительно к атому принцип означает, что на одной орбитали могут находиться максимум два электрона. Благодаря этому ограничению заряды не концентрируются на уровне минимальной энергии, в отличие, например, от толпы зрителей на концерте, которая стремится собраться перед сценой. В соответствии с принципом Паули заряды распределяются по энергетическим ступенькам, формируя таким образом структуру атома. Каждая s-орбиталь может принять два электрона, три р-орбитали могут принять шесть электронов, пять d-орбиталей – десять электронов и семь f-орбиталей – 14 электронов. По мере возрастания энергии количество орбиталей увеличивается, и атом становится похож на матрешку или луковицу. Химические свойства вещества определяются формой и содержимым орбиталей, расположенных ближе к внешнему краю. Конечно, описывая атом таким образом, мы несколько упрощаем: в реальности волновая функция атома из семи электронов является результатом взаимодействия частиц, а не механического наслоения семи независимых электронов.
Секрет химии
Зимним утром 1869 года русский химик Дмитрий Менделеев (1834-1907) записал на маленьких кусочках картона названия 63 элементов, известных в то время, а также коротко перечислил их главные характеристики. Оставляя некоторые места пустыми, он уложил эти кусочки картона в ряды и столбцы, и это расположение в общих чертах иллюстрировало периодическое повторение химических свойств элементов. При этом Менделеев эмпирическим путем смог подтвердить справедливость орбитальной модели. Каждая клетка таблицы содержит один элемент. Таблица читается слева направо и сверху вниз. Чтобы перейти от одной клетки к другой (от одного элемента к другому), достаточно прибавить к исходному элементу один протон и один электрон. Положительный заряд концентрируется в ядре, а отрицательный находится на орбиталях. Отправная точка – это водород, состоящий из одного электрона и одного протона; следующий элемент – это гелий, с двумя электронами и двумя протонами, и так далее. Нейтроны живут по своим собственным правилам. Электроны элементов одного столбца распределены на орбиталях, ближних к внешнему краю, одинаково.
Периодическая таблица и орбитали.
Например, каждый элемент столбца 7А имеет пять электронов, распределенных по трем р-орбиталям, которые расположены ближе к внешнему краю. Речь идет о галогенах: фторе, хлоре, броме, йоде... Все эти элементы, несмотря на свои различия, имеют общие характеристики. Например, они очень летучи и легко могут отнять электрон у других элементов, чтобы пополнить свою р-орбиталь, на которой всегда находится одинокий электрон.
Модель наложения прозрачных контуров орбиталей можно расширить, добавив к ней другие атомы и соединив их с молекулами. Наложение атомных орбиталей позволяет увидеть молекулярные орбитали. В более точных вариантах приближения молекулярные орбитали являются результатом взаимодействия между всеми зарядами, а не обычного наложения независимых атомов.