Текст книги "100 великих учёных"
Автор книги: Дмитрий Самин
Жанры:
Энциклопедии
,сообщить о нарушении
Текущая страница: 37 (всего у книги 50 страниц)
Учёного продолжают волновать и частные проблемы наук о Земле (прежде всего геохимии, минералогии), учение о биосфере, общенаучные проблемы времени и симметрии.
Начавшуюся Вторую мировую войну и затем нападение фашистской Германии на нашу страну он переживал очень сильно. В победе над фашизмом он не сомневался, веря в неё как в историческую неизбежность.
В 1943 году в эвакуации в Боровом (Казахская ССР) умирает его жена, друг и помощница Наталья Егоровна, с которой он прожил пятьдесят шесть лет. В конце 1944 года у возвратившегося в Москву Владимира Ивановича произошло кровоизлияние в мозг, а 6 января 1945 года на восемьдесят втором году жизни он скончался.
Среди учеников Вернадского было много крупнейших учёных нашей страны – академики А. Е. Ферсман и А. П. Виноградов, профессор Я. В. Самойлов и другие.
ПЁТР НИКОЛАЕВИЧ ЛЕБЕДЕВ
(1866–1912)
Пётр Николаевич Лебедев родился 24 февраля (8 марта) 1866 года в Москве, в купеческой семье. Его отец работал доверенным приказчиком и относился к своей работе с настоящим энтузиазмом. В его глазах торговое дело было окружено ореолом значимости и романтики. Это же отношение он прививал своему единственному сыну, и поначалу успешно. В первом письме восьмилетний мальчик пишет отцу: «Милый папа, здоров ли ты и хорошо ли торгуешь?»
Грамоте Петя обучился дома. Но он не мог быть долго привязанным к материнской юбке. Десятилетний мальчик должен ходить в школу. Естественно, Петю отдали в коммерческую школу. Точнее, в коммерческое отделение Евангелического церковного училища Петра и Павла. Ибо немецкая аккуратность казалась Николаю Лебедеву основой успеха. Петя действительно усвоил её на всю жизнь, а хорошее знание немецкого языка очень и очень пригодилось ему впоследствии. Знал он и французский. Впрочем, учился он неровно. В одном из писем к отцу он описывает свою переэкзаменовку. Ни с кем из соучеников или учителей Петя не сблизился. Но характерный штрих: к концу учёбы он был допущен в физический кабинет училища, чтобы помогать учителю содержать в порядке приборы и готовить их к демонстрациям на уроках.
Пётр мечтал об университете, но туда принимали только после окончания гимназии с латинским и греческим языками. С сентября 1884 по март 1887 года Лебедев посещал Московское высшее техническое училище, однако деятельность инженера его не привлекала. По совету профессора Щеглова он отправился в 1887 году в Страсбург, в одну из лучших физических школ Европы, школу Августа Кундта, «художника и поэта физики», как скажет о нём позднее Лебедев. К нему Пётр относился с большим уважением и сердечной признательностью. Кундту Лебедев посвятил после его смерти тёплый прочувствованный некролог, в котором характеризовал его «не только как первоклассного учёного», но и как «несравненного учителя, который заботился о будущем своей любимой науки, образуя и воспитывая её будущих деятелей».
Кундт принял Лебедева очень любезно и предложил взяться за выполнение цикла экспериментальных работ физического практикума, сопровождая их посещением лекций. Кундт любил и доверял русским студентам: у него учились многие из тех, кто потом прославил русскую науку. Каждый из них приезжал к нему с истинным стремлением к знанию после неудачных попыток получить образование в России.
Пётр почувствовал себя ещё более уютно, когда к ним присоединился его друг детства Саша Эйхенвальд. Лебедев и Эйхенвальд сделают для дореволюционной физики так много, что их имена навсегда войдут в число создателей русской и советской науки. Они через всю жизнь пронесут верность науке, юношеским идеалам и дружбе. Более того, Лебедев женился на одной из семи сестёр Эйхенвальда.
В 1891 году, успешно защитив диссертацию, Лебедев стал доктором философии. Уже в это время молодой исследователь поражает своего учителя талантливостью, обилием и смелостью идей, стремлением работать над наиболее трудными вопросами, одним из которых было установление природы молекулярных сил, другим – давление света.
В 1891 году Лебедев возвратился в Москву и по приглашению А. Г. Столетова начал работать в Московском университете в должности лаборанта. Но у Петра Николаевича был уже большой план научной работы.
Основные физические идеи этого плана были напечатаны молодым учёным в Москве, в небольшой заметке «Об отталкивательной силе лучеиспускающих тел». Начиналась она словами: «Максвелл показал, что световой или тепловой луч, падая на поглощающее тело, производит на него давление в направлении падения…» Исследование светового давления стало делом всей, к сожалению короткой, жизни Петра Николаевича: последняя незаконченная работа этого великого экспериментатора тоже была посвящена давлению света.
Из теории Максвелла следовало, что световое давление на тело равно плотности энергии электромагнитного поля. Экспериментальная проверка этого положения представляла большую трудность. Во-первых, давление очень мало и нужен чрезвычайно тонкий эксперимент для его обнаружения, не говоря уже о его измерении. И Лебедев создаёт свою знаменитую установку – систему лёгких и тонких дисков на закручивающемся подвесе. Это были крутильные весы с невиданной до тех пор точностью. Во-вторых, серьёзной помехой был радиометрический эффект: при падении света на тело (тонкие диски в опытах Лебедева) оно нагревается. Температура освещённой стороны будет больше, чем температура теневой. А это приведёт к тому, что молекулы газа от освещённой стороны диска будут отбрасываться с большими скоростями, чем от теневой. Возникает дополнительная отдача, направленная в ту же сторону, что и световое давление, но во много раз превосходящая его. Кроме того, при наличии разности температур возникают конвекционные потоки газа. Всё это надо было устранить. Лебедев с непревзойдённым мастерством искуснейшего экспериментатора преодолевает эти трудности.
Платиновые крылышки подвеса были взяты толщиной всего 0,01–0,1 мм, что приводило к быстрому выравниванию температуры. Вся установка была помещена в наивысший достижимый в то время вакуум. Пётр Николаевич сумел сделать это очень остроумно. В стеклянном баллоне, где находилась установка, Лебедев помещал каплю ртути и слегка подогревал её. Ртутные пары вытесняли воздух, откачиваемый насосом. А после этого температура в баллоне понижалась, и давление оставшихся ртутных паров резко уменьшалось.
Кропотливый труд увенчался успехом. Предварительное сообщение о давлении света было сделано Лебедевым в 1899 году, затем о своих опытах он рассказал в 1900 году в Париже на Всемирном конгрессе физиков. В 1901 году в немецком журнале «Анналы физики» была напечатана его работа «Опытное исследование светового давления». Работа получила высочайшую оценку учёных и стала новым, блестящим экспериментальным подтверждением теории Максвелла. В. Томсон, например, узнав о результатах опытов Лебедева, в беседе с К. А. Тимирязевым сказал: «Вы, может быть, знаете, что я всю жизнь воевал с Максвеллом, не признавая его светового давления, и вот ваш Лебедев заставил меня сдаться перед его опытами». Ф. Пашен писал Лебедеву: «Я считаю Ваш результат одним из важнейших достижений физики за последние годы».
К впечатляющим словам этих видных физиков можно добавить ещё то, что доказательство существования светового давления имело огромное философское и мировоззренческое значение. Ведь из факта существования давления электромагнитных волн следовал очень важный вывод о том, что они обладают механическим импульсом, а значит, и массой. Итак, электромагнитное поле обладает импульсом и массой, т. е. оно материально, значит, материя существует не только в форме вещества, но и в форме поля!
В 1900 году при защите магистерской диссертации Лебедеву была присуждена степень доктора наук, минуя степень магистра (редкий случай в истории науки). В 1901 году он становится профессором Московского университета. Так за десять лет работы был пройден путь от лаборанта до профессора, всемирно известного своими научными трудами.
В 1902 году Лебедев выступил на съезде немецкого астрономического общества с докладом, в котором вновь вернулся к вопросу о космической роли светового давления. В историческом обзоре этого доклада Лебедев напоминает о гипотезе Кеплера, который предположил, что отталкивание кометных хвостов Солнцем обусловлено давлением его лучей на частицы хвоста. Действие света на молекулу, указывает Лебедев, зависит от её избирательного поглощения. Для лучей, поглощаемых газом, давление обусловлено законом Максвелла, лучи, не поглощаемые газом, действие на него не оказывают. Лебедев ставит задачу определить давление света на газы.
На его пути оказались трудности не только экспериментального, но и теоретического характера. Трудности экспериментального плана состояли в том, что световое давление на газы во много раз меньше, чем давление на твёрдые тела. Это значит, что нужен ещё более тонкий эксперимент.
К 1900 году все подготовительные работы для решения сложнейшей задачи были выполнены. Лебедев настойчиво продолжает искать пути её решения. И только в 1909 году он делает первое сообщение о полученных результатах. За десять лет кропотливого труда построено не менее двадцати приборов, пришлось преодолеть, по словам Лебедева, чудовищные трудности, из-за которых он много раз бросал эту работу.
Работа потрясла своим мастерством и результатом учёный мир. Лебедев принимает поздравления, полные удивления и восхищения его искусством экспериментирования. Королевский институт Англии избирает Петра Николаевича своим почётным членом.
Результаты этого исследования были опубликованы в «Анналах физики» в 1910 году. Чтобы температура газа была одинакова везде, необходимо было обеспечить строгую параллельность лучей, в противном случае возникали бы сильные конвекционные потоки. Получить же строго параллельные лучи невозможно. Учёный находит остроумное решение: в исследуемый газ он вводит немного водорода, который обладает большой теплопроводностью. Поэтому разности температур быстро выравниваются. Чтобы избавиться от радиометрического эффекта, в опытах была использована камера с двумя каналами.
Кроме работ, связанных со световым давлением, Пётр Николаевич много сделал для изучения свойств электромагнитных волн. Статья Лебедева «О двойном преломлении лучей электрической силы» появилась одновременно на русском и немецком языках. В начале этой статьи Лебедев кратко излагает её цель и содержание: «После того как Герц дал нам методы экспериментально проверить следствия электромагнитной теории света и тем открыл для исследования неизмеримую область, естественно появилась потребность делать его опыты в небольшом масштабе, более удобном для научных изысканий…»
Усовершенствовав метод Герца, Лебедев получил самые короткие в то время электромагнитные волны длиной в 6 мм (в опытах Герца они были 0,5 м) и доказал их двойное лучепреломление в анизотропных средах.
Следует заметить, что приборы нашего учёного были настолько малы, что их можно было носить в кармане. Например, генератор электромагнитных волн Лебедева состоял из двух платиновых цилиндриков, каждый по 1,3 мм длиной и 0,5 мм в диаметре. Зеркала Лебедева имели высоту 20 мм, а эбонитовая призма для исследования преломления электромагнитных волн была высотой 18 мм, шириной 12 мм и весила около 2 г. Напомним, что призма Герца для этой же цели весила 600 кг. Миниатюрные приборы Лебедева всегда вызывали восхищение физиков-экспериментаторов.
Лебедев глубоко интересовался проблемами астрофизики, активно работал в Международном союзе по исследованию Солнца, написал ряд статей о кажущейся дисперсии межзвёздной среды. Открытие Хейлом магнетизма солнечных пятен направило его внимание на исследование магнетизма вращения.
В последние годы жизни его внимание привлекла проблема ультразвука. Этими вопросами занимались его ученики В.Я Альтберг и Н. П. Неклепаев. Сам Лебедев написал заметку «Предельная величина коротких акустических волн». Его ученики П. П. Лазарев и А. К. Тимирязев исследовали явление внутреннего трения в разреженных газах.
У Лебедева вообще было много учеников. Если в первой половине девяностых годов число их измерялось единицами, то к 1905 году их стало более тридцати человек: П. П. Лазарев, В. К. Аркадьев, С. И. Вавилов, Т. П. Кравец, А. К. Тимирязев и многие другие. Усвоив методы и стиль работы своего учителя, они продолжали его благородное дело. Успехи отечественной физики многим обязаны школе Лебедева. Чтобы руководить научной школой, надо обладать не только организаторскими способностями, но и быть исключительно эрудированным и разносторонним учёным. Таким и был Лебедев.
Сознавая свои прекрасные способности экспериментатора, Лебедев делал отсюда один вывод: он должен решать наиболее сложные задачи и работать на пределе своих сил. Это был учёный с чувством высокого гражданского долга перед своей родиной, перед своими учениками. В 1911 году Лебедев вместе с другими профессорами покинул Московский университет в знак протеста против действий реакционного министра просвещения Кассо. В этом же году Лебедев дважды получал приглашения из института Нобеля в Стокгольме, где ему предлагали должность директора прекрасной лаборатории и большую сумму денег, как для ведения работ, так и для личного пользования. Был поставлен даже вопрос о присуждении ему Нобелевской премии. Однако Пётр Николаевич не принял этого предложения, он остался на родине, со своими учениками, создав на частные средства новую лабораторию. Отсутствие необходимых условий для работы, переживания, связанные с уходом в отставку, окончательно подорвали здоровье Лебедева. Он умер 1 (14) марта 1912 года в возрасте всего лишь сорока шести лет.
К. А. Тимирязев отозвался на смерть Лебедева с болью от огромной утраты и страстным негодованием по поводу существующих порядков, мечтая о том времени, когда «„людям с умом и сердцем“ откроется, наконец, возможность жить в России, а не только родиться в ней, чтобы с разбитым сердцем умирать».
Великий русский физиолог Павлов телеграфировал: «Всей душой разделяю скорбь утраты незаменимого Петра Николаевича Лебедева. Когда же Россия научится беречь своих выдающихся сынов – истинную опору Отечества?»
В историю физики Лебедев вошёл как первоклассный экспериментатор, решивший ряд труднейших проблем современной физики.
ТОМАС МОРГАН
(1866–1945)
Томас Хант Морган родился 25 сентября 1866 года в Лексингтоне, штат Кентукки. Его отец Чарльтон Хант Морган, консул США на Сицилии, был родственником знаменитого магната Дж. П. Моргана, мать – Эллен Кей Морган. С детства Томас проявлял интерес к естествознанию. Он поступает в университет в Кентукки и заканчивает его в 1886 году. Летом, сразу после окончания учёбы, он поехал на морскую станцию в Эннисквам на побережье Атлантики, севернее Бостона. Это был последний год существования местной лаборатории. На следующий год группа, которая организовала эту лабораторию и ею руководила, приехала в Вудс-Хоул. В Эннискваме Томас впервые познакомился с морской фауной. Это знакомство захватило его, и с тех пор изучение морских форм привлекало его особый интерес в течение всей жизни.
Свою дипломную работу он сделал под руководством Вильяма Кейта Брукса, морского биолога. Брукс был превосходным учителем, воспитавшим целое поколение выдающихся американских зоологов. В 1888 году Морган перебирается в Вудс-Хоул, а летом этого же года стал работать на Государственной станции рыболовства. В 1890 году Томас возвратился в Вудс-Хоул на Морскую биологическую станцию, и все дальнейшие годы своей жизни большей частью проводил лето именно здесь. В том же году Морган сменил на посту руководителя отдела в Брайн-Маур-колледже. В 1897 году его избрали одним из попечителей морской станции, и он оставался им всю свою жизнь. То был год, когда станция и управление ею были захвачены «младотурками», и Морган оказался одним из новых попечителей, избранным в этот переломный период. Тогда же на станции появился Вильсон из Чикагского университета.
Именно Вильсон в 1904 году убедил его занять профессорскую кафедру в Колумбийском университете. В течение двадцати четырёх лет они работали в очень тесном общении.
Подобно большинству биологов-зоологов того времени, Морган был образован в области сравнительной анатомии и особенно описательной эмбриологии. Его диссертация касалась эмбриологии одного из видов морских пауков и сделана на материале, который он собирал в Вудс-Хоуле. Эта работа базировалась на данных описательной эмбриологии с выводами, простирающимися в область филогении.
Морган, подобно некоторым своим современникам из университета Джона Гопкинса, находился под сильным влиянием Х. Ньюэлла Мартина, который был физиологом и учеником Т. Г. Гексли. Вероятно, от него Морган приобрёл свою склонность к физиологическим подходам в биологии. Он рано почувствовал интерес к экспериментальной эмбриологии. Два лета Морган провёл на Неаполитанской биологической станции, куда первый раз поехал в 1890 году, а затем в 1895-м. Здесь он познакомился и сошёлся со многими из тех, кто способствовал развитию экспериментальной эмбриологии: с Дришем, Бовери, Дорном и Гербстом. Хотя Морган был уже и сам экспериментальным эмбриологом, но именно это общение направило его интересы по-настоящему в эту сторону. Они образовали группу исследователей, весьма активных как за рубежом, так и в США. То было волнующее время, так как ко всему у учёных был новый подход и постоянно возникали новые вопросы.
Проблемы, над решением которых Морган и другие эмбриологи тогда трудились, касались того, в какой степени развитие зависит от специфических формативных веществ, предположительно присутствующих в яйце, или испытывает их влияние. Как такие формативные вещества участвуют в развитии и каким образом они функционируют? Занимался молодой учёный и физиологическими исследованиями, но настоящую славу ему принесла генетика.
В конце XIX века Морган побывал в саду Гуго де Фриза в Амстердаме, где он увидел дефризовские линии энотеры. Именно тогда у него проявился первый интерес к мутациям. Сыграл свою роль в переориентации Моргана и директор биостанции в Вудс-Хоуле Уитмен, который был генетиком-экспериментатором. Он многие годы посвятил изучению гибридов между разными видами горлиц и голубей, но никак не желал применять менделевский подход. Это понятно, так как у голубей в этом случае получается, мягко выражаясь, мешанина. Странные признаки, не дающие красивое соотношение 3:1, смущали Моргана, и до поры до времени и он не видел выхода.
Таким образом, до 1910 года Морган, скорее мог считаться антименделистом. В том году учёный занялся изучением мутаций – наследуемых изменений тех или иных признаков организма.
Морган проводил свои опыты на дрозофилах, мелких плодовых мушках. С его лёгкой руки они стали излюбленным объектом генетических исследований в сотнях лабораторий. Их легко раздобыть, они водятся повсеместно, питаются соком растений, всякой плодовой гнильцой, а личинки поглощают бактерии. Энергия размножения дрозофил огромна: от яйца до взрослой особи десять дней. Для генетиков важно и то, что дрозофилы подвержены частым наследственным изменениям; у них мало хромосом (всего четыре пары), в клетках слюнных желёз мушиных личинок содержатся гигантские хромосомы, они особенно удобны для исследований.
С помощью мушки генетика к настоящему времени сделала множество открытий. Известность дрозофилы столь велика, что на английском языке издаётся ежегодник ей посвящённый, содержащий обильную разнообразную информацию.
Приступив к своим опытам, Морган вначале добывал дрозофил в бакалейных и фруктовых лавках, благо лавочники, которым мушки досаждали, охотно разрешали чудаку ловить их. Потом он вместе с сотрудниками стал разводить мушек в своей лаборатории, в большой комнате, окрещённой «мушиной». Это была комната размером в тридцать пять квадратных метров, в которой помещалось восемь рабочих мест. Там же варили корм для мух. В комнате обычно сидели, по меньшей мере, пять работающих.
Сейчас ясно, что экспериментальная техника Моргана была просто неподходящей для того, чтобы обнаружить то увеличение в частоте мутирования, которое должно было бы происходить под влиянием радия. Тем не менее учёный получил мутации, начал их изучать, и всё дальнейшее проистекло от этих, предположительно, спонтанных мутаций. Первой из этих мутаций, не первой из найденных, но первой, действительно имевшей большое значение, был признак белых глаз, который оказался сцеплен с полом. Это было крупное открытие.
С 1911 года Морган и его соратники начали публиковать серию работ, в которых экспериментально, на основе многочисленных опытов с дрозофилами, доказывалось, что гены – это материальные частицы, определяющие наследственную изменчивость, и что их носителями служат хромосомы клеточного ядра. Тогда и была сформулирована в основных чертах хромосомная теория наследственности, подтвердившая и подкрепившая законы, открытые Менделем.
Один из соратников учёного Альфред Стёртевант вспоминал:
«Боюсь, что я не смогу дать представление об атмосфере, царившей в лаборатории. Я думаю, это было нечто такое, что нужно пережить, чтобы полностью оценить. Одним из крупнейших достоинств этого места было присутствие обоих – и Моргана, и Вильсона. Так студенты, специализирующиеся у одного из них, очень часто видели другого. Они дополняли друга в целом ряде отношений и были большими друзьями. В первые годы работы в Колумбийском университете мы кормили дрозофилу бананами, и в углу комнаты всегда висела большая связка бананов. Комната Вильсона находилась через несколько дверей от нашей, по коридору. Он очень любил бананы, так нашлась ещё одна побудительная причина часто посещать „мушиную комнату“.
В течение всего этого времени Морган регулярно приезжал в Вудс-Хоул. Это, однако, не означало перерыва в опытах с дрозофилами. Все культуры упаковывались в бочонки – большие бочонки из-под сахара, и отправлялись пароходом-экспрессом. То, что вы начинали в Нью-Йорке, вы заканчивали в Хоуле, и наоборот. Мы всегда приезжали водой: это было время, когда пароходная линия Фолл-Ривер-Лайн была в действии, а Морган всегда занимался всевозможными опытами, не имевшими ничего общего с работой на дрозофиле. Он разводил цыплят, крыс и мышей, выращивал разные растения. И всё это переносилось вручную, и грузилось на судно Фолл-Ривер-Лайн, а потом привозилось назад в Нью-Йорк.
А когда Морган попадал сюда, он с головой погружался в работу с морскими формами, в эмбриологию того или иного сорта, даже несмотря на то, что работа с дрозофилой тем временем активно двигалась вперёд. Таков был моргановский стиль работы – он не чувствовал себя счастливым, если не ковал из горячего одновременно несколько вещей».
Морган происходил из аристократической семьи, но был лишён какой бы то ни было заносчивости или снобизма.
Когда к Моргану приехал русский учёный Николай Вавилов, он хорошо знал работы колумбийской лаборатории. Вавилову казалось маловероятным, что гены могут располагаться в хромосоме, как бусы на ниточке, и такое представление казалось ему механистическим.
Всё это Вавилов и высказал Моргану, ожидая резких, даже, возможно, в высокомерном тоне высказанных возражений со стороны всемирно известного генетика. Николай Иванович, конечно, не мог знать особенностей характера знаменитого учёного. Выслушав внимательно Вавилова, Морган вдруг сказал, что представление о том, будто гены расположены в хромосоме линейно, ему самому как-то не по душе. Если кто-нибудь добудет доказательства, что это не так, он с готовностью их примет.
Была ли в этом ответе Моргана присущая ему доля скрытой иронии, ведь американец любил подразнить, любил разыграть? Один из его друзей-учёных признался, что зачастую спорил с Морганом, но всякий раз, когда он начинал думать, что его доводы взяли верх, то внезапно обнаруживал, что, сам не понимая, как это произошло, приводит аргумент с противоположной, проигрывающей стороны. Вот так умел устроить гениальный учёный.
Но, с другой стороны, Морган всегда был доброжелателен, всегда готов помочь, и если вы хотели с ним что-либо серьёзно обсудить, будь то научные или личные вопросы, он всегда готов был оказать поддержку.
Общей задачей Моргана, которую он стремился решить своей биологической деятельностью, было дать материалистическую интерпретацию явлениям жизни. В биологических объяснениях больше всего его раздражало любое предположение о существовании какой-либо цели. Он всегда относился сдержанно к идее о существовании естественного отбора, так как ему казалось, что тем самым открывается дверь к объяснению биологических явлений в понятиях, предполагающих наличие цели. Его можно было уговорить и убедить, что в этом представлении нет решительно ничего, что не было бы материалистичным, но оно ему никогда не нравилось, поэтому приходилось снова и снова убеждать его в этом каждые несколько месяцев.
Два самых бранных слова Моргана были: «метафизический» и «мистический». Слово «метафизический» означало для него нечто связанное с философской догмой, некое объяснение, недоступное проверке опытом.
В 1928 году Морган перешёл в Калифорнийский технологический институт с тем, чтобы организовать новый биологический отдел. Что его интересовало в этом предприятии, так это возможность организовать отдел, как он того хотел, и притом в институте, где на высоте находилась физика и химия, где царила исследовательская атмосфера и где работа со студентами была направлена на то, чтобы вырастить из них исследователей. Морган оставался в институте до самой своей смерти, но каждое лето он регулярно возвращался в Вудс-Хоул. Ученики Моргана за десяток лет успели изучить триста поколений дрозофил.
В тридцатые годы Вавилов писал: «Законы Менделя и Моргана легли в основу современных научных представлений о наследственности, на которых строится селекционная работа, как с растительными, так и с животными организмами… Среди биологов XX века Морган выделяется как блестящий генетик-экспериментатор, как исследователь исключительного диапазона».
Умер Морган 4 декабря 1945 года.