355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Дмитрий Самин » 100 великих учёных » Текст книги (страница 32)
100 великих учёных
  • Текст добавлен: 7 октября 2016, 01:10

Текст книги "100 великих учёных"


Автор книги: Дмитрий Самин



сообщить о нарушении

Текущая страница: 32 (всего у книги 50 страниц)

Успех не радовал её. Не успев по-настоящему отдохнуть, полечиться, она опять надорвала здоровье. В таком состоянии Софья Васильевна не могла заниматься математикой и опять обратилась к литературе. Литературными рассказами о русских людях, о России Ковалевская пыталась заглушить тоску по родине. После научного триумфа, какого она достигла, стало ещё невыносимее скитаться по чужой земле. Но шансов на место в русских университетах не было.

Луч надежды блеснул после того, как 7 ноября 1889 года Ковалевскую избрали членом-корреспондентом на физико-математическом отделении Российской академии наук.

В апреле 1890 года Ковалевская уехала в Россию в надежде, что её изберут в члены академии на место умершего математика Буняковского и она приобретёт ту материальную независимость, которая позволила бы заниматься наукой в своей стране.

В Петербурге Софья Васильевна дважды была у президента академии великого князя Константина Константиновича, один раз завтракала с ним и его женой. Он был очень любезен с прославленной учёной и всё твердил, как было бы хорошо, если бы Ковалевская вернулась на родину. Но когда она пожелала, как член-корреспондент, присутствовать на заседании академии, ей ответили, что пребывание женщин на таких заседаниях «не в обычаях академии»!

Большей обиды, большего оскорбления не могли нанести ей в России. Ничего не изменилось на родине после присвоения С. Ковалевской академического звания. В сентябре она вернулась в Стокгольм. Она была очень грустна.

29 января (10 февраля) 1891 года, не приходя в сознание, Софья Ковалевская скончалась от паралича сердца, в возрасте сорока одного года, в самом расцвете творческой жизни.

ЭМИЛЬ ФИШЕР

(1852–1919)

Немецкий химик-органик Эмиль Герман Фишер родился 9 октября 1852 года в Ойскирхене, маленьком городке вблизи Кёльна, в семье Лоренца Фишера, преуспевающего коммерсанта, и Юлии Фишер (в девичестве Пёнсген). До поступления в государственную школу Вецлара и гимназию Бонна он в течение трёх лет занимался с частным преподавателем. Весной 1869 года он с отличием окончил боннскую гимназию.

Хотя Эмиль надеялся на академическую карьеру, он согласился в течение двух лет работать в отцовской фирме, но проявил к делу так мало интереса, что весной 1871 года отец направил его в Боннский университет. Здесь он посещал лекции известного химика Фридриха Августа Кекуле, физика Августа Кундта и минералога Пауля Грота. В значительной степени под влиянием Кекуле, уделявшего мало внимания лабораторным занятиям, интерес к химии у Фишера стал ослабевать, и он потянулся к физике.

В 1872 году по совету своего кузена, химика Отто Фишера, он перешёл в Страсбургский университет. В Страсбурге под влиянием одного из профессоров, молодого химика-органика Адольфа фон Байера, у Фишера вновь возник интерес к химии. Вскоре Фишер окунулся в химические исследования и был замечен после открытия фенилгидразина (маслянистой жидкости, используемой для определения декстрозы), вещества, которое было им использовано позднее для классификации и синтеза сахаров. После получения докторской степени в 1874 году он занял должность преподавателя в Страсбургском университете.

Когда в следующем году Байер получил пост в Мюнхенском университете, Фишер дал согласие стать его ассистентом. Финансово независимый и освобождённый от административных и педагогических обязанностей, Фишер смог сконцентрировать всё своё внимание на лабораторных исследованиях. В сотрудничестве со своим кузеном Отто он применил фенилгидразин для изучения веществ, используемых в производстве органических красителей, получаемых из угля. До проведения исследований Фишера химическая структура этих веществ определена не была.

В 1878 году Эмилю Фишеру было присвоено учёное звание доцента. На следующий год профессор Фольгард, который заведовал аналитическим отделением, получил приглашение работать в университете города Эрлангена. Его место, по предложению профессора Байера, занял Эмиль Фишер. Друзья и родные встретили эту новость с восторгом. Отец прислал Эмилю длинное поздравительное письмо, в котором сообщал, что они с матерью отпраздновали успех единственного сына и распили бутылку шампанского.

Фишер, будучи химиком-органиком, заинтересовался биологическими и биохимическими процессами, протекающими в организмах животных.

– Организм животных – могучая лаборатория, – говорил учёный. – Там происходит синтез невероятного множества веществ! Распадаются углеводы, жиры, белки, чтобы дать энергию и строительный материал для других веществ. Человечество давно стремится раскрыть сущность этих процессов, но мы пока всё ещё далеки от истины. Существует два пути раскрытия этих тайн: либо изучать образующиеся в результате жизнедеятельности организма продукты распада, которые он выбрасывает, либо пытаться синтезировать вещества, которые производит живая клетка.

В осуществлении этой задачи химия добилась немалых успехов, и всё же множество проблем продолжали оставаться неразрешёнными. Одной из них – и, быть может, самой важной – была проблема изучения белковых веществ и белкового обмена. В организме человека и теплокровных животных белковые вещества распадаются, и конечным продуктом распада является мочевина. Однако у животных и птиц с «холодной» кровью белковый обмен приводит к образованию мочевой кислоты. Ни сама кислота, ни её производные до сих пор не были изучены, и Эмиль Фишер начал исследования этой группы соединений.

Чтобы установить их точную структуру, нужно было изучить все возможные варианты получения одного соединения из другого, синтезировать самые различные производные этих веществ и выделить их из природных продуктов. Это было огромное поле деятельности, неисчерпаемый источник идей.

В ходе исследований Фишер сделал очень важное открытие, которое было с успехом использовано в его дальнейшей работе. При обработке органических кислот пятихлористым фосфором были получены соответствующие хлориды, которые обладали повышенной реакционной способностью и могли легко превращаться в производные кислот. Так Фишер сумел получить из мочевой кислоты трихлорпурин, а при последующей его обработке едким калием и йодистым водородом – ксантин. При метилировании ксантина Фишер получил кофеин – бесцветное, горькое на вкус кристаллическое вещество, которое содержится в зёрнах кофе и листьях чая. Синтезированное вещество было полностью идентично природному кофеину, оно оказывало такое же возбуждающее действие, как и природный продукт.

Успехи Фишера постепенно стали известны и получили признание за пределами Германии. Он получил приглашение на должность профессора в Аахене, затем в Эрлангене.

Эрланген – небольшой городок, но для университета только что выстроили новое здание. К тому же Фишеру предлагали здесь постоянное место профессора химии, и он, не колеблясь, принял это предложение.

Эмиль ехал в Эрланген в купе поначалу один, но в Нюрнберге в купе вошла молодая красивая девушка в сопровождении пожилого мужчины, по всей видимости, её отца. Спутник дамы поздоровался и представился как профессор Якоб фон Герлах.

Дочь профессора Герлаха, Агнес, внимательно слушала их разговор. Могла ли она предполагать, что этот случайный попутчик, который был к тому же значительно старше её, через несколько лет станет её мужем.

Фишер же, увлечённый разговором с профессором Герлахом, почти не обращал внимания на очаровательную спутницу. Несмотря на частое посещение многолюдных приёмов госпожи Байер, он совершенно не умел обращаться с дамами и в их обществе обычно чувствовал себя несколько стеснённым, хотя он был интереснейшим собеседником, отлично знавшим музыку, театр, живопись.

В 1885 году Фишер становится профессором Вюрцбургского университета. У него, увлечённого научными проблемами, не было времени подумать о доме, о своих личных делах. Его домом была лаборатория, его счастьем – наука. Но по вечерам, оставаясь один, Эмиль всё чаще вспоминал прелестную девушку, с которой он познакомился в поезде. Он не раз встречал Агнес на приёмах в Эрлангене, разговаривал с ней, но только здесь, в Вюрцбурге, вдруг остро почувствовал, что скучает без девушки. Его уже не увлекали шумные и весёлые компании, где он проводил свои вечера, он постоянно ощущал какую-то пустоту.

Госпожа Кнорр, жена его сотрудника, подружилась с Агнес ещё в Эрлангене и часто приглашала девушку погостить в Вюрцбург. Когда Агнес приезжала в Вюрцбург, госпожа Кнорр каждый раз устраивала приём, на котором не без умысла непременным гостем был Эмиль.

На одном из таких приёмов, в конце 1887 года, Фишер сделал Агнес Герлах официальное предложение, и в тот же вечер была отпразднована помолвка. Свадьба состоялась в Эрлангене в конце февраля следующего года.

Теплоту и счастье принесла Агнес в дом Фишера. Агнес была любимицей отца, и с первого же дня она полюбилась и родителям мужа. Её любили все – Агнес несла в себе лучезарную радость. В конце 1888 года у Фишера родился сын. По древнему немецкому обычаю ему дали несколько имён – Герман Отто Лоренц.

Несмотря на перемены, которые внесли в жизнь Фишера женитьба и рождение ребёнка, интенсивная исследовательская деятельность его не прекращалась. Разработав и усовершенствовав ряд методов синтеза и анализа органических соединений, великий мастер эксперимента сумел добиться больших успехов.

После синтеза акрозы сотрудники Фишера Юлиус Тафель, Оскар Пилоти и несколько дипломников начали осуществлять сложные и многоступенчатые синтезы природных сахаров – маннозы, фруктозы и глюкозы. Эти успехи принесли Фишеру и первые международные признания. В 1890 году Английское химическое общество наградило его медалью Дэви, а научное общество в Упсале избрало своим членом-корреспондентом. В том же году Немецкое химическое общество пригласило учёного выступить в Берлине с докладом об успехах в области синтеза и изучения сахаров.

Фишер продолжает исследовать такие соединения, как кофеин, теобромин (алкалоид) и компоненты экскрементов животных, в частности, мочевую кислоту и гуанин, который, как он обнаружил, получается из бесцветного кристаллического вещества, названного им пурином. К 1899 году Фишер синтезировал большое число производных пуринового ряда, включая и сам пурин (1898). Пурин – важное соединение в органическом синтезе, так как оно, как было открыто позднее, является необходимым компонентом клеточных ядер и нуклеиновых кислот.

В 1892 году Фишер стал директором Химического института Берлинского университета и занимал этот пост до самой смерти. Научные успехи окрыляли Фишера, но всё больше и больше удручали семейные невзгоды. Холодный берлинский климат неблагоприятно отразился на здоровье сыновей, мальчики часто болели. Фишер, на собственном опыте убедившийся в том, что медицина не всесильна, чрезвычайно беспокоился за детей. Но самое страшное испытание было впереди: вскоре после рождения третьего сына Агнес заболела, у неё началось воспаление среднего уха. Специалисты настаивали на немедленной операции, но жена не соглашалась. Болезнь прогрессировала и скоро перешла в менингит. Операцию сделали, но было уже поздно – Агнес умерла. Это случилось в 1895 году.

Но горе не сломило учёного. Поручив заботу о сыновьях преданной экономке и опытным учителям, Фишер с головой ушёл в работу. Расширив область исследования от сахаров до ферментов, он открыл, что ферменты реагируют только с веществами, с которыми они имеют химическое родство. Проводя исследования с белками, он установил число аминокислот, из которых состоит большинство белков, а также взаимосвязь между различными аминокислотами. Со временем он синтезировал пептиды (комбинации аминокислот) и классифицировал более сорока типов белков, основываясь на количестве и типах аминокислот, образовавшихся при гидролизе (химическом процессе разрушения, включающем расщепление химической связи и присоединение элементов воды).

В 1902 году Фишеру была вручена Нобелевская премия по химии «в качестве признания его особых заслуг, связанных с экспериментами по синтезу веществ с сахаридными и пуриновыми группами». Открытие Фишером гидразиновых производных, как оказалось, явилось блестящим решением проблемы получения сахаров и других соединений искусственным путём. Более того, его метод синтеза гликозидов внёс определённый вклад в развитие физиологии растений. Говоря об исследованиях сахаров, Фишер в нобелевской лекции заявил, что «постепенно завеса, с помощью которой Природа скрывала свои секреты, была приоткрыта в вопросах, касающихся углеводов. Несмотря на это, химическая загадка Жизни не может быть решена до тех пор, пока органическая химия не изучит другой, более сложный предмет – белки».

Активный сторонник фундаментальных исследований, Фишер проводил кампанию в защиту таких междисциплинарных проектов, как экспедиция по наблюдению за солнечным затмением для проверки теории относительности. Ориентируясь на политику Рокфеллеровского фонда, которая позволила направить деятельность американских учёных исключительно на фундаментальные исследования, Фишер в 1911 году получил денежные средства для создания Института физической химии и электрохимии кайзера Вильгельма в Берлине. В 1914 году он получил оборудование для создания Института исследований угля кайзера Вильгельма в Мюльгейме.

Однако чёрная тень Первой мировой войны нависла над миром. Для Фишера наступили тяжёлые дни. Призванный в армию младший сын Альфред был направлен в Добруджу, в бухарестский лазарет, где заразился сыпным тифом и умер. За год до этого, в 1916 году, после тяжёлой болезни скончался его второй сын, который также собирался стать врачом. Остался, к счастью, старший сын Герман, ставший профессором биохимии Калифорнийского университета в Беркли.

К личным переживаниям присоединились трудности с исследовательской деятельностью: работа в лаборатории была приостановлена из-за того, что не хватало химикатов. Тяжёлая, неизлечимая болезнь всё чаще давала о себе знать, отнимала последние силы. После длительных контактов в лаборатории с фенилгидразином у Фишера образовались хроническая экзема и желудочно-кишечные нарушения. Фишер отчётливо осознавал, что его ждёт, но он не страшился смерти. Спокойно привёл в порядок все свои дела, закончил работу над рукописями, успел завершить и свою автобиографию, хотя и не дождался её выхода в свет. Эмиль Фишер скончался 15 июля 1919 года.

Рихард Вильшеттер считал его «не имеющим равных классиком, мастером органической химии, как в области анализа, так и в области синтеза, а в личностном отношении прекраснейшим человеком». В его честь Германское химическое общество учредило медаль Эмиля Фишера.

Фишер создал крупную научную школу. Среди его учеников – Отто Дильс, Адольф Виндаус, Фриц Прегль, Отто Варбург.

ГЕНДРИК ЛОРЕНЦ

(1853–1928)

В историю физики Лоренц вошёл как создатель электронной теории, в которой синтезировал идеи теории поля и атомистики.

Гендрик Антон Лоренц родился 18 июля 1853 года в голландском городе Арнеме. Шести лет он пошёл в школу. В 1866 году, окончив школу лучшим учеником, Гендрик поступил в третий класс высшей гражданской школы, примерно соответствующей гимназии. Его любимыми предметами стали физика и математика, иностранные языки. Для изучения французского и немецкого языков Лоренц ходил в церкви и слушал на этих языках проповеди, хотя в бога не верил с детства.

В 1870 году он поступил в Лейденский университет. С большим интересом Гендрик слушал лекции университетских профессоров, хотя его судьбу как учёного, видимо, в большей мере определило чтение трудов Максвелла, очень трудных для понимания и названных им в связи с этим «интеллектуальными джунглями». Но ключ к ним, по словам Лоренца, ему помогли подобрать статьи Гельмгольца, Френеля и Фарадея.

В 1871 году Гендрик с отличием сдал экзамены на степень магистра, но в 1872 году покинул Лейденский университет, чтобы самостоятельно подготовиться к докторским экзаменам. Он возвращается в Арнем и начинает работать учителем вечерней школы. Работа ему очень нравится, и вскоре Лоренц становится хорошим педагогом. Дома он создаёт небольшую лабораторию, продолжая усиленно изучать труды Максвелла и Френеля. «Моё восхищение и уважение переплелось с любовью и привязанностью; как велика была радость, которую я испытал, когда смог прочесть самого Френеля», – вспоминал Лоренц. Он становится ярым сторонником электромагнитной теории Максвелла: «Его „Трактат об электричестве и магнетизме“ произвёл на меня, пожалуй, одно из самых сильных впечатлений в жизни; толкование света как электромагнитного явления по своей смелости превзошло всё, что я до сих пор знал».

В 1875 году Лоренц блестяще защищает докторскую диссертацию и в 1878 году становится профессором специально для него учреждённой кафедры теоретической физики (одной из первых в Европе) Лейденского университета. В 1881 году он становится членом Королевской академии наук в Амстердаме.

Уже в докторской диссертации «Об отражении и преломлении лучей света» Лоренц пытается обосновать изменение в скорости распространения света в среде влиянием наэлектризованных частичек тела. Под действием световой волны заряды молекул приходят в колебательное движение и становятся источниками вторичных электромагнитных волн. Эти волны, интерферируя с первичными, и обусловливают преломление и отражение света. Здесь уже намечены те идеи, которые приведут к созданию электронной теории дисперсии света.

В следующей статье «О соотношении между скоростью распространения света и плотностью и составом среды», опубликованной в 1878 году, Лоренц выводит знаменитое соотношение между показателем преломления и плотностью среды, известное под названием «формулы Лоренц—Лоренца», поскольку датчанин Людвиг Лоренц независимо от Гендрика Лоренца пришёл к тому же результату. В этой работе Лоренц развивает электромагнитную теорию дисперсии света с учётом того, что на молекулярный заряд, кроме поля волны, действует поле поляризованных частиц среды.

В 1892 году Лоренц выступил с большой работой «Электромагнитная теория Максвелла и её приложение к движущимся телам». В этой работе очерчены основные контуры электронной теории. Мир состоит из вещества и эфира, причём Лоренц называет веществом «всё то, что может принимать участие в электрических токах, электрических смещениях и электромагнитных движениях». «Все весомые тела состоят из множества положительно и отрицательно заряженных частиц, и электрические явления порождаются смещением этих частиц».

Лоренц выписывает далее выражение силы, с которой электрическое поле действует на движущийся заряд. Лоренц делает фундаментальное предположение – эфир в движении вещества участия не принимает (гипотеза неподвижного эфира). Это предположение прямо противоположно гипотезе Герца о полностью увлекаемом движущимися телами эфире.

В заметке 1892 года «Относительное движение Земли и эфира» учёный описывает единственный, по его мнению, способ согласовать результат опыта с теорией Френеля, то есть с теорией неподвижного эфира. Этот способ состоит в предположении о сокращении размеров тел в направлении их движения (сокращение Лоренца—Фитцджеральда).

В 1895 году вышла фундаментальная работа Лоренца «Опыт теории электрических и оптических явлений в движущихся телах». В этой работе Лоренц даёт систематическое изложение своей электронной теории. Правда, слово «электрон» в ней ещё не встречается, хотя элементарное количество электричества было уже названо этим именем. Учёный просто говорит о заряженных положительно или отрицательно частичках материи – ионах и свою теорию соответственно называет «ионной теорией». «Я принимаю, – пишет Лоренц, что во всех телах находятся маленькие заряженные электричеством материальные частицы и что все электрические процессы основаны на конфигурации и движении этих „ионов“». Лоренц указывает, что такое представление общепринято для явлений в электролитах и что последние исследования электрических разрядов показывают, что «в электропроводности газов мы имеем дело с конвекцией ионов».

Другое предположение Лоренца заключается в том, что эфир не принимает участия в движении этих частиц и, следовательно, материальных тел, он неподвижен. Эту гипотезу Лоренц возводит к Френелю. Лоренц подчёркивает, однако, что речь идёт не об абсолютном покое эфира, такое выражение он считает бессмысленным, а о том, что части эфира покоятся друг относительно друга и что все действительные движения небесных тел являются движениями относительно эфира.

Лоренц стал развивать идеи, изложенные им в «Опыте теории электрических и оптических явлений в движущихся телах», совершенствуя и углубляя свою теорию. В 1899 году он выступил со статьёй «Упрощённая теория электрических и оптических явлений в движущихся телах», в которой упростил теорию, данную им в «Опыте».

В 1900 году на Международном конгрессе физиков в Париже Лоренц выступил с докладом о магнитооптических явлениях. Его друзьями стали Больцман, Вин, Пуанкаре, Рентген, Планк и другие знаменитые физики.

В 1902 году Лоренц и его ученик Питер Зееман становятся нобелевскими лауреатами. В своей речи при вручении Нобелевской премии Лоренц сказал: «…мы надеемся, что электронная гипотеза, поскольку она принята в различных разделах физики, ведёт к общей теории, которая охватит многие области физики и химии. Возможно, что на этом длинном пути сама она полностью перестроится».

В 1904 году он выступил с основополагающей статьёй «Электромагнитные явления в системе, движущейся со скоростью, меньшей скорости света». Лоренц вывел формулы, связывающие между собой пространственные координаты и моменты времени в двух различных инерциальных системах отчёта (преобразования Лоренца). Учёному удалось получить формулу зависимости массы электрона от скорости.

В 1912 году, переиздавая эту работу, в примечаниях он признал, что ему не удалось полностью совместить свою теорию с принципом относительности. «С этим обстоятельством, – писал Лоренц, – связана беспомощность некоторых дальнейших рассуждений в этой работе».

В 1911 году в Брюсселе состоялся I Международный Сольвеевский конгресс физиков, посвящённый проблеме «Излучение и кванты». В его работе участвовали двадцать три физика, председательствовал Лоренц. «Нас не покидает чувство, что мы находимся в тупике, старые теории оказываются всё менее способными проникнуть в тьму, окружающую нас со всех сторон», – сказал он во вступительном слове. Он ставит перед физиками задачу создать новую механику. «Мы будем очень счастливы, если нам удастся хоть немного приблизиться к той будущей механике, о которой идёт речь».

В 1912 году Лоренц ушёл на должность экстраординарного профессора кафедры и предложил своим преемником жившего тогда в России физика Пауля Эренфеста. В 1913 году Лоренц занял должность директора физического кабинета Тейлоровского музея в Гарлеме.

Лоренц был членом многих академий наук и научных обществ. В 1925 году он избран иностранным членом Академии наук СССР. В том же году в Голландии было торжественно отмечено пятидесятилетие научной деятельности Лоренца. Это были большие торжества, превратившиеся, по словам академика П. Лазарева, в международный съезд. Голландская академия наук учреждает «Золотую медаль Лоренца». Участники торжеств выступают с приветственными речами. Ответная речь Лоренца была очень интересной и, как всегда, чрезвычайно скромной: «Я бесконечно счастлив, что мне удалось внести свой скромный вклад в развитие физики. Наше время прошло, но мы передали эстафету в надёжные руки».

Лоренц был признан старейшиной физической науки, великим классиком теоретической физики и её духовным отцом.

В 1927 году состоялся V Сольвеевский конгресс по проблеме «Электроны, фотоны и квантовая механика». Как и на всех предыдущих, председателем конгресса был Лоренц.

А 4 февраля 1928 года Лоренца не стало. В Голландии был объявлен национальный траур. На похороны великого физика прибыли учёные из разных стран. От Голландской академии наук выступал Эренфест, от Англии – Резерфорд, от Франции – Ланжевен, от Германии – Эйнштейн.

«Его блестящий ум указал нам путь от теории Максвелла к достижениям физики наших дней. Именно он заложил краеугольные камни этой физики, создал её методы. Образ и труды его будут служить на благо и просвещение ещё многих поколений», – сказал Эйнштейн над прахом Лоренца. Стиль работы Лоренца «брать глубоко и стремиться к полной завершённости» послужит, по словам Макса Планка, образцом и для будущих поколений. «Его труды не перестали быть захватывающе интересными он оставил после себя огромное наследие – истинное завершение классической физики», – оценивал вклад Лоренца Луи де Бройль. Таким был и таким остаётся в памяти потомков Гендрик Лоренц – этот «великий классик теоретической физики».


    Ваша оценка произведения:

Популярные книги за неделю