Текст книги "100 великих учёных"
Автор книги: Дмитрий Самин
Жанры:
Энциклопедии
,сообщить о нарушении
Текущая страница: 29 (всего у книги 50 страниц)
ЛЮДВИГ БОЛЬЦМАН
(1844–1906)
Людвиг Больцман, без сомнения, был величайшим учёным и мыслителем, которого дала миру Австрия. Ещё при жизни Больцман, несмотря на положение изгоя в научных кругах, был признан великим учёным, его приглашали читать лекции во многие страны. И, тем не менее, некоторые его идеи остаются загадкой даже в наше время. Сам Больцман писал о себе: «Идеей, заполняющей мой разум и деятельность, является развитие теории». А Макс Лауэ позднее эту мысль уточнит так: «Его идеал заключался в том, чтобы соединить все физические теории в единой картине мира».
Людвиг Эдуард Больцман родился в Вене 20 февраля 1844 года, как раз в ночь с последнего дня масленицы на среду, с которой начинался великий пост. Больцман обычно в шутку говорил, что из-за даты своего рождения он и получил характер, которому присущи резкие переходы от ликования к скорби. Отец его, Людвиг Георг Больцман, работал в Имперском министерстве финансов. Он умер от туберкулёза, когда Людвигу было всего пятнадцать лет. Людвиг Больцман учился блестяще, а мать поощряла его разнообразные интересы, дав ему всестороннее воспитание. Так, в Линце Больцман брал уроки игры на фортепиано у знаменитого композитора Антона Брукнера. Всю жизнь он любил музыку и часто устраивал в своём доме с друзьями домашние концерты. В 1863 году Больцман поступил в Венский университет, где изучал математику и физику.
Тогда максвелловская электродинамика представляла собой новейшее достижение теоретической физики. Неудивительно, что и первая статья Людвига была посвящена электродинамике. Однако уже во второй своей работе, опубликованной в 1866 году в статье «О механическом значении второго начала термодинамики», где он показал, что температура соответствует средней кинетической энергии молекул газа, определились научные интересы Больцмана.
Осенью 1866 года, за два месяца до получения докторской степени, Больцман был принят в Институт физики на должность профессора-ассистента. В 1868 году Больцману было присвоено право чтения лекций в университетах, а годом позже он стал ординарным профессором математической физики в университете в Граце. В этот период он помимо разработки своих теоретических идей занимался и экспериментальными исследованиями связи между диэлектрической постоянной и показателем преломления с целью получить подтверждение максвелловской единой теории электродинамики и оптики. Для своих экспериментов он дважды брал в университете краткий отпуск, чтобы поработать в лабораториях Бунзена и Кёнигсбергера в Гейдельберге и Гельмгольца и Кирхгофа в Берлине. Результаты этих исследований были опубликованы в 1873–1874 годах.
Больцман принимал также активное участие в планировании новой физической лаборатории в Граце, директором которой он позже стал.
Это был расцвет научной деятельности Больцмана. Однако ему не хватало широкой аудитории, он чувствовал потребность делиться своими идеями не только со студентами, жадно внимавшими молодому блестящему профессору, но и со своими коллегами-учёными. А Грац для этого был слишком маленьким городком. Вот почему в 1873 году Людвиг Больцман возвращается в Вену в качестве профессора математики. Незадолго до отъезда он познакомился с будущей женой Генриеттой фон Айгентлер.
Популярность Больцмана в Вене была невероятной. Для его лекций всегда выбирали самые большие аудитории, чаще всего актовые залы. И всё равно все желающие попасть не могли.
Перед началом лекции служители вносили три чёрные доски. Самую большую ставили в центре, а две поменьше – по бокам. И выходил Больцман. Высокого роста, с массивной головой, увенчанной мелко вьющимися каштановыми волосами, широкоскулый, с жёсткой, упрямой бородой, с глубоко спрятанными под толстыми круглыми очками глазами – смеющимися и печальными одновременно, он выходил на кафедру, сутулясь и смущаясь своей внешности, своего огромного, вечно красного носа.
Он не отвечал на аплодисменты никак. Стоял к аудитории спиной и ждал, когда в зале наступит тишина. И в этой тишине он с трудом выдавливал из себя ординарные, скучные и обязательные слова: «Итак, в прошлый раз мы остановились…» И пятнадцать минут громким голосом объяснял содержание предыдущей лекции, красивым, чётким почерком выписывая на левой доске итоговые формулы.
А читал он четырёхгодичный курс, охватывающий механику, гидромеханику, учение об упругости, электричество, магнетизм, кинетическую теорию газов и… философию.
Покончив с прошлой лекцией, он возвращался на кафедру, снимал очки и несколько секунд стоял в молчании, склонив голову. И вдруг в мёртвой тишине раздавались слова, похожие на молитву: «Простите меня, если, прежде чем приступить к чтению лекций, я буду вас просить кое-что для себя лично, что мне важнее всего, – ваше доверие, ваше расположение вашу любовь, одним словом, самое большое, что вы способны дать, – вас самих…» И начинал читать лекцию.
Его имя было окружено легендами. Да он и сам своей детской непосредственностью и восторженностью перед самыми прозаическими вещами давал обильную пищу этим анекдотическим легендам. Вдруг однажды весь Грац был взбудоражен невероятной новостью: господин профессор экспериментальной физики лично купил на рынке корову и торжественно за верёвку через весь городок провёл её в свою виллу. Затем, разместив «священное животное» с подобающими почестями, профессор физики направился к профессору зоологии, у которой очень долго консультировался по процессу доения. Или вдруг рано утром зимой весь Грац сходился к катку, на котором Больцман вместе с детьми осваивал катание на коньках.
Но самым неизменным увлечением профессора физики была музыка. В Венском театре оперы за Больцманом и его семьёй была постоянно закреплена ложа; а дома профессор физики ежедневно устраивал вечера камерной музыки, причём сам неизменно исполнял партию на рояле.
Из работ, выполненных Больцманом в Вене, особого внимания заслуживает статья «О теории упругости при внешних воздействиях» (1874), где он сформулировал теорию линейной вязкоупругости. Он описал это явление с помощью интегральных уравнений, представляющих собой важный вклад в теоретическую реологию.
Увы, административная работа, которой в Вене было куда больше, чем в Граце, была для учёного тяжёлым грузом. Его манила кафедра экспериментальной физики в Граце. Здесь он мог бы располагать собственной лабораторией и читать лекции по физике, а не по математике, как в Вене. Бюрократизма в Граце было меньше. Но, кроме того, Больцман собирался жениться. В Вене найти подходящую квартиру было очень трудно, а его будущая жена была из Граца. В 1876 году Больцман занял пост директора Физического института в Граце и оставался на этой должности четырнадцать лет.
Ещё в 1871 году Больцман указал, что второй закон термодинамики может быть выведен из классической механики только с помощью теории вероятности. В 1877 году в «Венских сообщениях о физике» появилась знаменитая статья Больцмана о соотношении между энтропией и вероятностью термодинамического состояния. Учёный показал, что энтропия термодинамического состояния пропорциональна вероятности этого состояния и что вероятности состояний могут быть рассчитаны на основании отношения между численными характеристиками соответствующих этим состояниям распределений молекул.
То есть, если достаточно большую систему оставить без внешнего вмешательства на достаточно долгое время, то вероятность того, что мы найдём её по истечении этого времени в равновесном состоянии, несравненно больше, чем вероятность того, что она будет в каком угодно неравновесном состоянии.
Эта так называемая «аш-теорема» стала вершиной учения Больцмана о мироздании. Формула этого начала была позднее высечена в качестве эпитафии на памятнике над его могилой. Эта формула очень схожа по своей сути с законом естественного отбора Чарлза Дарвина. Только «Аш-теорема» Больцмана показывает, как зарождается и протекает «жизнь» самой Вселенной.
Немецкий физик Р. Клаузиус, давший в 1850 году формулировку второго закона термодинамики, позднее, в 1865 году, введший понятие энтропии, одно время был весьма популярной фигурой. Выводы, сделанные им из второго начала о неизбежности тепловой смерти, были взяты на вооружение не только многими физиками. Главным образом к ним обратились философы, получившие мощные, казалось, неоспоримые аргументы в пользу идеалистических концепций о начале и конце мира, в том числе и в пользу эмпириокритицизма, учения Э. Маха и «энергетического» учения В. Оствальда.
Своей «аш-теоремой» неукротимый Людвиг Больцман заявил: «Тепловая смерть – блеф. Никакого конца света не предвидится. Вселенная существовала и будет существовать вечно, ибо она состоит не из наших „чувственных представлений“, как полагают эмпириокритики, и не из разного рода энергий, как полагают оствальдовцы, а из атомов и молекул, и второе начало термодинамики надо применять не по отношению к какому-то „эфиру“, духу или энергетической субстанции, а к конкретным атомам и молекулам».
Вокруг «аш-теоремы» Людвига Больцмана мгновенно разгорелись не меньшие по накалу дискуссии, чем по тепловой смерти. «Аш-теорема» и выдвинутая на её основе флуктуационная гипотеза были препарированы со всей тщательностью и скрупулёзностью и, как и следовало ждать, обнаружили в себе зияющие, непростительные, казалось бы, для такого великого учёного, как Больцман, изъяны.
Оказалось, что если принять за истину гипотезу Больцмана, то надо принять за веру и такое чудовищное, не укладывающееся ни в какие рамки здравого смысла допущение: рано или поздно, а точнее, уже сейчас, где-то во Вселенной должны идти процессы в обратном второму началу направлении, то есть тепло должно переходить от более холодных тел к более горячим! Это ли не абсурд.
Больцман этот «абсурд» отстаивал, он был глубоко убеждён, что такой ход развития Вселенной наиболее естественный, ибо он является неизбежным следствием её атомного строения.
Вряд ли «аш-теорема» получила бы такую известность, если бы была выдвинута каким-нибудь другим учёным. Но её выдвинул Больцман, умевший не только увидеть за занавесом скрытый от других мир, но умевший защищать его со всей страстью гения, вооружённого фундаментальными знаниями как физики, так и философии.
Кульминацией драматических коллизий между физиком-материалистом и махистами, видимо, следует считать съезд естествоиспытателей в Любеке в 1895 году, где Людвиг Больцман своим друзьям-врагам дал генеральное сражение. Он одержал победу, но в результате после съезда ощутил ещё большую пустоту вокруг себя. В 1896 году Больцман написал статью «О неизбежности атомистики в физических науках», где выдвинул математические возражения против оствальдовского энергетизма.
Вплоть до 1910 года само существование атомистики всё время оставалось под угрозой. Больцман боролся в одиночку и боялся, что дело всей его жизни окажется в забвении. В предисловии ко второй части своих лекций по теории газов он писал в 1898 году: «По моему мнению, большой трагедией для науки будет, если (подобно тому, как это случилось с волновой теорией света из-за авторитета Ньютона) хотя бы на время теория газов окажется позабытой из-за того враждебного отношения к ней, которое воцарилось в данный момент. Я сознаю, что сейчас являюсь единственным, кто, хотя и слабо, пытается плыть против течения. И, тем не менее, я могу способствовать тому, чтобы, когда теория газов снова будет возвращена к жизни, не пришлось делать слишком много повторных открытий».
В 1890 году Больцман принял предложение занять кафедру теоретической физики в Мюнхенском университете и мог, наконец, заняться преподаванием своего любимого предмета. В течение того времени, что он преподавал здесь экспериментальную физику, он использовал для иллюстрации теоретических концепций наиболее наглядные механические модели. Множество студентов со всех концов мира приезжали в Мюнхен, чтобы пройти курс обучения под руководством Больцмана.
Единственная слабость его позиции заключалась в том, что баварское правительство в то время не выплачивало пенсии университетским профессорам; между тем у Больцмана всё более ухудшалось зрение, и его беспокоило будущее семьи.
Своими блестящими, отнюдь не корректными, как это было принято в те время, выступлениями в научных дискуссиях Больцман быстро приобрёл репутацию человека с беспокойным, трудным характером; он не умел быть снисходительным даже к друзьям, когда видел их заблуждения хотя и страдал от своей резкости. В науке для Больцмана компромиссов не существовало. И если у него отнимали возможность честной борьбы он без сожалений расставался с самыми почётными должностями. Из Мюнхена Больцман возвращается в Венский университет, а через несколько лет переезжает в Лейпциг. Осенью 1902 года Больцман вернулся Вену. И везде, во всех университетах он вёл изматывающую борьбу за материалистическую физику, за атомистику. Это была, особенно в последний период его жизни, по сути дела, борьба учёного-одиночки с крупнейшими физиками того времени, главами самых влиятельных научных школ.
В феврале 1904 года жена писала дочери Иде, которая оставалась в Лейпциге и заканчивала там гимназию: «Отцу всё хуже с каждым днём. Я потеряла веру в будущее. Я надеялась, в Вене наша жизнь будет лучше». Здоровье Больцмана страдало от постоянных споров с противниками. Зрение его ухудшилось до такой степени, что ему трудно стало читать; пришлось нанять сотрудницу, которая читала ему научные статьи; жена готовила его рукописи к печати.
Его слабое здоровье не могло в течение долгого времени выдерживать такую огромную преподавательскую нагрузку, которая сочеталась с научной работой. Даже отдых в Дуино, под Триестом, не принёс ему облегчения в его мучительном заболевании. Больцман впал в глубокую депрессию и 5 сентября 1906 года покончил жизнь самоубийством.
Весьма прискорбно, что он не дожил до воскрешения атомизма и умер с мыслью, что о кинетической теории все забыли. Однако многие идеи Больцмана уже нашли своё разрешение в таких поразительных открытиях, как ультрамикроскоп, эффект Доплера, газотурбинные двигатели, освобождение энергии атомного ядра. Но это всё частности в той картине мира, которую видел и описывал Больцман, отдельные следствия атомного строения мира.
Ещё в статье 1872 года Больцман ввёл представление о дискретных уровнях энергии, благодаря чему был открыт путь к созданию квантовой механики. Однако ещё более важную роль в становлении современной физики сыграл его статистический метод. Как бы в предчувствии статистической интерпретации квантовой механики он писал в 1898 году в своих лекциях по теории газов: «Мне ещё надо упомянуть возможное, что фундаментальные уравнения движения отдельных молекул окажутся всего лишь приблизительными формулами, дающими средние значения… и получаемыми только в результате длительных серий наблюдений на основе теории вероятностей».
Много раз его искренность сталкивалась с вероломством, но Больцман, тем не менее, до конца жизни сохранил веру в дружбу и любовь.
Стихи и музыка были для него своего рода теми кирпичиками в единой теории мироздания, куда входили и законы физики, и учение Дарвина, которого Больцман боготворил, и любимая им философия.
«Судьбу Людвига Больцмана как одного из основоположников современной физики, – писал Э. Бода, – можно сравнить только с судьбой великого творца множеств – Георга Кантора. Идеи их обоих не были поняты и оценены надлежащим образом при жизни авторов, что трагически сказалось на судьбах этих гениальных людей».
ВИЛЬГЕЛЬМ РЕНТГЕН
(1845–1923)
В январе 1896 года над Европой и Америкой прокатился тайфун газетных сообщений о сенсационном открытии профессора Вюрцбургского университета Вильгельма Конрада Рентгена. Казалось не было газеты, которая бы не напечатала снимок кисти руки, принадлежащей, как выяснилось позже, Берте Рентген, жене профессора. А профессор Рентген, запершись у себя в лаборатории, продолжал усиленно изучать свойства открытых им лучей. Открытие рентгеновских лучей дало толчок новым исследованиям. Их изучение привело к новым открытиям, одним из которых явилось открытие радиоактивности.
Немецкий физик Вильгельм Конрад Рентген родился 27 марта 1845 года в Леннепе, небольшом городке близ Ремшейда в Пруссии, и был единственным ребёнком в семье преуспевающего торговца текстильными товарами Фридриха Конрада Рентгена и Шарлотты Констанцы (в девичестве Фровейн) Рентген. В 1848 году семья переехала в голландский город Апельдорн, на родину родителей Шарлотты. Экспедиции, совершённые Вильгельмом в детские годы в густых лесах в окрестностях Апельдорна, на всю жизнь привили ему любовь к живой природе.
Рентген поступил в Утрехтскую техническую школу в 1862 году, но был исключён за то, что отказался назвать своего товарища, нарисовавшего непочтительную карикатуру на нелюбимого преподавателя. Не имея официального свидетельства об окончании среднего учебного заведения он формально не мог поступить в высшее учебное заведение, но в качестве вольнослушателя прослушал несколько курсов в Утрехтском университете. После сдачи вступительного экзамена в 1865 году Вильгельм был зачислен студентом в Федеральный технологический институт в Цюрихе, он намеревался стать инженером-механиком, и в 1868 году получил диплом. Август Кундт, выдающийся немецкий физик и профессор физики этого института, обратил внимание на блестящие способности Вильгельма и настоятельно посоветовал ему заняться физикой. Рентген последовал его совету и через год защитил докторскую диссертацию в Цюрихском университете, после чего был немедленно назначен Кундтом первым ассистентом в лаборатории.
Получив кафедру физики в Вюрцбургском университете (Бавария), Кундт взял с собой и своего ассистента. Переход в Вюрцбург стал для Рентгена началом «интеллектуальной одиссеи». В 1872 году он вместе с Кундтом перешёл в Страсбургский университет и в 1874 году начал там свою преподавательскую деятельность в качестве лектора по физике.
В 1872 году Рентген вступил в брак с Анной Бертой Людвиг, дочерью владельца пансиона, которую он встретил в Цюрихе, когда учился в Федеральном технологическом институте. Не имея собственных детей, супруги в 1881 году удочерили шестилетнюю Берту, дочь брата Рентгена.
В 1875 году Рентген стал полным (действительным) профессором физики Сельскохозяйственной академии в Гогенхейме (Германия), а в 1876 году вернулся в Страсбург, чтобы приступить там к чтению курса теоретической физики.
Экспериментальные исследования, проведённые Рентгеном в Страсбурге, касались разных областей физики, таких как теплопроводность кристаллов и электромагнитное вращение плоскости поляризации света в газах, и, по словам его биографа Отто Глазера, снискали Рентгену репутацию «тонкого классического физика-экспериментатора». В 1879 году Рентген был назначен профессором физики Гессенского университета, в котором он оставался до 1888 года, отказавшись от предложений занять кафедру физики в университетах Иены и Утрехта. В 1888 году он возвращается в Вюрцбургский университет в качестве профессора физики и директора Физического института, где продолжает вести экспериментальные исследования широкого круга проблем, в т. ч. сжимаемости воды и электрических свойств кварца.
В 1894 году, когда Рентген был избран ректором университета, он приступил к экспериментальным исследованиям электрического разряда в стеклянных вакуумных трубках. Вечером 8 ноября 1895 года Рентген, как обычно, работал в своей лаборатории, занимаясь изучением катодных лучей. Около полуночи, почувствовав усталость, он собрался уходить. Окинув взглядом лабораторию, погасил свет и хотел было закрыть дверь, как вдруг заметил в темноте какое-то светящееся пятно. Оказывается, светился экран из синеродистого бария. Почему он светится? Солнце давно зашло, электрический свет не мог вызвать свечения, катодная трубка выключена, да и, вдобавок, закрыта чёрным чехлом из картона. Рентген ещё раз посмотрел на катодную трубку и упрекнул себя, ведь он забыл её выключить. Нащупав рубильник, учёный выключил трубку. Исчезло и свечение экрана; включал трубку, вновь и вновь появлялось свечение. Значит свечение вызывает катодная трубка! Но каким образом? Ведь катодные лучи задерживаются чехлом, да и воздушный метровый промежуток между трубкой и экраном для них является бронёй. Так началось рождение открытия.
Оправившись от минутного изумления. Рентген начал изучать обнаруженное явление и новые лучи, названные им икс-лучами. Оставив футляр на трубке, чтобы катодные лучи были закрыты, он с экраном в руках начал двигаться по лаборатории. Оказалось, что полтора-два метра для этих неизвестных лучей не преграда. Они легко проникают через книгу, стекло, станиоль… А когда рука учёного оказалась на пути неизвестных лучей, он увидел на экране силуэт её костей! Фантастично и жутковато! Но это только минута, ибо следующим шагом Рентгена был шаг к шкафу, где лежали фотопластинки, т. к. надо было увиденное закрепить на снимке. Так начался новый ночной эксперимент. Учёный обнаруживает, что лучи засвечивают пластинку, что они не расходятся сферически вокруг трубки, а имеют определённое направление…
Утром обессиленный Рентген ушёл домой, чтобы немного передохнуть, а потом вновь начать работать с неизвестными лучами. Пятьдесят суток (дней и ночей) были принесены на алтарь небывалого по темпам и глубине исследования. Были забыты на это время семья, здоровье, ученики и студенты. Он никого не посвящал в свою работу до тех пор, пока не разобрался во всём сам. Первым человеком, кому Рентген продемонстрировал своё открытие, была его жена Берта. Именно снимок её кисти, с обручальным кольцом на пальце, был приложен к статье Рентгена «О новом роде лучей», которую он 28 декабря 1895 году направил председателю Физико-медицинского общества университета. Статья была быстро выпущена в виде отдельной брошюры, и Рентген разослал её ведущим физикам Европы.
Первое сообщение об исследованиях Рентгена, опубликованное в местном научном журнале в конце 1895 года, вызвало огромный интерес и в научных кругах, и у широкой публики. «Вскоре мы обнаружили, – писал Рентген, – что все тела прозрачны для этих лучей, хотя и в весьма различной степени». А 20 января 1896 года американские врачи с помощью лучей Рентгена уже впервые увидели перелом руки человека. С тех пор открытие немецкого физика навсегда вошло в арсенал медицины.
Открытие Рентгена вызвало огромный интерес в научном мире. Его опыты были повторены почти во всех лабораториях мира. В Москве их повторил П. Н. Лебедев. В Петербурге изобретатель радио А. С. Попов экспериментировал с икс-лучами, демонстрировал их на публичных лекциях, получая различные рентгенограммы. В Кембридже Д. Д. Томсон немедленно применил ионизирующее действие рентгеновских лучей для изучения прохождения электричества через газы. Его исследования привели к открытию электрона.
Рентген опубликовал ещё две статьи об икс-лучах в 1896 и 1897 годах, но затем его интересы переместились в другие области. Медики сразу оценили значение рентгеновского излучения для диагностики. В то же время икс-лучи стали сенсацией, о которой раструбили по всему миру газеты и журналы, нередко подавая материалы на истерической ноте или с комическим оттенком.
Росла слава Рентгена, но учёный относился к ней с полнейшим равнодушием. Рентгена раздражала внезапно свалившаяся на него известность, отрывавшая у него драгоценное время и мешавшая дальнейшим экспериментальным исследованиям. По этой причине он стал редко выступать с публикациями статей, хотя и не прекращал это делать полностью: за свою жизнь Рентген написал 58 статей. В 1921 году, когда ему было 76 лет, он опубликовал статью об электропроводимости кристаллов.
Учёный не стал брать патент на своё открытие, отказался от почётной, высокооплачиваемой должности члена академии наук, от кафедры физики в Берлинском университете, от дворянского звания. Вдобавок ко всему он умудрился восстановить против себя самого кайзера Германии Вильгельма II.
В 1899 году, вскоре после закрытия кафедры физики в Лейпцигском университете. Рентген стал профессором физики и директором Физического института при Мюнхенском университете. Находясь в Мюнхене, Рентген узнал о том, что он стал первым лауреатом Нобелевской премии 1901 года по физике «в знак признания необычайно важных заслуг перед наукой, выразившихся в открытии замечательных лучей, названных впоследствии в его честь». При презентации лауреата К. Т. Одхнер, член Шведской королевской академии наук, сказал: «Нет сомнения в том, сколь большого успеха достигнет физическая наука, когда эта неведомая раньше форма энергии будет достаточно исследована». Затем Одхнер напомнил собравшимся о том, что рентгеновские лучи уже нашли многочисленные практические приложения в медицине.
Эту награду принял Рентген с радостью и волнением, но из-за своей застенчивости отказался от каких-либо публичных выступлений.
Хотя самим Рентгеном и другими учёными много было сделано по изучению свойств открытых лучей, однако природа их долгое время оставалась неясной. Но вот в июне 1912 года в Мюнхенском университете, где с 1900 года работал Рентген, М. Лауэ, В. Фридрихом и П. Книппингом была открыта интерференция и дифракция рентгеновских лучей, что доказывало их волновую природу. Когда обрадованные ученики прибежали к своему учителю, их ждал холодный приём. Рентген просто не поверил во все эти сказки про интерференцию; раз он сам не нашёл её в своё время, значит, её нет. Но молодые учёные уже привыкли к странностям своего шефа и решили, что сейчас лучше не спорить с ним, пройдёт некоторое время и Рентген сам признает свою неправоту, ведь у всех в памяти была свежа история с электроном.
Рентген долгое время не только не верил в существование электрона, но даже запретил в своём физическом институте упоминать это слово. И только в мае 1905 года, зная, что его русский ученик А. Ф. Иоффе на защите докторской диссертации будет говорить на запрещённую тему, он, как бы между прочим, спросил его: «А вы верите, что существуют шарики, которые расплющиваются, когда движутся?» Иоффе ответил: «Да, я уверен, что они существуют, но мы не всё о них знаем, а следовательно, надо их изучать». Достоинство великих людей не в их странностях, а в умении работать и признавать свою неправоту. Через два года в Мюнхенском физическом институте было снято «электронное табу». Более того, Рентген, словно желая искупить свою вину, пригласил на кафедру теоретической физики самого Лоренца – создателя электронной теории, но учёный не смог принять это предложение.
А дифракция рентгеновских лучей вскоре стала не просто достоянием физиков, а положила начало новому, очень сильному методу исследования структуры вещества – рентгеноструктурному анализу. В 1914 году М. Лауэ за открытие дифракции рентгеновских лучей, а в 1915 году отец и сын Брэгги за изучение структуры кристаллов с помощью этих лучей стали лауреатами Нобелевской премии по физике. В настоящее время известно, что рентгеновские лучи – это коротковолновое электромагнитное излучение с большой проникающей способностью.
Рентген был вполне удовлетворён сознанием того, что его открытие имеет столь большое значение для медицины. Помимо Нобелевской премии он был удостоен многих наград, в том числе медали Румфорда Лондонского королевского общества, золотой медали Барнарда за выдающиеся заслуги перед наукой Колумбийского университета, и состоял почётным членом и членом-корреспондентом научных обществ многих стран.
Скромному, застенчивому Рентгену, как уже говорилось, глубоко претила сама мысль о том, что его персона может привлекать всеобщее внимание. Он любил бывать на природе, много раз посещал во время отпусков Вейльхайм, где совершал восхождения на соседние баварские Альпы и охотился с друзьями. Рентген ушёл в отставку со своих постов в Мюнхене в 1920 году, вскоре после смерти жены. Он умер 10 февраля 1923 года от рака кишечника.
Закончить рассказ о Рентгене стоит словами одного из создателей советской физики А. Ф. Иоффе, хорошо знавшего великого экспериментатора: «Рентген был большой и цельный человек в науке и жизни. Вся его личность, его деятельность и научная методология принадлежат прошлому. Но только на фундаменте, созданном физиками XIX века и, в частности, Рентгеном, могла появиться современная физика».