Текст книги "100 великих научных открытий"
Автор книги: Дмитрий Самин
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 3 (всего у книги 46 страниц)
СПЕКТР СВЕТА
Декарт еще в 1629 году выяснил ход лучей в призме и в стеклах различной формы. Он даже придумал механизмы для полировки стекол. Шотландский профессор Грегори построил модель замечательного для своего времени телескопа, основанного на теории вогнутых зеркал. Таким образом, уже тогда практическая оптика достигла значительной степени совершенства и была одною из наук, наиболее занимавших тогдашний ученый мир.
К 1666 году, когда Ньютон начал оптические исследования, теория преломления весьма мало подвинулась со времен Декарта. О цветах радуги и цветах тел существовали весьма сбивчивые теории и понятия: почти все тогдашние ученые ограничивались утверждением, что тот или иной цвет представляет либо «смешение света с тьмою», либо соединение других цветов. Само собою разумеется, что такой очевидный факт, как радужное окрашивание, наблюдаемое при рассматривании предметов сквозь призму или сквозь плохое оптическое стекло, был слишком известен всем, занимавшимся оптикой. Но все были твердо убеждены в том, что всякого рода лучи при прохождении сквозь призму или сквозь увеличительное стекло преломляются совершенно одинаково. Окрашивание и радужные каймы приписывали исключительно шероховатостям поверхности призмы или стекла.
Поначалу Ньютон много работал над шлифовкою увеличительных стекол и зеркал. Эти работы познакомили его опытным путем с основными законами отражения и преломления, с которыми он был уже теоретически знаком по трактатам Декарта и Джемса Грегори. Ньютон начинает серии экспериментов, о которых впоследствии сам великий ученый подробнейшим образом рассказал в своих трудах.
«В начале 1666 года, то есть тогда, когда я был занят шлифовкой оптических стекол несферической формы, я достал треугольную стеклянную призму и решил испытать с ее помощью прославленное явление цветов. С этой целью я затемнил свою комнату и проделал в ставнях небольшое отверстие с тем, чтобы через него мог проходить тонкий луч солнечного света. Я поместил призму у места входа света так, чтобы он мог преломляться к противоположной стене. Сначала вид ярких и живых красок, получавшихся при этом, приятно развлек меня. Но через некоторое время, заставив себя присмотреться к ним более внимательно, я был удивлен их продолговатой формой, в соответствии с известными законами преломления я ожидал бы увидеть их круглыми. По бокам цвета ограничивались прямыми линиями, а на концах затухание света было настолько постепенным, что было трудно точно определить, какова же их форма; она казалась даже полукруглой.
Сравнивая длину этого цветного спектра с его шириной, я выявил, что она примерно в пять раз больше. Диспропорция была столь необычна, что возбудила во мне более чем обычное любопытство, стремление выяснить, что же может быть ее причиной. Вряд ли различная толщина стекла или граница света с темнотою могли вызывать подобный световой эффект. И я решил вначале все же изучить именно эти обстоятельства и попробовал, что произойдет, если пропускать свет через стекла различной толщины, или через отверстия различных размеров, или при установлении призмы вне помещения, так, чтобы свет мог преломляться перед тем, как он сужается отверстием. Но я выяснил, что ни одно из этих обстоятельств не является существенным. Картина цветов во всех случаях была той же самой.
Тогда я подумал: не могут ли быть причиной расширения цветов какие-либо несовершенства стекла или другие непредвиденные случайности? Чтобы проверить это, я взял другую призму, подобную первой, и разместил ее так, что свет, следуя через обе призмы, мог преломляться противоположными путями, причем вторая призма возвращала свет к тому направлению, от которого первая отклоняла его. И таким образом, думал я, обычные эффекты первой призмы будут разрушены другой, а необычные усилятся за счет многократности преломлений. Оказалось, однако, что луч, рассеиваемый первой призмой в продолговатую форму, второй призмой приводился в круглую настолько четко, как если бы он вообще ни через что не проходил. Таким образом, какова бы ни была причина удлинения, оно не является следствием случайных неправильностей.
Далее я перешел к более практическому рассмотрению того, что может произвести различие угла падения лучей, идущих от различных частей Солнца. И из опыта и расчетов стало мне очевидно, что различие углов падения лучей, идущих от различных частей Солнца, не может вызвать после их пересечения расхождения на угол заметно больший, чем тот, под которым они ранее сходились, величина же этого угла не больше 31–32 минут; поэтому нужно найти иную причину, которая могла бы объяснить появление угла в два градуса сорок девять минут.
Тогда я стал подозревать, не идут ли лучи после прохождения их через призму криволинейно, и не стремятся ли они в соответствии с их большей или меньшей криволинейностью к различным частям стены. Мое подозрение усилилось, когда я припомнил, что часто видел теннисный мяч, который при косом ударе ракеткой описывает подобную кривую линию. Ибо мячу сообщается при этом как круговое, так и поступательное движения. Та сторона мяча, где оба движения согласуются, должна с большей силой давить и толкать прилежащий воздух, чем другая сторона, и, следовательно, будет возбуждать пропорционально большее сопротивление и реакцию воздуха. И по этой самой причине, если бы лучи света были шарообразными телами (гипотеза Декарта) и при их наклонном продвижении из одной среды в другую они приобрели бы круговое движение, они должны были бы испытывать большее сопротивление от омывающего их со всех сторон эфира с той стороны, где движения согласуются, и постепенно отгибались бы в другую сторону. Однако, несмотря на всю правдоподобность этого предположения, я при проверке его не наблюдал никакой кривизны лучей. И кроме того (что было достаточно для моей цели), я наблюдал, что различие между длиной изображения и диаметром отверстия, через которое проходил свет, было пропорционально расстоянию между ними.
Постепенно устраняя эти подозрения, я пришел наконец к experimentum crucis, который был таков: я взял две доски и поместил одну из них непосредственно за призмой окна, так что свет мог следовать через небольшое отверстие, проделанное в ней для этой цели, и падать на другую доску, которую я разместил на расстоянии примерно 12 футов, причем в ней также было проделано отверстие с тем, чтобы часть света могла пройти через нее. Затем я разместил за этой второй доской другую призму таким образом, что свет, пройдя через обе эти доски, мог следовать сквозь призму, снова преломляясь в ней, прежде чем он упадет на стену. Сделав так, я взял первую призму в руку и медленно повертывал ее туда и сюда, примерно вокруг оси, так что разные части изображения, падавшего на вторую доску, могли последовательно проходить через отверстие в ней, и я мог наблюдать, на какое место стены отбрасывает лучи вторая призма. И я увидел посредством изменения этих мест, что свет, стремящийся к тому концу изображения, к которому происходило наибольшее преломление первой призмой, испытывал во второй призме значительно большее преломление, чем свет, направленный к другому концу. И таким образом была открыта истинная причина длины этого изображения, которая не может быть иной, чем то, что свет состоит из лучей различной преломляемости, которые независимо от различия их возникновения падают на различные части стены в соответствии с их степенями преломления…»
Разные неосновательные «подозрения» – так называл Ньютон свои гипотезы – навели его, наконец, на мысль сделать следующий опыт. Подобно тому, как в начале своего анализа он уединил тонкий пучок белых солнечных лучей, так теперь ему пришла на ум мысль уединить часть преломленных лучей. Это был второй и важнейший шаг в деле анализа спектра. Заметив, что в его опыте фиолетовая часть спектра всегда была наверху, ниже синяя и так далее до нижней красной, Ньютон попытался уединить лучи одного какого-нибудь цвета и исследовать их отдельно. Взяв дощечку с весьма малым отверстием, Ньютон приложил ее к той поверхности призмы, которая обращена к экрану, и, прижимая к призме, передвигал то вверх, то вниз, причем без труда достиг уединения одноцветных, например одних красных, лучей, прошедших сквозь малое отверстие в дощечке. Новый, еще более тонкий пучок чисто красных лучей подлежал дальнейшему исследованию. Пропустив красные лучи сквозь вторую призму. Ньютон увидел, что они снова преломляются, но на этот раз все почти одинаково. Ньютон думал даже, что совсем одинаково, то есть считал одноцветные лучи вполне однородными. Повторив опыт над желтыми, фиолетовыми и всеми остальными лучами, он, наконец, понял главную особенность, отличающую те или иные лучи от лучей другого цвета. Пропуская сквозь одну и ту же призму то одни красные лучи, то одни фиолетовые и так далее, он окончательно убедился, что белый свет состоит из лучей разной преломляемости и что степень преломляемости находится в тесной связи с качеством лучей, именно с их цветом. Оказалось, что красные лучи наименее преломляемы и так далее до наиболее преломляемых – фиолетовых.
Ньютон так сформулировал выводы крупнейшего открытия:
«1. Точно так же, как лучи света различаются по степени их преломления, точно так же они различаются и по их склонности проявлять тот или иной частный цвет. Цвета не являются качествами света, происходящими из-за преломлений или отражений в естественных телах (как обычно считают), но суть естественные и прирожденные качества, различные в различных лучах…
2. Одной и той же степени преломляемости всегда соответствует один и тот же цвет, а одному и тому же цвету всегда соответствует одна и та же степень преломляемости. А связь между цветами и преломляемостью очень точна и четка: лучи либо точно согласуются в обоих отношениях, либо пропорционально в них же не согласуются.
3. Образцы цвета и степень отклонения, свойственные каждому отдельному сорту лучей, не изменяются ни преломлением, ни отражением от естественных тел, ни любой ивой причиной, которую я смог наблюдать».
«Теории Ньютона делали возможным развитие физики как точной науки, – пишет в своей книге Владимир Карцев. – Она стала все больше приближаться к математике и все больше отдаляться от философии. Письмо с описанием экспериментов и выводов, посланное Ньютоном издателю „Философских трудов“, должно было перед опубликованием пройти апробацию в Королевском обществе, быть там заслушано и обсуждено. Это и произошло 8 февраля 1672 года…
…Это была первая научная статья Ньютона. Тот необычный резонанс, который получила столь небольшая по объему работа, ее громадное влияние на судьбу Ньютона и судьбу науки в целом вынуждают наших современников более внимательно отнестись к тому новому, что привнесла она в мир научного исследования.
Эта статья знаменует наступление новой науки – науки нового времени, науки, свободной от беспочвенных гипотез, опирающейся лишь на твердо установленные экспериментальные факты и на тесно связанные с ними логические рассуждения. Сейчас, в конце XX века, трудно оценить сенсационность и необычность этой маленькой статьи Ньютона. Но самые глубокие умы семнадцатого столетия быстро разглядели в небольшом письме „сумасшедшие идеи“, приводящие в конце концов к взрыву устоявшихся и привычных представлений, которые, в свою очередь, лишь недавно одержали верх над аристотелевской метафизикой».
Открытие различной преломляемости лучей послужило исходным пунктом целого ряда научных открытий. Дальнейшее развитие идеи Ньютона привело в новейшее время к открытию так называемого спектрального анализа.
ОТКРЫТИЕ КИСЛОРОДА
Удивительно, но кислород был открыт несколько раз. Первые сведения о нем встречаются уже в VIII веке в трактате китайского алхимика Мао Хоа. Китайцы представляли себе, что этот газ («йын») – составная часть воздуха, и называли его «деятельным началом»! Жителям самой большой азиатской страны было известно и то, что кислород соединяется с древесным углем, горящей серой, некоторыми металлами. Китайцы могли и получать кислород, используя соединения типа селитры.
Все эти древние сведения постепенно забылись. Лишь в XV веке о кислороде мимоходом упоминает великий Леонардо да Винчи.
Вновь его открывает в XVII веке голландец Дреббель. О нем известно очень мало. Вероятно, то был великий изобретатель и крупный ученый. Он сумел создать подводную лодку. Однако объем лодки ограничен, поэтому брать с собой воздух, состоящий в основном из азота, было невыгодно. Логичнее использовать кислород. И Дреббель получает его из селитры! Это произошло в 1620 году, более чем за сто пятьдесят лет до «официального» открытия кислорода Пристли и Шееле.
Джозеф Пристли (1733–1804) родился в Филдхеде (Йоркшир) в семье бедного суконщика. Пристли изучал теологию и даже читал проповеди в независимой от англиканской церкви протестантской общине. Это позволило ему в дальнейшем получить высшее теологическое образование в Академии в Девентри. Там Пристли кроме теологии занимался философией, естествознанием, изучил девять языков.
Поэтому, когда в 1761 году Пристли был обвинен в свободомыслии и ему запретили читать проповеди, он стал преподавателем языков в Уоррингтонском университете. Там Пристли впервые прослушал курс химии. Эта наука произвела на Пристли такое большое впечатление, что он, в тридцатилетнем возрасте будучи человеком с определенным положением, решил приступить к изучению естествознания и проведению химических экспериментов. По предложению Бенджамена Франклина, Пристли в 1767 году написал монографию «История учения об электричестве». За этот труд он был избран почетным доктором Эдинбургского университета, а позже членом Лондонского Королевского общества (1767) и иностранным почетным членом Петербургской Академии наук (1780).
С 1774 по 1799 год Пристли открыл или впервые получил в чистом виде семь газообразных соединений: закись азота, хлористый водород, аммиак, фтористый кремний, диоксид серы, оксид углерода и кислород.
Пристли удалось выделить и исследовать эти газы в чистом состоянии, поскольку он существенно улучшил прежнее лабораторное оборудование для собирания газов. Вместо воды в пневматической ванне, предложенной ранее английским ученым Стивеном Гейлсом (1727), Пристли стал использовать ртуть. Пристли независимо от Шееле открыл кислород, наблюдая выделение газа при нагревании без доступа воздуха твердого вещества, находящегося под стеклянным колпаком, с помощью сильной двояковыпуклой линзы.
В 1774 году Пристли провел опыты с оксидом ртути и суриком. Маленькую пробирку с небольшим количеством красного порошка он опустил открытым концом в ртуть и нагревал вещество сверху при помощи двояковыпуклой линзы.
Свои опыты по получению кислорода при нагревании оксида ртути Пристли впоследствии изложил в шеститомном труде «Опыты и наблюдения над различными видами воздуха». В этой работе Пристли писал: «Достав линзу с диаметром 2 дюйма, с фокусным расстоянием 20 дюймов, я начал исследовать с ее помощью, какой род воздуха выделяется из разнообразнейших веществ, естественных и искусственно приготовленных.
После того как с помощью этого прибора я проделал ряд опытов, я попытался 1 августа 1774 года выделить воздух из кальцинированной ртути и увидел тотчас, что воздух может очень быстро выделиться из нее. Меня несказанно удивило то, что свеча в этом воздухе горит необычайно ярко, и я совершенно не знал, как объяснить это явление. Тлеющая лучинка, внесенная в этот воздух, испускала яркие искры. Я обнаружил такое же выделение воздуха при нагревании свинцовой извести и сурика.
Тщетно пытался я найти объяснение этому явлению… Но ничто, что я делал до сих пор, меня так не удивило и не дало такого удовлетворения».
«Почему это открытие вызвало у Дж. Пристли такое удивление? – спрашивает Ю.И. Соловьев. – Убежденный сторонник учения о флогистоне, он рассматривал оксид ртути как простое вещество, образованное при нагревании ртути в воздухе и, следовательно, лишенное флогистона. Поэтому выделение „дефлогистированного воздуха“ из оксида ртути при нагревании казалось ему просто невозможным. Вот почему он был „так далек от понимания того, что в действительности получил“… В 1775 году он описал те свойства, которые отличают „новый воздух“ от „другого газа“ – оксида азота».
Открыв новый газ в августе 1774 года, Дж. Пристли, вместе с тем, Не имел ясного представления о его истинной природе: «Я откровенно признаюсь, что в начале опытов, о которых говорится в этой части, я был так далек от того, чтобы образовать какую-нибудь гипотезу, которая привела бы к открытиям, которые я сделал, что они показались бы мне невероятными, если бы мне о них сказали».
Исследования Пристли по химии газов, и особенно открытие им кислорода, подготовили поражение теории флогистона и наметили новые пути развития химии.
Через два месяца после получения кислорода Пристли, приехав в Париж, сообщил о своем открытии Лавуазье. Последний тотчас понял громадное значение открытия Пристли и использовал его при создании наиболее общей кислородной теории горения и опровержении теории флогистона.
Одновременно с Пристли работал Шееле. Он писал о своих приоритетах: «Исследования воздуха являются в настоящее время важнейшим предметом химии. Этот упругий флюид обладает многими особыми свойствами, изучение которых способствует новым открытиям. Удивительный огонь, этот продукт химии, показывает нам, что без воздуха он не может производиться…»
Карл Вильгельм Шееле (1742–1786) родился в семье пивовара и торговца зерном в шведском городе Штральзунде. Карл учился в Штральзунде в частной школе, но уже в 1757 году переехал в Гетеборг.
Родители Шееле не имели средств, чтобы дать высшее образование Карлу, который был уже седьмым сыном в этой большой семье. Поэтому он вынужден был стать сначала учеником аптекаря, затем уже проложить себе путь в науку многолетним самообразованием. Работая в аптеке, он достиг большого искусства в химическом эксперименте.
В одной из аптек Гетеборга Шееле освоил основы фармации и лабораторной практики. Кроме того, он усердно изучал труды химиков И. Кункеля, Н. Лемери, Г. Шталя, К. Неймана.
Проработав восемь лет в Гетеборге, Шееле переехал в Мальме, где очень скоро проявил замечательные экспериментальные способности. Там он смог по вечерам заниматься собственными исследованиями в лаборатории аптекаря, где днем готовил лекарства.
В конце апреля 1768 году Шееле переехал в Стокгольм, надеясь в столице установить близкие контакты с учеными и получить новый стимул для проведения работ. Однако в стокгольмской аптеке «Корпен» Шееле не пришлось проводить химические опыты; он занимался только приготовлением лекарств. И лишь иногда, устроившись где-нибудь на тесном подоконнике, ему удавалось проводить собственные опыты. Но даже в таких условиях Шееле сделал ряд открытий. Так, например, изучая действие солнечного света на хлорид серебра, Шееле нашел, что потемнение последнего начинается в фиолетовой части спектра и выражено там наиболее сильно.
Два года спустя Шееле переехал в Упсалу, где в университете работали такие знаменитые ученые, как ботаник Карл Линней и химик Торберн Бергман. Шееле и Бергман вскоре стали друзьями, что немало способствовало успехам в научной деятельности обоих химиков.
Шееле был одним из тех ученых, которым сопутствовала удача в их работе. Его экспериментальные исследования существенно способствовали превращению химии в науку. Он открыл кислород, хлор, марганец, барий, молибден, вольфрам, органические кислоты (винную, лимонную, щавелевую, молочную), серный ангидрид, сероводород, кислоты – плавиковую и кремнефторводо-родную, многие другие соединения. Он впервые получил газообразные аммиак и хлористый водород. Шееле также показал, что железо, медь и ртуть имеют различные степени окисления. Он выделил из жиров вещество, впоследствии названное глицерином (пропантриолом). Шееле принадлежит заслуга получения цианистоводородной (синильной) кислоты из берлинской лазури.
Наиболее значительный труд Шееле «Химический трактат о воздухе и огне» содержит его экспериментальные работы, выполненные в 1768–1773 годах.
Из этой трактата видно, что Шееле несколько раньше Пристли получил и описал свойства «огненного воздуха» (кислорода). Ученый получал кислород различными путями: нагреванием селитры, нитрата магния, перегонкой смеси селитры с серной кислотой.
«Огненный воздух», – писал Шееле, – есть тот самый, посредством которого поддерживается циркуляция крови и соков у животных и растений… Я склонен думать, что «огненный воздух» состоит из кислой тонкой материи, соединенной с флогистоном, и, вероятно, что все кислоты получили свое начало от «огненного воздуха».
Шееле объяснял полученные им результаты предположением, что теплота – соединение «огненного воздуха» (кислорода) и флогистона. Следовательно, он так же, как и М.В. Ломоносов, и Г. Кавендиш, отождествлял флогистон с водородом и думал, что при сжигании водорода в воздухе (при соединении водорода и «огненного воздуха») образуется теплота.
В 1775 году Бергман опубликовал статью об открытии Шееле «огненного воздуха» и о его теории. «Мы уже раньше отмечали, – писал Бергман, – большую силу, с которой „чистый (огненный) воздух“ удаляет флогистон из железа и меди. Азотная кислота имеет также большое сродство к этому элементу… Эти явления приписываются переселению флогистона из кислоты в воздух и легко объясняются тем, что так хорошо было доказано опытами г-на Шееле, что теплота – не что иное, как флогистон, тесно соединенный с чистым воздухом, в комбинации которых порождается полученное тело (и происходит) уменьшение прежде занимаемого объема».
Хотя обычно и говорят, что Шееле опоздал с публикацией своей статьи относительно Пристли примерно на два года, однако Бергман сообщил об открытии Шееле кислорода, по крайней мере, на три месяца раньше открытия Пристли.
Вот выдержка из предисловия Бергмана к книге Шееле:
«Химия учит, что упругая среда, которая окружает Землю, во все времена и во всех местах имеет единый состав, включающий три различных вещества, а именно хороший воздух (кислород – Прим авт.), испорченный „мефитический воздух“ (азот – Прим. авт.) и эфирную кислоту (углекислый газ – Прим. авт.). Первый Пристли назвал, не то что не правильно, но с натяжкой, „дефлогистированным воздухом“, Шееле – „огненным воздухом“, поскольку он один поддерживает огонь, в то время как два других гасят его… Я повторил, с различными изменениями, основные опыты, на которых он (Шееле) основывал свои заключения, и нашел их совершенно правильными. Тепло, огонь и свет имеют в основном одни и те же составные элементы: хороший воздух и флогистон… Из видов известных теперь веществ хороший воздух является наиболее эффективным для удаления флогистона, который, как видно, представляет собой настоящее элементарное вещество, входящее в состав многих материй. Поэтому я и поместил хороший воздух наверху, над флогистоном, в моей новой таблице сродства… В заключение я должен сказать, что этот замечательный труд бьш закончен два года тому назад, несмотря на то, что по различным причинам, о которых излишне упоминать здесь, опубликован только теперь. Следовательно, случилось так, что Пристли, не зная труда Шееле, ранее описал различные новые свойства, относящиеся к воздуху. Однако мы видим, что они отличного рода и представлены в иной связи».