355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Дмитрий Самин » 100 великих научных открытий » Текст книги (страница 19)
100 великих научных открытий
  • Текст добавлен: 26 сентября 2016, 16:37

Текст книги "100 великих научных открытий"


Автор книги: Дмитрий Самин


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 19 (всего у книги 46 страниц)

С помощью своей «нейтронной пушки» Ферми подверг бомбардировке фтор, алюминий, кремний, фосфор, хлор, железо, кобальт, серебро и йод. Все эти элементы активировались, и во многих случаях Ферми мог указать химическую природу образовавшегося радиоактивного элемента. Ему удалось этим методом активизировать 47 из 68 изученных элементов.

Воодушевленный успехом, он в сотрудничестве с Ф. Разетти и О. Д'Агостино предпринял нейтронную бомбардировку тяжелых элементов: тория и урана. «Опыты показали, что оба элемента, предварительно очищенные от обычных активных примесей, могут сильно активизироваться при бомбардировке нейтронами».

22 октября 1934 года Ферми сделал фундаментальное открытие. Поместив между источником нейтронов и активируемым серебряным цилиндром парафиновый клин, Ферми заметил, что клин не уменьшает активность нейтронов, а несколько увеличивает ее. Ферми сделал вывод, что этот эффект, по-видимому, обусловлен наличием водорода в парафине, и решил проверить, как будет влиять на активность расщепления большое количество водородсодержащих элементов. Проведя опыт сначала с парафином, потом с водой, Ферми констатировал увеличение активности в сотни раз. Опыты Ферми обнаружили огромную эффективность медленных нейтронов.

Но, помимо замечательных экспериментальных результатов, в этом же году Ферми достиг замечательных теоретических достижений. Уже в декабрьском номере 1933 года в итальянском научном журнале были опубликованы его предварительные соображения о бета-распаде. В начале 1934 года была опубликована его классическая статья «К теории бета-лучей». Авторское резюме статьи гласит: «Предлагается количественная теория бета-распада, основанная на существовании нейтрино: при этом испускание электронов и нейтрино рассматривается по аналогии с эмиссией светового кванта возбужденным атомом в теории излучения. Выведены формулы из времени жизни ядра и для формы непрерывного спектра бета-лучей; полученные формулы сравниваются с экспериментом».

Ферми в этой теории дал жизнь гипотезе нейтрино и протонно-нейтронной модели ядра, приняв также гипотезу изотонического спина, предложенную Гейзенбергом для этой модели. Опираясь на высказанные Ферми идеи, Хидеки Юкава предсказал в 1935 году существование новой элементарной частицы, известной ныне под названием пи-мезона, или пиона.

Комментируя теорию Ферми, Ф Разетти писал: «Построенная им на этой основе теория оказалась способной выдержать почти без изменения два с половиной десятилетия революционного развития ядерной физики. Можно было бы заметить, что физическая теория редко рождается в столь окончательной форме».

РЕАКЦИЯ ДЕЛЕНИЯ

В 1938 году И. Жолио-Кюри и П. Савич заметили, что в уране, активизированном по методу Ферми, присутствует элемент, сходный с лантаном. Эти опыты были повторены в том же году О. Ганом и Ф. Штрассманом, подтвердившими результаты своих французских коллег и установившими, что новый замеченный ими элемент представляет собой именно лантан.

Вместе с Ганом и Штрассманом в Институте кайзера Вильгельма в Берлине работала Лиза Мейтнер – воспитанница Венского университета, талантливый теоретик и специалист в области атомной физики. Но, будучи еврейкой немецкого происхождения, она вынуждена была бежать в Данию в Копенгаген к Нильсу Бору и Отто Фришу – другому немецкому физику.

А далее события подробно описаны в книге «Мир атома»: «В спокойной творческой атмосфере Института теоретической физики она быстро забыла тревоги и опасения прошедших дней. Теперь для нее главной снова стала проблема атомного ядра.

За два дня до своего отъезда Лиза Мейтнер получила письмо Отто Гана, в котором тот писал об исследованиях радиоактивного бария. Прочитав письмо, она инстинктивно сжала кулаки. Ей хотелось смять его и выбросить. Внутри все кипело: „Чепуха! Какая чепуха!“

Когда прошло первое волнение, она задумалась: „Если Ган утверждает, что уран превращается в барий, может, это действительно так. Он не может ошибиться. Вероятно, и Ирен Кюри была права…“ В работе других Мейтнер могла сомневаться, но в результатах Гана – нет. Значит, нейтроны вызывают какой-то новый вид превращения уранового ядра. Она взяла карандаш и стала быстро писать. Математические символы, которыми она заполняла лист, для обычного человека выглядели бы непонятно. Ядро атома урана распалось примерно на две части. В письме Ган употребил слово „раскололось“. Теперь это не так важно, важен сам факт. Можно ли понять на основе известных законов физики возможность такого расщепления? Первые же вычисления, которые она сделала, дали положительный ответ. Мейтнер почувствовала неуверенность – что, если она ошибается?»

Лиза просит проверить расчеты Отто Фриша. «Он бегло просмотрел смятые листы, потом вынул карандаш, присел на корточки и стал быстро делать расчеты.

– А ведь это замечательно и невероятно. Ты действительно права! – Фриш сунул лист в карман. – Мы возвращаемся. Надо немедленно все проверить.

Так их каникулы и завершились, не начавшись. Празднества обещали быть исключительно веселыми, но сейчас их это не интересовало. Они заперлись в комнате, где и началось одно из самых замечательных теоретических исследований. Их ждали огромные трудности. Бесконечные вычисления, сложные и трудоемкие выводы, проверка полученных результатов, сравнение с выведенными формулами и закономерностями… Они не заметили, как прошли семь дней и как наступил 1939 год. Новый год принес новую теорию. Мейтнер и Фриш впервые дали теоретическое объяснение результатов, полученных Ганом и Штрассманом. Если их выводы подтвердятся и все окажется правильным, человечество пойдет по новому пути, будет располагать новым источником энергии. Они вполне сознавали, что сделали эпохальное открытие, поэтому спешили подготовить статьи».

Статья Лизы Мейтнер и Отто Фриша, озаглавленная «Деление урана с помощью нейтронов: новый тип ядерной реакции», была отправлена в печать 16 января 1939 года и появилась в журнале «Природа» через месяц. Здесь же вскоре была напечатана еще одна их статья – «Продукты деления уранового ядра» и затем работа Фриша о результатах экспериментов, проведенных в Дании.

Фактически это явление было объяснено почти одновременно в конце 1938 – начале 1939 года несколькими физиками. Меньше чем за месяц в четырех лабораториях мира – в Копенгагене, Нью-Йорке, Вашингтоне и Париже.

О Гане и Штрассмане, Мейтнер и Фрише уже говорилось. В подземелье Колумбийского университета Джон Даннинг с двумя помощниками также осуществляют деление уранового ядра. Кроме них в лаборатории Коллеж де Франс в Париже супруги Ирен и Фредерик Жолио-Кюри с сотрудниками Павле Савичем, Хансом Халбаном и Львом Коварски пришли к тому же открытию.

Согласно этому объяснению, атом урана, подверженный бомбардировке нейтронами, испытывает новый тип расщепления, причем атом, в который попал нейтрон, раскалывается на две более или менее равные части. Этому явлению вскоре было дано название деления.

Жолио-Кюри сразу понял чрезвычайную важность этого нового типа атомного распада. В ядрах легких элементов число протонов и нейтронов примерно одинаково, а с увеличением атомного номера относительное число нейтронов увеличивается. Если в ядре урана отношение числа нейтронов к числу протонов равно 1,59, то для элементов середины периодической системы оно колеблется между 1,2 и 1,4. Значит, если атом урана распадается на две части, то общее число нейтронов в осколках деления должно для достижения устойчивости самих осколков деления стать меньше числа нейтронов, содержавшихся в исходном ядре. При делении атома урана освобождаются нейтроны, которые могут в свою очередь вызвать деление других атомов.

Таким образом, появляется возможность цепной реакции, аналогичной химическим цепным реакциям при взрыве. Ф. Перрен в том же 1939 году сделал и опубликовал первый расчет «критической массы», необходимой для того, чтобы началась цепная реакция. Правда, то была лишь предварительная оценка.

Сегодня известно, что ни при каком количестве обычного урана цепная реакция начаться не может. Нейтроны, получающиеся при делении атомов урана-235, поглощаются за счет так называемого «резонансного захвата» атомами урана-238 с образованием урана-239. Последний в результате двух последовательных распадов переходит в нептуний и плутоний. Только для таких делящихся веществ, как уран-235 и плутоний, существует критическая масса.

Расчет потери массы при делении атома урана позволил, кроме того, предвидеть, что процесс деления должен сопровождаться выделением огромной энергии в 165 Мэв.

Идеи Жолио-Кюри удалось вскоре подтвердить экспериментально. Было доказано, что ядро урана захватывает медленные нейтроны и затем делится. Нильс Бор после теоретического рассмотрения пришел к выводу, что делению подвергается не обычный уран с массой 238, а его изотоп с массой 235. В 1940 году А.О. Нир подтвердил экспериментально это предсказание Бора, обнаружив также, что другим легко делящимся атомом является атом плутония.

Идея использования атомной энергии в военных целях была выдвинута группой иностранных ученых, бежавших от фашизма в Соединенные Штаты, из которых в отчете называются Л. Сцилард, Э. Вигнер, Э. Теллер, В. Р. Вайсскопф, Э. Ферми. Этой группе удалось заинтересовать президента Соединенных Штатов Рузвельта. Эти ученые воспользовались помощью Эйнштейна, написавшего президенту письмо. В итоге Рузвельт принял решение оказать государственную поддержку этим исследованиям, и они сразу же были засекречены.

«Усилия по получению атомной энергии в больших количествах имели две различные цели: управляемое медленное освобождение энергии для промышленных нужд и создание сверхмощного взрывчатого вещества, – пишет Льоцци. – Вторая цель была совершенно безотлагательной в тот трагический период мировой истории. Однако очень скоро ученые поняли, что наиболее быстрым способом достижения второй цели является осуществление первой. Как мы уже говорили, делению подвержены атомы плутония и урана-235, которого в природном уране лишь 0,7 процента. Атомная бомба требовала огромных количеств урана-235, который очень трудно отделять. При медленном получении энергии не требуется предварительного разделения, необходимы лишь большие количества урана, и в качестве побочного продукта получается плутоний. Отсюда возникла идея „атомного котла“, названного так, возможно, из-за простоты его конструкции. Это название теперь имеет лишь исторический интерес, поскольку оно вытеснено более подходящим названием „ядерный реактор“. Первоначальным назначением атомного котла было не получение энергии, а производство плутония в количествах, необходимых для создания атомной бомбы.

Важной проблемой было уменьшение числа нейтронов, захватываемых ураном-238 за счет резонанса; они выпадают из цепной реакции, хотя и полезны как обогатители, т. е. при получении урана-239, превращающегося затем в нептуний и плутоний. Поэтому нужно было как можно скорее выводить быстрые нейтроны из массы урана, отнимать у них кинетическую энергию и вновь направлять в уран в виде тепловых нейтронов, чтобы вызвать деление урана-235. Эту функцию замедлителей могли выполнять атомы тех легких элементов, в столкновении с которыми нейтроны теряют значительную часть своей энергии, не вызывая в то же время изменения этих атомов. До сего времени найдено лишь два вещества, пригодных для этих целей: тяжелый водород (в виде тяжелой воды) и углерод. Тяжелая вода очень дорога, поэтому остановились на углероде в форме графита.

Первый атомный котел, или ядерный реактор, из чередующихся слоев урана и графита, спроектированный и сконструированный Ферми в сотрудничестве с Андерсоном, Цинном, Л. Вудзом и Г. Вейлем, начал работать 2 декабря 1942 года на теннисном корте Чикагского университета. Его мощность составляла 0,5 вт. Через десять дней она была доведена до 200 вт. Это была первая установка ядерной энергетики, ставшей теперь одной из наиболее развитых отраслей современной промышленности».

На наружной стене теннисного корта Чикагского университета установлена мемориальная доска. Надпись на доске гласит:

«Здесь 2 декабря 1942 г. человек впервые осуществил цепную реакцию и этим положил начало овладению освобожденной ядерной энергией».

Первая опытная установка позволила провести точное экспериментальное исследование процесса получения плутония. Оно привело к заключению, что этот способ дает реальную возможность изготовления плутония в количествах, достаточных для изготовления атомной бомбы. В конце 1943 года проект создания атомной бомбы вошел в стадию реализации. Первый экспериментальный взрыв был успешно произведен в 17 часов 30 минут 16 июля 1945 года на воздушной базе Аламогордо, примерно в 200 километрах от Альбукерке, в пустыне штата Нью-Мексико.

КЛАССИФИКАЦИЯ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

«Сколько элементарных частиц обнаружено до сих пор? – спрашивает в своей книге по физике Редже. – Если судить по толщине кратких справочников, где описаны их свойства и которые имеют хождение среди физиков, то несколько сотен. Многие из этих частиц собраны в семейства, похожие на семейства нуклонов или пионов. Эти семейства играют роль, сравнимую с ролью периодической системы Менделеева, столь полезной в химии. Но именно такое сходство и наталкивает на мысль, что мы занимаемся классификацией объектов, похожих на атомы, а аовсе не элементарных. Так или иначе, но уже снова начались поиски действительно элементарных составляющих вещества. К 1963 году выяснилось, что частицы следует объединять в более обширные семейства.

Древнегреческие философы приписывали атомам исключительно правильные и симметричные формы. Хотя реальные атомы весьма далеки от этого, мысль о том, что в физике понятие симметрии должно играть важную роль, осталась. Классификация частиц по семействам как раз и отражает существование какой-то симметрии в природе…»

Физика элементарных частиц в пятидесятые годы находилась в стадии формирования. Основными средствами экспериментальных исследований в этом отделе физики были ускорители, «выстреливавшие» пучок частиц в неподвижную мишень: при столкновении налетающих частиц с мишенью рождались новые частицы. С помощью ускорителей экспериментаторам удалось получить несколько новых типов элементарных частиц, помимо уже известных протонов, нейтронов и электронов. Физики-теоретики пытались найти некоторую схему, которая позволила бы классифицировать все новые частицы.

Учеными были обнаружены частицы с необычным (странным) поведением. Скорость рождения таких частиц в результате некоторых столкновений свидетельствовала о том, что их поведение определяется сильным взаимодействием, для которого характерно быстродействие. Сильное, слабое, электромагнитное и гравитационное взаимодействия образуют четыре фундаментальных взаимодействия, лежащих в основе всех явлений. Вместе с тем странные частицы распадались необычно долго, что было бы невозможно, если бы их поведение определялось сильным взаимодействием. Скорость распада странных частиц, по-видимому, указывала на то, что этот процесс определяется гораздо более слабым взаимодействием.

На решении этой труднейшей задачи и сосредоточил свое внимание Гелл-Манн.

Марри Гелл-Манн родился 15 сентября 1929 года в Нью-Йорке и был младшим сыном эмигрантов из Австрии Артура и Полин (Райхштайн) Гелл-Манн. В возрасте пятнадцати лет Марри поступил в Йельский университет. Он окончил его в 1948 году с дипломом бакалавра наук. Последующие годы он провел в аспирантуре Массачусетского технологического института. Здесь в 1951 году Гелл-Манн получил докторскую степень по физике. После годичного пребывания в Принстонском институте фундаментальных исследований (штат Нью-Джерси) Гелл-Манн начал работать в Чикагском университете с Энрико Ферми, сначала преподавателем (1952–1953), затем ассистент-профессором (1953–1954) и адъюнкт-профессором (1954–1955). В 1955 году Гелл-Манн стал адъюнкт-профессором факультета Калифорнийского технологического института.

Исходным пунктом своих построений он избрал понятие, известное под названием зарядовой независимости. Суть его состоит в определенной группировке частиц, подчеркивающей их сходство. Например, несмотря на то, что протон и нейтрон отличаются электрическим зарядом (протон имеет заряд + 1, нейтрон – 0), во всех остальных отношениях они тождественны. Следовательно, их можно считать двумя разновидностями одного и того же типа частиц, называемых нуклонами, имеющих средний заряд, или центр заряда, равный 1/2. Принято говорить, что протон и нейтрон образуют дублет. Другие частицы также могут быть включены в аналогичные дублеты или в группы из трех частиц, называемые триплетами, или в «группы», состоящие всего лишь из одной частицы, – синглеты. Общее название группы, состоящей из любого числа частиц, – мультиплет.

Все попытки сгруппировать странные частицы аналогичным образом не увенчались успехом. Разрабатывая свою схему их группировки, Гелл-Манн обнаружил, что средний заряд их мультиплетов отличается от среднего заряда нуклонов. Он пришел к выводу, что это отличие может быть фундаментальным свойством странных частиц, и предложил ввести новое квантовое свойство, названное странностью. По причинам алгебраического характера странность частицы равна удвоенной разности между средним зарядом мультиплета и средним зарядом нуклонов + 1/2. Гелл-Манн показал, что странность сохраняется во всех реакциях, в которых участвует сильное взаимодействие. Иначе говоря, суммарная странность всех частиц до сильного взаимодействия должна быть абсолютно равна суммарной странности всех частиц после взаимодействия.

Сохранение странности объясняет, почему распад таких частиц не может определяться сильным взаимодействием. При столкновении некоторых других, не странных, частиц странные частицы рождаются парами. При этом странность одной частицы компенсирует странность другой. Например, если одна частица в паре имеет странность +1, то странность другой равна -1. Именно поэтому суммарная странность не странных частиц как до, так и после столкновения равна 0. После рождения странные частицы разлетаются. Изолированная странная частица не может распадаться вследствие сильного взаимодействия, если продуктами ее распада должны быть частицы с нулевой странностью, так как такой распад нарушал бы сохранение странности. Гелл-Манн показал, что электромагнитное взаимодействие (характерное время действия которого заключено между временами сильного и слабого взаимодействий) также сохраняет странность. Таким образом, странные частицы, родившись, выживают вплоть до распада, определяемого слабым взаимодействием, которое не сохраняет странность. Свои идеи ученый опубликовал в 1953 году.

В 1961 году Гелл-Манн обнаружил, что система мультиплетов, предложенная им для описания странных частиц, может быть включена в гораздо более общую теоретическую схему, позволившую ему сгруппировать все сильно взаимодействующие частицы в «семейства». Свою схему ученый назвал восьмеричным путем (по аналогии с восемью атрибутами праведного жития в буддизме), так как некоторые частицы были сгруппированы в семейства, насчитывающие по восемь членов. Предложенная им схема классификации частиц известна также под названием восьмеричной симметрии. Вскоре независимо от Гелл-Ман-на аналогичную классификацию частиц предложил израильский физик Ювал Нееман.

Восьмеричный путь американского ученого часто сравнивают с периодической системой химических элементов Менделеева, в которой химические элементы с аналогичными свойствами сгруппированы в семейства. Как и Менделеев, который оставил в периодической таблице некоторые пустые клетки, предсказав свойства неизвестных еще элементов, Гелл-Манн оставил вакантные места в некоторых семействах частиц, предположив, какие частицы с правильным набором свойств должны заполнить «пустоты». Его теория получила частичное подтверждение в 1964 году, после открытия одной из таких частиц.

В 1963 году, находясь в качестве приглашенного профессора в Массачусетском технологическом институте, Гелл-Манн обнаружил, что детальная структура восьмеричного пути может быть объяснена, если предположить, что каждая частица, участвующая в сильном взаимодействии, состоит из триплета частиц с зарядом, составляющим дробную часть электрического заряда протона. К такому же открытию пришел и американский физик Джордж Цвейг, работавший в Европейском центре ядерных исследований. Гелл-Манн назвал частицы с дробным зарядом кварками, заимствовав это слово из романа Джеймса Джойса «Поминки по Финнегану» («Три кварка для мистера Марка!»). Кварки могут иметь заряд +2/3 или -1/3. Существуют также антикварки с зарядами -2/3 или + 1/3. Нейтрон, не имеющий электрического заряда, состоит из одного кварка с зарядом +2/3 и двух кварков с зарядом -1/3 Протон, обладающий зарядом +1, состоит из двух кварков с зарядами +2/3 и одного кварка с зарядом -1/3. Кварки с одним и тем же зарядом могут отличаться другими свойствами, а значит существует несколько типов кварков с одним и тем же зарядом. Таким образом, различные комбинации кварков позволяют описывать все сильно взаимодействующие частицы. Гелл-Манну в 1969 году была вручена Нобелевская премия по физике «за открытия, связанные с классификацией элементарных частиц и их взаимодействий». Ивар Валлер из Шведской королевской академии наук, выступая на церемонии вручения премии, отметил, что Гелл-Манн «на протяжении более чем десятилетия считается ведущим ученым в области теории элементарных частиц». По мнению Валлера, методы, предложенные им, «принадлежат к числу наиболее мощных средств дальнейших исследований по физике элементарных частиц».


    Ваша оценка произведения:

Популярные книги за неделю