355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Даниил Данин » Резерфорд » Текст книги (страница 26)
Резерфорд
  • Текст добавлен: 4 октября 2016, 02:20

Текст книги "Резерфорд"


Автор книги: Даниил Данин



сообщить о нарушении

Текущая страница: 26 (всего у книги 45 страниц)

17 мая он сам препроводил ее в редакцию. 17 июня она была зачитана в Барлингтон-хаузе. А затем увидела свет. И любопытно, что ни в том году, ни в следующем, 1910-м, никто из теоретиков – ни Эйнштейн, ни Планк, ни Лоренц, ни Рэлей, ни Дж. Дж., не говоря уже о звездах меньшей величины, – не обратил на эту публикацию никакого внимания. Одни были поглощены собственными идеями и замыслами, другие не умели изумляться слишком простым вещам, третьи не почувствовали, что время атома наконец-то пришло!

А Резерфорд?

Если бы впоследствии, весной 1911 года, журналисты догадались задать ему вопрос: «Как вам удалось понять устройство атома?», он ответил бы им прозрачными ньютоновскими словами: «Я думал об этом».

Около двух лет он думал об этом постоянно – всюду и всегда. Постоянно. Всюду. Всегда.

Но весной 1911 года журналисты не догадались задать свой традиционный вопрос. И как мы еще увидим, случилось это не по их вине. А позже подробности словно утратили значение и для оглядывающихся назад из далекого далека время сжалось в пружину, вдруг выбрасывающую великие открытия: виток к витку – не различить витков! А тут еще кажущаяся простота проблемы и действительная простота ее решения. И гипнотизирующая везучесть Резерфорда. В его биографии, написанной Робин Мак-Коун, два года превратились почти в две недели, а физическая головоломка – в тригонометрическую задачку. И даже у серьезнейшего Нормана Фезера появился «пустой год», когда в Манчестере перестали разгадывать неразгаданное, точно Резерфорд был из тех, кто останавливается на полпути.

А он просто два года «думал об этом». Всюду. Всегда.

13

Он думал об этом на палубе океанского парохода, снова – в который раз! – пересекая осеннюю Атлантику. И потом в Канаде – в холодном Виннипеге, где некогда из филантропических побуждений встречал эшелоны русских духоборов. Там назначен был очередной конгресс Британской ассоциации. Председательствовал Дж. Дж. А он, Резерфорд, был президентом секции физики и математики. Говорили о разном, но он думал о своем. И ему трудно было вынашивать эти мысли в одиночестве.

Да, он совершенно не годился для участи, о которой мечтал Эйнштейн: он не мог бы служить молчаливым смотрителем на уединенном маяке. Правда, Петр Леонидович Капица вспоминает: «Иногда только по отдельным намекам, прорывавшимся в разговоре с ним, можно было уловить, что он нечто пробовал, но у него не вышло. Он не любил говорить о проектах своих работ и охотнее говорил только о том, что уже сделано и дало результаты». Однако по всему складу его натуры, чуждой сдержанности, это не могло даваться ему легко. И намеки прорывались. И в Виннипеге, осенью 1909 года, его мысли об атоме тоже вдруг выплеснулись наружу в форме для него необычной – философической! В президентском послании к своей секции, рассказывая об опытах Гейгера – Марсдена, зачем-то обронил он туманно-многозначительную фразу:

Старое, и в большинстве случаев, несомненно, верное изречение, согласно которому два тела не могут занимать одно и то же пространство, больше не имеет силы для атомов материи при движении с достаточно высокой скоростью.

Это означало, что альфа-частицы, пронизывая вещество, летят не мимо встречных атомов, а сквозь них, временно оккупируя в полете уже занятое материей пространство. Так он выразил идею не сплошного, а как бы сквозного атома. Вероятно, это и был его первый существенный шаг в размышлениях о структуре атомных микросистем.

Обдумывал он этот шаг и в Монреале, куда отправился из Виннипега, чтобы повидаться с давними друзьями. И затем в Соединенных Штатах, где вместе с Альбертом Майкельсоном и знаменитым итальянским математиком Вико Вольтерра читал лекции для слушателей университета Кларка.

Потом – снова Атлантика и те же раздумья.

И дома, в Манчестере, думал он все о том же – то сосредоточенно, то рассеянно, но неотвязно. Гейгер и Марсден занимались уже другими вещами. И как прежде, другими проблемами занимались все его мальчики того времени – Антонов, Болтвуд, Бэйтмен, Гринвуд, Даффилд, Ивенс, Киношита, Маковер, Принг, Росси, Расс, Ройдс, Стэнсфилд, Туомиковский, Уилсон и «девочка» – мисс Уайт. Перечень проблем, составленный два года назад, не иссякал. И были десятки вопросов, решаемых каждодневно: он, Папа и Проф, должен был заниматься всем одновременно. И с утра до вечера громыхал он цепями опутывающих жизнь обязанностей. Но все равно – он неотступно думал о своем.

Он думал об этом, читая в конце ноября странно обставленную устроителями воскресную лекцию о «Взвешивании атома»: в начале исполнялись песни Шуберта, в конце – соль-мажорный квартет Гайдна. Физика атома была начинкой в музыкальном пирожке. «Нет указаний на эффективные последствия такого обхождения с атомом», – пошутил Ив. Указаний нет, но лектор был доволен: песни Шуберта напомнили ему пунгарехские вечера и мать за стареньким фортепьяно, а Гайдн – воскресную скрипку отца. Под музыку и воспоминания детства думалось не суетно – покойно и хорошо. Так, может быть, и не бесплодны были те часы?

Его мысль никогда не искала опоры в литературных источниках. Она предпочитала иметь дело прямо с природой. Он мог бы и сейчас повторить свои слова пятнадцатилетней давности: «Я не собираюсь становиться книжным червем, и это позволит мне держаться в хорошей форме». А еще важнее, что он умел забывать прочитанное и не тяготиться грузом устойчивых заблуждений. Но в то воскресенье немецкие песни и немецкая музыка могли вернуть его мысль к немецкой статье, читанной шесть лет назад еще в Монреале.

Тогда, в 1903 году, Филипп Ленард, не вызывавший у него симпатий, уже придумал теорию «пустого атома». Ленарду хотелось объяснить прохождение катодных лучей через слои металла, и он вполне резонно представил себе, что большая часть атомного пространства свободна от вещества. Остановись он на этом, его идея выдержала бы критику, хоть и не была бы еще конструктивной. Но он совершенно произвольно наполнил свой пустой атом роем вымышленных крупиц материи – динамид, каждая из которых каким-то образом составлена из заряда «+» и заряда «—». Этих динамид никто не мог обнаружить на опыте. И с ними нечего было делать для истолкования рассеяния альфа-частиц даже на малые углы. А уж для прямого отражения альфа-снарядов эти динамиды вовсе не годились из-за малости своей и нейтральности. И не. нужно припомнившуюся бесполезную конструкцию немца следовало снова забыть – теперь уже навсегда. Предстояло не придумывать атом, а наконец-то понять его!

И это было тоже шагом вперед – право обоснованно отвергнуть чужие спекуляции.

Он думал об этом в Кембридже, где побывал незадолго до рождества. На торжественном обеде в честь 25-летия директорства Дж. Дж. среди юбилейных речей старых кавендишевцев звучал и его благодарный голос. В такие минуты о несогласиях не говорят. И конечно, он не мог сказать учителю, что в последние месяцы часто ведет молчаливую полемику с ним.

Здесь, в этих стенах, одиннадцать лет назад родился на глазах Резерфорда томсоновский атом – первая атомная модель, сконструированная из недавно открытых электронов-корпускул. Тогда, в 98-м году, эта модель была еще совсем примитивна. В согласии с нею атом напоминал шарообразный кекс с изюмом: изюминками были электроны, а тестом – само атомное пространство. Ему приписано было похвальное свойство – нейтрализовать отрицательный заряд электронов, иначе атом не получился бы электрически нейтральным. По Томсону, электроны были вкраплены в «сферу с однородной положительной электризацией». Но существовала в физике теорема Ирншоу, заранее осуждавшая, как совершенно неустойчивую, любую систему из неподвижных зарядов: силы их электрического взаимодействия неизбежно развалили бы такую систему. И с 1904 года в улучшенной томсоновской модели электроны стали двигаться внутри положительной сферы.

Однако и это не делало атом Томсона правдоподобным. Его призрачная сфера оставалась загадочной. Вещественными были электроны. Но, лучше чем кто бы то ни было, Томсон знал, как ничтожна их масса. И положительную сферу нужно было набить примерно двумя тысячами этих частиц, чтобы оправдать массу даже легчайшего из атомов – водородного, чей атомный вес принимался за единицу. А между тем сам Дж. Дж., теоретически рассматривая некоторые явления в газах, показал в 1906 году, что число электронов в атомах «не очень отличается от атомного веса». За два года 2000 превратились в 1. Пришлось решить, что львиная доля массы атома связана с непонятной положительной сферой. В этом не было бы ничего дурного, если бы при этом не получалось, что вещество равномерно размазано по всему объему атома. Он становился похож на облако. И объяснить отражение атомного снаряда – альфа-частицы – от такого атома оказывалось невозможным.

Впрочем, как уверял Рэлей-младший, Томсон и сам без энтузиазма относился к своей модели. И даже в тот праздничный день критика Резерфорда его не огорчила бы. Его огорчило бы другое – то, что, кроме критики, у Резерфорда не было тогда в запасе собственных конструктивных соображений. Еще не было.

Он искал их. И все сводилось к вопросу – как же распределено заряженное вещество в несомненно сквозном атоме?

Он думал об этом в тихие дни рождества (на этот раз – тихие по сравнению с прошлогодними, «нобелевскими»), когда в доме на Уилмслоу-роуд собрались все его рисёрч-стьюденты и шла нескончаемая болтовня обо всякой всячине и он под испытующим взглядом Мэри старался говорить не громче и не дольше остальных. Его подспудные мысли – все о том же! – летели сквозь праздную беседу, как альфа-частицы сквозь атом: только чуть отклоняясь в стороны, совсем незаметно рассеиваясь.

Размышления о моделях Ленарда и Томсона были только эпизодами на его пути. И не очень существенными. В конце концов его мысли приходилось работать так, как если бы никаких атомных моделей до той поры вообще никто не придумывал. Так она и работала.

Прочной опорой для нее служило его собственное неопровержимое умозаключение, что атомы – средоточия сильных электрических полей. В принципе этого было достаточно, чтобы отражение альфа-частиц от атомов не выглядело сверхъестественным событием. Не нужно было даже предполагать, что эти внутриатомные поля сильнее, чем думалось прежде, когда речь шла о рассеянии на малые углы. Сразу напрашивался логичный вывод: отражение – суммарный эффект многих актов рассеяния. Это результат накопления малого отклоняющего действия бесчисленных атомов!.. Разве удивительно, если бегун, ворвавшийся в гущу народа, не желающего уступать ему дорогу, будет – после несчетных столкновений – выброшен из толпы в ту же сторону, откуда прибежал? Случай незаурядный, но возможный. Так ведь и в потоке альфа-частиц лишь одна из восьми тысяч претерпевает такое бедствие. Вот и объяснение чуда, похожее на правду…

Образ бегуна, затолканного толпой и постепенно растерявшего всю свою энергию, действительно годился для той доли альфа-частиц, что поглощались веществом мишени. Утратив первоначальную скорость и захватив блуждающие в металле электроны, эти неудачницы становились обычными атомами гелия. (Оттого-то в радиоактивных минералах искони накапливалась гелиевая примесь.) Хаотическое перемещение могло пригнать такие бывшие альфа-частицы и к той стороне мишени, с какой некогда они ворвались в нее. Но с отраженными альфачастицами дело обстояло иначе: они возвращались обратно, не став «бывшими» – не растратив своей колоссальной энергии.

И все-таки велик был соблазн – объяснить отражение, как результат многократного рассеяния альфа-частицы на малые углы. Среди кривых Гейгера-Марсдена одна показывала прямо, что с возрастанием толщины мишени количество отраженных частиц росло. Значит, им важно было углубляться в мишень – важно было встретить на своем пути побольше атомов. Тогда большая их доля возвращалась назад. (От мишени из двух листков золотой фольги за секунду отражались в среднем две частицы, а при толщине в шесть листков – пять частиц…) Действительно, складывалось впечатление, что эффект накапливается: пронизывая атом за атомом, удачливая частица отклоняется от своего прямого пути все ощутимей, так что атомные поля постепенно даже заворачивают ее обратно и она, описав в полете крутую кривую, появляется с той же стороны мишени, с какой влетела в нее. И чем больше атомов на пути альфа-потока, тем больше таких удачливых частиц.

И однако… Тут брала слово математика.

Теоретически капля воды на пылающей плите может замерзнуть: достаточно такой удачи, чтобы все быстрые молекулы покинули каплю одновременно; оставшиеся – объединятся в льдинку. Вот только вероятность подобной удачи столь мало отлична от нуля, что за все миллиарды лет истории нашей Галактики не появится и шанса на ее претворение в жизнь. Очень вероятно, что альфа-частица, летя сквозь тысячи атомов, в одном будет отклоняться в одну сторону, в другом – в другую, и в итоге рассеется на малый угол. Но вероятность того, что тысячи атомов, один за другим, будут поворачивать ее в угодную нам сторону, н только в эту сторону, такая вероятность почти равна нулю. И юный Марсден вместе со всеми своими потомками никогда не дождался бы этого желанного, но несбыточного события.

А оно сбывалось! Он его наблюдал – порою десятки раз в минуту. И от счета сцинцилляции уставали даже его молодые глаза. Спорить с логикой теории вероятностей было так же бессмысленно, как с лабораторными фактами. Следовало признать, что многократным – постепенным – рассеянием невозможно объяснить акты отражений альфа-частиц.

Что же оставалось?

Сегодня, издалека, все представляется совершенно элементарным. Выбора не было: понятию «многократно» противостоит понятие «однократно»; если что-то не может происходить постепенно, значит оно совершается сразу; над чем тут голову ломать?! Оставалось предположить, что альфа-частицы отражаются назад в единичных актах столкновений с атомами. Оставалось сказать, что в каждом таком событии лишь два героя: одна альфа-частица и один атом. Всякий раз это дуэт. И всякий раз. это дуэль. Атом побеждает. Альфа-частица возвращается вспять. Вот и поднят шлагбаум, чтобы двигаться дальше!

Между тем вскоре после рождественских каникул, в начале 1910 года, Гейгером была написана, а Резерфордом прочитана, одобрена и направлена в Королевское общество статья, где о различии между двумя видами рассеяния – малыми отклоненьями и отраженьями назад – говорилось так:

Сейчас не представляется полезным и обещающим дискутировать предположение, которое может быть сделано для объяснения этого различия.

Оттого-то Норман Фезер решил, что в Манчестере надолго – почти на год – забросили неблагодарную тему. «Резерфорд был поставлен в тупик», – заметил Фезер. И это, конечно, справедливо. Но только это! Нередки случаи, когда исследователи оставляют до лучших времен разработку бесперспективной проблемы: ждут новых опытных данных. Тут был иной случай. Нигде и ни разу Резерфорд не пожаловался, что ему не хватает фактов. А если бы их вправду не хватало, его мальчики не занимались бы другими делами. По крайней мере Марсден и Гейгер. Он сумел бы направить их поиски в нужную сторону. Нет, в тупик попала мысль. И тут надо было только думать, думать и снова думать. И лучших времен тут не предвиделось.

В процитированной фразе Гейгера – Резерфорда замечательна одна деталь: слово «предположение» там было написано в единственном числе. Это не стилистическая случайность. Это точность языка. Это было подчеркнутым указанием, что возможен единственный выход из тупика, да только не стоит о нем пока дискутировать, ибо ничего хорошего он не обещает впереди. Какой же выход? А уже знакомый нам – логически неизбежный: рассматривать всякий акт отражения, как итог столкновения альфа-частицы с каким-нибудь одним атомом мишени.

Так что же – стало быть, уже в начале 1910 года Резерфорд прекрасно видел поднятый шлагбаум? Конечно! Но он видел и другое: поднятый шлагбаум был нарисован на отвесной скале – он открывал дорогу, которой не было.

Оставалось думать.

И он думал.

Он думал – все о том же! – сидя за рулем четырехместного «уолслея-сиддлея», тарахтевшего по весенним дорогам Ланкашира, Дербишира, Чешира… С тех пор, как дошла его «очередь тратить деньги», лучшей игрушки он не мог бы себе завести. Тогда это была еще редкость – маститый профессор за рулем собственного автомобиля.

Но, может быть, устройство атома стало бы известно на три дня раньше если бы в страстную пятницу 1910 года на Уилмслоу-роуд, 17 не была доставлена эта самокатящаяся машина мощностью в 16 лошадиных сил. Три дня пасхи, с утра до вечера, забыв обо всех прочих обязанностях и вожделениях, мальчик с берегов пролива Кука учился управлять своим бензиновым экипажем. И под конец сообщил матери в Пунгареху, что отлично, «без единого происшествия, не задавив даже цыпленка», овладел этим искусством, показавшимся ему совсем легким. А к сведению отца добавил, что автомобиль «гораздо проще держать под контролем, чем лошадь». Для истории физики и атомного века те три дня были потеряны безвозвратно.

Но, пожалуй, упущенное наверсталось потом. Объясняя матери, зачем он купил автомашину, Резерфорд написал, что ему очень хотелось «обрести какое-нибудь средство побыстрей добираться до свежего воздуха». И не только ради маленькой Эйлин. Там, где легче дышалось, легче думалось. И еще: «Я чувствую необычную работоспособность благодаря упражнениям в автомобильном спорте». Но и это не все. За рулем естественней молчалось. И кроме того, в минуты нервных вспышек ему, как многим, помогала стать на якорь плавная скорость бесцельной езды. Так он лечил и себя и других.

Гейгер в одной короткой мемуарной заметке о Резерфорде вспомнил любопытный эпизод…У тонкостенных трубочек Баумбаха был роковой недостаток – хрупкость. Неосторожный жест – и эманация расползалась по лаборатории. Приборы начинали врать. «С типичной для него крутой решительностью Резерфорд грозил суровейшими наказаниями за такого рода преступление». Однажды он совершил его сам. Гейгер и другие сотрудники, раздосадованные вмешательством посторонней радиации в их опыты, учинили следствие и установили, что эманация выползала из кабинета шефа. Это было совсем скверно: шеф осуждению не подлежал и не на ком было отвести душу. А Резерфорд, не подозревая о своей вине, как ни в чем не бывало зашел к Гейгеру и спросил о ходе очередного эксперимента. Выбитый из колеи и тихо негодующий Гейгер вместо ответа сказал, что вести работу бесполезно, ибо здание полно эманацией, а источник ее… Резерфорд посмотрел на него удивленно и прорычал: «Отлично! Так считайте, что вы получили еще одно доказательство могущества, заключенного в этой эманации!» И вышел вон. (Конечно, Гейгер не решился написать, что шеф «прорычал», в тексте у него только скромное – «ответил»; но по духу сцены интонация этого ответа безошибочно слышится и через десятилетия.) Теперь был выбит из колеи и Резерфорд. Но скоро он снова появился в дверях. Сказал Гейгеру, – на этот раз действительно сказал, и не более, – что тот «чем-то расстроен» и ему «нужно глотнуть немножко свежего воздуха». Без промедлений он выволок его из лаборатории, усадил в свой автомобиль, и они покатили за город. «Ничто не бывало таким освежающим и таким вдохновляющим, как час в машине, проведенный наедине с Резерфордом», А Резерфорд этим способом проводил наедине с собой многие часы. Так что история атомного века, потеряв в апреле 1910 года три дня, в конце концов не прогадала.

Неотлучно думая все о том же, он, разумеется, сразу отверг нереальное предположение, будто тяжелые и стремительные альфа-частицы могут сколько-нибудь заметно рассеиваться на легоньких электронах, несомненно входящих в конструкцию атома. Автомобиль, скользящий по дороге со скоростью 25 миль в час (курьерской казалась она в те дни), не будет отброшен за обочину от соударения с недостойным препятствием.

Кажется, сделать бы тут всего один логический шаг вперед, и верное решение проблемы пришло бы само собой. Совершенно ясно: дабы в акте единичного столкновения отскочить в сторону или отразиться назад, летящей альфа-частице нужно встретить внутри сквозного атома достойное препятствие. А это в неявном виде – идея массивного заряженного атомного ядра. Так просто! Сделать же этот шаг почему-то было трудно…

Конечно, он думал о загадке атома не столь наивными образами, связанными с обиходом жизни. По давнему предрассудку ученому вообще полагается мыслить не образами, а понятиями, не метафорами, а уравнениями. Но, по-видимому, Резерфорд не знал этого предрассудка: он часто сначала «мыслил образами». Это была одна из его фарадеевских черт. И к достоверной модели атома ему помогали пробиваться, хоть и не грубо-бытовые, однако же наглядные, чувственно-осязаемые ассоциации.

– Внутри атома должны действовать ужасающие силы!

Манчестерский математик Чарльз Дарвин – внук великого сэра Чарльза Дарвина – запомнил, как Резерфорд произнес однажды эту фразу. Для учебника она бы не годилась. Но в ней звучало уже нечто новое по сравнению с прежним, строго и сдержанно отчеканенным: «Атомы – средоточия сильных электрических полей». И произнесена была эта фраза не с кафедры.

Шло традиционное чаепитие. Ежедневно, после полудня, все сотрудники лаборатории поднимались наверх – в комнату физпрактикума по радиоактивности, неподалеку от кабинета шефа, чтобы передохнуть за этим непринужденным обрядом. Чай подслащивали сахаром, печеньем и – главное – незапрограммированной беседой обо всем на свете. В отличие от томсоновских чаепитий в Кавендише тут не запрещалось говорить и о физике. Если днем шеф куда-нибудь отлучался на своем «уолслее-сиддлее», к этой церемонии он возвращался. Он любил ее. Там царили естественность и дружелюбие. Кому было что сказать, говорил, не испрашивая слова. И Резерфорд обычно с веселым оживлением выкладывал своим мальчикам то, что нынче пришло ему в голову. (Так бывало неизменно, уверяет Гейгер.) За этим-то чайным столом Резерфорд и сказал однажды об «ужасающих силах». Сказал и, как удостоверил Дарвин, сразу оставил эту тему. И в другой раз внезапно повторил ту же фразу и тотчас осекся. И в третий раз вернулся на круги своя и – замолк…

Более чем ясно: обсуждать еще не выношенную идею ему, как всегда, не хотелось. Но вынашивать ее наедине стало ему теперь еще трудней, чем прошлой осенью в Виннипеге.

Теперь тоже стояла осень. 1910 год подходил к концу. Хотя Дарвин не задатировал свое воспоминание, отнести его к более раннему времени нельзя: только осенью 1910 года Дарвин начал бывать на манчестерских чаепитиях, сменив в это время Бэйтмена на посту лабораторного математика.

Так, стало быть, даже через полтора года после завершения работы Гейгера – Марсдена атомная модель Резерфорда была еще совсем не готова? Да, перед его мысленным взором к этому времени лишь забрезжил образ могучего центрального тела в атоме: образ вещественного источника «ужасающих сил». По трем приметам строился образ этого центрального тела: оно мало по объему, раз атом почти пуст; оно несет большой заряд, если его электрическое поле способно отбросить назад альфа-частицу; оно велико по массе, поскольку в итоге силового единоборства резко изменяется не его собственное движение, а движение частицы.

Так как же выглядит атом в целом?

Он думал об этом на континенте – в сентябрьском Мюнхене, где в обществе старых друзей, Бертрама Болтвуда и Отто Хана, спокойно отдыхал, готовясь к предстоящему Всемирному радиологическому конгрессу в Брюсселе. Они ходили в знаменитую Мюнхенскую пинакотеку и говорили о радиевом стандарте. Ездили на поклон к великому органику Байеру и спорили о номенклатуре радиоэлементов. Просиживали вечера в баварских пивных и обсуждали план Словаря радиоактивности. Но все равно он думал о своем. Мысленно осматривал и ощупывал атом.

Он втайне был занят этим и в бельгийской столице – в дни самого конгресса, когда редких часов отдыха и молчания не хватало даже на сон. («Я провел в Брюсселе четыре дня, разговаривая по 18 часов из 24, так что не удивился, потеряв голос», – писал он 16 октября матери.) И с еще большим трудом, чем раньше, удерживался он в потоке непрерывного говорения от соблазна выдать коллегам и сделать предметом шумной дискуссии свои конструкторские идеи. Он знал теперь о возможном устройстве сквозного атома довольно много, но знание это было малоутешительным.

Как мнимо-развлекающийся Гамлет при встрече с актерами, он все время думал о своем. Однако не столько предвкушал мышеловку для короля, сколько чувствовал себя пойманным в мышеловку. В самом деле, невозможно отделаться от ощущения, что он снова, и на этот раз вовсе не по личному поводу, такому, как переезд из Кембриджа в Монреаль, впал в несвойственный ему гамлетизм. Только этот припадок в отличие от первого не задокументирован его собственными признаниями. (Но, пожалуй, довольно и того, что рассказал Дарвин: это ли не похоже на Гамлета – делая решительный шаг и уже произнося слова об ужасающих силах, вдруг осадить себя и замолкнуть! «Если тут перестараться или недоусердствовать, непосвященные будут смеяться, но знаток опечалится…»[8]8
  «Гамлет». Перевод Б. Пастернака.


[Закрыть]
)

Образ сквозного атома с заряженным массивным телом в центре стал мышеловкой для его конструкторской мысли потому, что немедленно потребовал ответа на вопрос: а как заряжено центральное тело – положительно или отрицательно? Простейший этот вопрос провоцировал массу неприятностей.

Для статистической картины рассеяния альфа-частиц на любые углы – малые и большие – знак заряда сердцевины атома совершенно безразличен. Если этот заряд «+», то альфа-частица, пролетая сквозь атом, отталкивается центральным телом. И отклоняется от прямого своего пути, скажем, вправо. Если знак заряда «—», то она притягивается сердцевиной атома. И отклоняется в своем полете влево. Атомов в мишени тьма. Частиц в альфа-луче множество. Отклонения во все стороны осуществляются с равной вероятностью. И если бы в опыте внезапно изменился знак заряда атомных сердцевин – был «+», а стал «—», или наоборот, – в картине рассеяния не изменилось бы ничего.

Но, может быть, отраженные частицы – рассеянные на столь большие углы, что они возвращаются от мишени назад, – давали информацию о знаке заряда центрального тела в атоме? Тоже нет. И по той же причине.

Хотя возвращение вспять – результат взаимодействия альфа-частицы с единичным атомом, она переживает это редкое событие под влиянием все тех же сил электрического отталкивания или притяжения. Такой частице просто очень повезло: ей удалось пролететь совсем близко от сердцевины одного из атомов мишени. Ведь силы взаимодействия быстро растут с уменьшением расстояния между зарядами. Когда расстояние мало, силы громадны. И если заряд сердцевины «+», она способна отбросить назад положительную частицу, осмелившуюся подлететь к ней слишком близко. А если заряд центрального тела «—»? Тогда действуют силы притяжения и начинает казаться непонятным, по какой причине альфа-частица должна повернуть обратно. Да по той же причине, по какой наша Земля, приближаясь к Солнцу, не может оторваться от него и улететь в мировое пространство. Именно силы притяжения – только не электрического, а гравитационного – заставляют планету, летящую мимо Солнца, огибать его и снова появляться по сю сторону сцены. Так и при отрицательно заряженной сердцевине атома альфачастицу заставят обогнуть ее и вернуться обратно силы притяжения. Ив говорит, что для этого случая Резерфорд рисовал себе образ кометы, по гиперболе облетающей Солнце.

Вот так и получалось, что картина рассеяния совершенно не зависела от знака заряда центрального тела. Она зависела лишь от величины этого заряда. И от массивности этого тела. И от его малости.

Малость была особенно важна. Делалась тотчас понятной редкость актов отражения. Уже не вызывало удивления, почему из восьми тысяч альфа-частиц, упавших на мишень, всего одна получала шанс пролететь настолько близко от сердцевины какого-нибудь из атомов, чтобы испытать врю мощь ее отталкивания или притяжения.

А заодно легко объяснялось, почему с утолщением мишени росло число отраженных частиц. Сделать мишень толще значило поставить на пути каждого альфа-снаряда больше атомов. Естественно, увеличивалась вероятность «попадания в цель». Но вместе с тем становилось ясно, что у толщины мишени должен быть предел, за которым число отражений уже не сможет увеличиваться. Ведь каждая отраженная частица проделывала путь обратно и на этом обратном пути снова встречала толпу атомов. Поэтому с толщиной убывала вероятность вырваться после отражения наружу. Так одна вероятность росла, а другая уменьшалась. Должно было наступать равновесие. Гейгер и Марсден действительно наблюдали его на опыте.

В общем идея маленького, но могучего центрального тела в атоме работала хорошо! Однако какой же заряд оно несло: «+» или «—»? Не зная этого, можно ли было сконструировать атомную модель?! Из двух вариантов верным мог быть один. Следовало сделать выбор.

И тут-то захлопнулась мышеловка.

Стоило допустить, что сердцевина заряжена отрицательно, как снова выползали наружу неправдоподобные черты томсоновской модели. Если в центре заряд «—», значит там сосредоточены атомные электроны. Но там же, по исходной идее, сконцентрирована основная масса атома. Стало быть, снова появлялось на свет многотысячное скопление электронов. И снова появлялась призрачная – почти невесомая – сфера с положительным зарядом, ибо надо же было как-то обеспечить нейтральность атома в целом. А при распаде радиоактивных атомов откуда брались тяжелые положительно заряженные альфачастицы?.. Смущающие и безответные вопросы обступали толпой.

Но стоило допустить, что сердцевина заряжена положительно, как возможная атомная модель вообще становилась эфемерной. На первый взгляд все получалось красиво и убедительно. Нейтральность достигалась естественно и просто: в центре тяжелый заряд «+», вокруг легкие электроны с зарядом «—». Понятно, почему электроны так легко отрываются от атомов и становятся свободными: они живут вдали от сердцевины и связь их с нею не очень прочна – ее несложно нарушить. Даже трением можно наэлектризовать многие тела. (Старые добрые школьные опыты!) И за атомный вес в такой модели несут ответственность не электроны, а центральный тяжелый положительный заряд. И становится понятно, откуда берутся при радиоактивном распаде альфа-частицы: их выбрасывает в результате каких-то внутренних процессов массивная атомная сердцевина. И наконец, легко удовлетворяются такой моделью требования теоремы Ирншоу. Конечно, электроны не покоятся вдали от центрального заряда; они вращаются вокруг него. Так, значит, в довершение всех достоинств этого атома, он еще и устойчив? Когда бы так, лучшего действительно нельзя было бы пожелать. Но в том-то и заключалась беда, что такой атом существовать не мог.


    Ваша оценка произведения:

Популярные книги за неделю