355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Чарльз Бойс » Мыльные пузыри » Текст книги (страница 6)
Мыльные пузыри
  • Текст добавлен: 5 августа 2018, 15:00

Текст книги "Мыльные пузыри"


Автор книги: Чарльз Бойс



сообщить о нарушении

Текущая страница: 6 (всего у книги 8 страниц)

Пузыри не из мыльной воды

Из всех известных материалов, пригодных для выдувания пузырей, наиболее совершенный – раствор мыла в мягкой воде или воде с глицерином. Этот раствор не только легче всего изготовить, но, кроме того, он отличается текучестью и прозрачностью. Однако, пузыри можно выдувать и из иных материалов. Наиболее известный из них – это расплавленная смола, к которой прибавляется небольшое количество (примерно одна десятая, или одна двенадцатая часть) пчелиного воска, гуттаперчи или льняного масла (последнего менее одной двенадцатой). Какова бы ни была смесь, она должна быть расплавлена, тщательно перемешана, и тогда из нее можно выдувать пузыри. Я выдувал из такого материала пузыри с помощью светильного газа. Они поднимались вверх и висели у потолка, но через день или около того они лопались, оставляя после себя в иных случаях больше грязи, чем это допустимо в жилом помещении. Плато, бравший смесь из пяти частей канифоли и одной части гуттаперчи, сплавленных при 150° Цельсия, получал более постоянные результаты. Он погружал в подобную смесь проволочные рамки, описанные на стр. 69–70, например, куб с ребром в пять сантиметров; полученные великолепные фигуры сохранялись в течение двух лет.

Интересные и забавные пузыри можно выдувать при помощи раствора сапонина. Очень небольшое количество сапонина, который бывает в продаже в виде белого порошка, растворяют в воде. Достаточно хороший раствор можно получить, нарезая тонкими пластинками плоды конского каштана и вымачивая их в очень небольшом количестве воды. Слегка желтоватая жидкость, в которой, кроме сапонина, содержатся и другие вещества, достаточно богата сапонином, чтобы из нее можно было выдувать пузыри в семь или десять сантиметров в диаметре. С помощью любого из этих растворов могут быть получены пузыри; необходимо только брать трубку с очень узким каналом, чтобы выдувание не происходило слишком быстро. Когда эти пузыри выдуваются или когда они медленно сокращаются под влиянием собственного натяжения и гонят воздух назад через трубку, тогда они не обнаруживают ничего необычного. Они только кажутся слабыми и нежными, вот и все. Но стоит только из пузыря в два сантиметра или более диаметром высосать через трубку немного воздуха, как сразу выступят заметные особенности. Пузырь этот не может быстро сокращаться и следовать за движением воздуха, как мыльный пузырь; он образует складчатый мешок (рис. 66), который, если оставить его в покое, медленно принимает сферическую форму или же превращается в шар сразу, скачком, если в него снова вдунуть воздух.


Рис. 66.

Это можно повторять много раз, и изменения, особенно если изображение пузыря в увеличенном виде отбросить на экран, кажутся очень занимательными. Если из пузыря вытянуто достаточно воздуха, складчатый пузырь приобретает остроребристую форму, и все же, вдувая воздух, его можно снова превратить в шар. Особенность раствора сапонина заключается в том, что поверхность его близка к твердому состоянию, в то время мак внутренние слои остаются жидкими.

Плато произвел тщательное исследование этого свойства некоторых жидкостей, причем в растворе сапонина оно выступает более резко, чем у какой-либо иной жидкости. Пузыри из раствора сапонина так хрупки и нежны по сравнению с мыльными пузырями, что легко может возникнуть мысль о том, что поверхностное натяжение у них меньше. В действительности же верно обратное.

Рэлей нашел, что, если выдуть два одинаковой величины пузыря, один из мыльной воды, другой из раствора сапонина, с помощью двух соединенных между собой трубок, тогда пузырь из сапонина сокращается и вдувает воздух в мыльный пузырь, показывая этим, что натяжение у пузыря из сапонина больше. Он нашел далее, что для получения равновесия диаметр мыльного пузыря надо уменьшить приблизительно до двух третей диаметра пузыря из сапонина, который, как мы видели, является неустойчивым. Это показывает, что натяжение мыльной пленки составляет около двух третей натяжения пленки сапонина. Для образования пены оказывается весьма подходящим раствор сапонина в тысячекратном по весу количестве воды. Полученная из этого раствора пена имеет то же строение, что и мыльная пена, однако, в течение первых немногих секунд наблюдается заметное различие между ними, особенно если воспользоваться хорошим увеличительным стеклом. Каждый прямоугольный элемент пленки носит цветной рисунок параллельно ее периферии. Вследствие большой твердости пленок светлые цветные пятна не могут передвигаться по ним вверх, а остаются там, где возникли, и принимают прямоугольную форму. Затем, когда соединительная пленка лопается, она оставляет свой след на остающихся пленках. Таким образом на их поверхности остается летопись их существования в виде белых поверхностей и цветных фигур, подобно тому как поперечные борозды на зубе человека рассказывают нам историю неправильностей питания в ранние годы его жизни. Когда пленка лопается, особенно если она имела большую величину, процесс ее разрывания и толчкообразное отступание края разрыва можно проследить глазом, что представляет поразительную противоположность стремительной скорости разрыва у легкоподвижной пленки мыльного раствора.

Прибавление глицерина к раствору сапонина, в количестве половины первоначального объема, в общем не влияет на образование концентрических цветных фигур, имеющих тот же вид, что и у раствора в чистой воде, зато все движения делаются еще более медленными. Переползание пленок в новое положение равновесия, когда одна из них будет разорвана, или сокращение края разорванной пленки – все эти явления становятся теперь настолько неторопливыми, что их спокойно можно наблюдать простым глазом. Одна капля мыльной воды в двадцати восьми граммах раствора сапонина совершенно уничтожает это его свойство; прибавление еще одной или двух капель мыльного раствора придает раствору сапонина все свойства мыльной воды, и пленки приобретают прежнюю текучесть. Присутствие в воде совершенно ничтожных количеств сапонина придает ей свойство пениться; для этого достаточна уже одна часть сапонина на 100 000 частей воды. Порошок сапонина легко распыляется, и тогда его можно случайно вдохнуть, что весьма неприятно, так как вызывает раздражение слизистых оболочек носа и глотки. Запах и вкус его неприятны. Его свойством давать стойкую пену пользуются при изготовлении безалкогольных напитков.

О пузырях из чистой ртути в воде мы уже говорили. Здесь мы упоминаем о них, как о примере красивых пузырей, получаемых не из мыльного раствора.

Можно также выдувать пузыри из расплавленного стекла и кварца, причем кварц будет иметь температуру, при которой сталь и огнеупорная глина становятся текучими, как вода. Однако, возможность выдувать подобные пузыри довольно равномерной толщины зависит от совершенно иного свойства, чем то, которое описано Гиббсом. Оно также ничего не имеет общего с поверхностной вязкостью, которой отличается сапонин. Способность расплавленного стекла давать пузыри такой совершенной формы зависит от его вязкости, сходной с вязкостью сахарного сиропа, причем вязкость эта возрастает по мере остывания стекла. При выдувании стекла тонкие части охлаждаются более быстро и становятся более вязкими; более текучие толстые части продолжают утончаться, тогда как тонкие части сказывают сопротивление. Этим обстоятельством и вызывается равномерная толщина стенок. Искусный стеклодув пользуется этим свойством стекла, вращая расплавленное стекло сначала для того, чтобы поддерживать везде одну температуру, а затем, когда какая– нибудь часть обнаруживает стремление растягиваться слишком сильно, он поворачивает ее вниз, в самое нижнее положение. Здесь в эту часть ударяет восходящий ток воздуха, образующийся около всякого нагретого предмета, охлаждает ее и таким образом препятствует дальнейшему ее растягиванию. Опытный стеклодув, дуя слегка в трубку или останавливаясь, поворачивая стекло и наблюдая его, а порой пользуясь опахалом, делает расплавленный комок стекла послушным орудием в своих руках. Этот процесс выдувания способен захватить зрителя. При сильном и неумелом выдуванию стекла получаются большие неправильной формы пузыри, которые нетрудно выдуть настолько тонкими, что на них можно будет наблюдать все разнообразные цвета мыльных пузырей. Лучше всего такие пузыри получаются из очень маленьких капель расплавленного стекла на конце узких трубок. Я полагаю, что пузыри из смолы можно выдувать благодаря тому же свойству, какое наблюдается у расплавленного стекла и кварца: более тонкие части их, охлаждаясь, становятся более вязкими.

Это более вероятно, чем предположение об особых условиях равновесия в поверхностном слое, вызванных сгущением на поверхности какой-либо из составляющих частей, как у мыльного пузыря.

Взболтанный с водой белок куриного яйца образует пену, но пузыри из белка можно выдувать лишь очень небольших размеров. Белок куриною яйца в соединении с желатином или клеем (обладающим подобным же свойством) скоро портится. Но достаточно ничтожных следов того или другого вещества в воде, чтобы смоченное такой водой стекло по высыхании покрылось тонким слоем, по которому можно рисовать и писать чернилами, причем чернила не расплываются. Этим способом можно воспользоваться, когда нужно быстро изготовить рисунки и картины для проекционного фонаря.

Сложные пузыри

Отдельный, парящий в воздухе пузырь представляет собой шар, и мы уже знаем, почему пузырь принимает именно эту форму. Причина заключается в том, что из всех существующих форм один только шар обладает наименьшей поверхностью при данном объеме. Другими словами, упругая мыльная пленка, стремясь сжать находящийся в ней воздух, принимает сферическую форму. Если бы пузырь имел другую форму, то при превращении в шар поверхность пленки должна была бы еще уменьшиться. Но если мы выдуем два пузыря в действительном соприкосновении друг с другом, то оба они должны принять такую форму, чтобы поверхность обоих шаровых отрезков и часть, общая обоим пузырям, которую я буду называть перегородкой, были наивозможно меньшей поверхностью, способной заключать в отдельности два данных количества воздуха. Таким образом, мыльный пузырь дает нам простой, удобный и вместе с тем наглядный путь для решения вопроса, который действительно является математической задачей. Предположим, что два пузыря, соединенные перегородкой, не равны друг другу и что рис. 67 представляет разрез через центры обоих пузырей.


Рис. 67.

На этом рисунке буквой А обозначен малый, буквой В – большой пузырь. Мы знаем, что давление внутри пузыря пропорционально его кривизне или дроби, у которой числитель – единица, а знаменатель – величина радиуса пузыря. Давление в А, под которым я понимаю избыток над атмосферным давлением, будет поэтому больше, чем в В, в том же отношении, в каком радиус В больше радиуса А. Воздух в А сдерживается от вдувания в В кривизной перегородки. Действительно, эта кривизна уравновешивает разницу давлений. Тот же самый факт может быть выражен и иными словами. Кривая и растянутая пленка dac гонит воздух пузыря А влево, и это заставляет две менее кривые, но одинаково растянутые пленки dbc и dec давить вправо для уравновешивания действия более кривой пленки dac. Ту же мысль можно выразить совсем кратко: кривизна dac равна сумме кривизны dbc и dec. Рассмотрим теперь на чертеже точки с или d, каждая из которых представляет сечение с плоскостью чертежа окружности, по которой соприкасаются два пузыря; в любой точке этой окружности встречаются три пленки, и все они стягиваются с той же самой силой. Они могут уравновешивать друг друга только в том случае, когда углы, под которыми они встречаются, равны или когда каждый угол равен 120°. Вследствие кривизны линий эти углы кажутся неравными, но я провел в точке с пунктиром касательные к двум кривым, и ясно, что они образуют друг с другом равные углы.

Условие относительно равенства углов не является независимым от условия, относящегося к кривизнам пленок; если одно из условий будет выполнено, то другое должно вытекать как следствие; это замечание справедливо и по отношению к условию, приведенному в начале этой главы, что общая поверхность пузырей должна быть наивозможно меньшей. Плато рассмотрел этот вопрос, как и все, касающееся мыльных пузырей, в своей напечатанной в Брюсселе книге «Statique des liquides» («Статика жидкостей»), которая является достойным – памятником блестящему исследователю. Он описывает в ней простое геометрическое построение, позволяющее точно вычертить оба пузыря и разделяющую их перегородку.

Из какой-либо точки С проведем три линии: Cf, Cg, Ch, образующие два угла по 60°, как показано на рис. 68.


Рис. 68.

Теперь пересечем их четвертой прямой линией, проведенной на рисунке пунктиром. Получившиеся три точки пересечения являются центрами трех окружностей, соответствующих трем возможным – пузырям. Точка пересечения средней линии является центром окружности малого пузыря, из других же двух точек та, которая ближе к С, представляет собой центр второго пузыря, а та, которая находится дальше от С, – центр перегородки. Теперь, устанавливая одну из ножек циркуля последовательно в каждой из этих точек, проводим отрезки окружностей, проходящих через С, как показано на рис. 69, на котором линии рисунка 68 воспроизведены пунктиром, дуги же окружностей – сплошными линиями.


Рис. 69.

Начертив некоторое количество таких пузырей на листе бумаги достаточно жирными линиями, чтобы лучше видеть их, наложите на них кусок стекла. Смочив стекло мыльной водой, выдуйте на нем половину пузыря, а затем половину другого пузыря в соединении с – первой. Теперь приготовим маленькую трубочку, лучше соломинку, с одним концом, залепленным сургучом, который потом прокалывается горячей булавкой, чтобы медленно выпускать воздух. С помощью этой соломинки будем осторожно вдувать в пузыри воздух или вытягивали его из них до тех пор, пока пузыри не достигнут тех же размеров, что и на чертеже, причем будем двигать стекло так, чтобы пузыри оказались как раз над соответствующим им местом чертежа. Вы увидите тогда, как пузыри автоматически разрешают нашу задачу, причем края пузырей в точности на всем своем протяжении – соответствуют сделанному вами чертежу.

Если пунктирная линия на рис. 68 пересекает Сf и Ch на равных расстояниях от С, тогда она будет пересекать Cg на половине этого расстояния от С, и мы будем иметь случай соприкосновения пузыря с пузырем двойного диаметра. В этом случае перегородка будет иметь ту же самую кривизну, что и большой пузырь, но обращенную в другую сторону, и по величине та и другая кривизны будут равны половине кривизны малого пузыря.

Если пунктирная линия рис. 68 будет пересекать Сf и Cg на равных расстояниях от С, тогда она будет параллельна Ch и никогда не пересечет ее. Оба пузыря будут тогда равны, и перегородка не будет иметь кривизны, или, другими словами, она будет совершенно плоской, и линия cd рис. 67, представляющая ее сечение с плоскостью чертежа, будет прямой линией.

Существуют и другие случаи, когда приложимы те же законы взаимной зависимости, как и закон о радиусах, находящихся в соприкосновении мыльных пузырей. В краткой форме его можно написать следующим образом:

1/А = 1/В + 1/Е;

при этом мы пользуемся буквами рис. 69 для обозначения длины радиусов соответствующих кругов. Возьмем для примера двояковыпуклое стекло или вогнутое зеркало; они обладают так называемым в оптике фокусом, расположенным на некотором расстоянии, которое обозначим буквой А; в фокусе собираются солнечные лучи, превращая наш прибор в зажигательное стекло. Если мы поместим несколько дальше фокуса пламя свечи на расстоянии В (большем, чем А), тогда линза или зеркало дадут изображение пламени на расстоянии Е, так что:

1/А =1/В +1/Е.

Возьмем еще пример. Если электрическое сопротивление проволоки данной длины, скажем в А сантиметров, равно определенной величине, тогда сопротивление двух кусков такой же проволоки в и сантиметров длиной, соединенных так, чтобы ток разделялся между ними, будет такое же, что у А, если:

1/А = 1/В + 1/Е.

Таким образом, мыльными пузырями можно воспользоваться для численного решения оптической и электрической задач.

Плато дает другое геометрическое построение, исследование которого гораздо более длинно и трудно, но которое так изящно, что я не могу воздержаться, чтобы не привести его здесь в заключение этой главы.

Когда три пузыря находятся в соприкосновении друг с другом, как показано на рис. 70, тогда, конечно, три перегородки будут встречаться одна с другой, а также и с пузырями под углами в 120°.


Рис. 70.

Центры кривизны как трех пузырей, так и трех перегородок также лежат на одной плоскости. Но тут есть и другое обстоятельство, не столь очевидное, однако, истинное: центры кривизны трех перегородок, отмеченные на рисунке тремя двойными кружками, лежат на одной прямой линии. Для тех из вас, кто сведущ в геометрии, эвклидовой или аналитической, доказать это представляет такую же интересную задачу, как и задачу о трех пузырях и трех перегородках, заключающих и разделяющих три объема воздуха, причем общая поверхность их оказывается наименьшей из всех возможных. Доказательство положения, что три пленки, вычерченные согласно построению рис. 68, обладают установленными кривизнами, значительно легче, и я рекомендую начинать именно с него. Если вам нужна руководящая нить, то проведите из точки, где пунктирная линия пересекает Cg, линию, параллельную Сf, и разберите, чтó теперь перед вами.

Мыльные пузыри под открытым небом

Как ни красивы мыльные пузыри в комнате, они еще более выигрывают, когда их пускают на открытом воздухе; особенно красивое зрелище представляет большой пузырь, дважды отражающий небо верхней и нижней своей цветной частью. Первое, на что вы обратите внимание, это причудливое отражение предметов, воспроизводящее в сферической перспективе окружающие деревья или дома. Я посоветовал бы фотографам-любителям не пожалеть труда сфотографировать отражение какого-нибудь красивого пейзажа с поверхности мыльного пузыря. На этом снимке здания, расположенные позади камеры, окажутся посредине; расположенные по бокам будут причудливо изогнуты и искажены, тогда как группа высоких зданий впереди отразится в перевернутом виде в верхней части пузыря. Затем все это повторяется в обратном виде в нижней части пузыря, и происходит смешение двух налагающихся друг на друга картин. Изумительное впечатление производит портрет, снятый со сверкающей поверхности мыльного пузыря. Таким способом можно сфотографировать и целую группу людей, которые тесно располагаются на снимке вокруг центральной фигуры. Если желательно избежать обратного изображения, можно воспользоваться только одной половиной пузыря. Вопрос о том, как должны быть расположены пузырь, фотографическая камера и объект, я предоставляю решать любителям фотографии: это будет для них простая и вместе с тем интересная задача.

Как ни привлекательны пузыри под открытым небом, все же выдуванием их не следует, как правило, заниматься вне комнаты по двум основаниям. Редко бывает такая безветренная погода, чтобы можно было получить большие пузыри. С другой стороны, в пузыри надо вводить вместе с воздухом небольшое количество легкого газа, чтобы они не стремились ни падать, ни подниматься, а следовали каждому дуновению ветерка. Я опишу наиболее удобный способ. Выберем яркий солнечный или светлый облачный день, но при очень слабом ветре, и станем у открытого окна, где получается легкий ток воздуха по направлению от дома. Его можно в известной степени регулировать, открывая окна и двери для равномерного впуска воздуха с наветренной стороны или, если напор слишком силен, открывая окна на подветренной стороне. Наготове должна быть резиновая трубка, прикрепленная одним концом к газовому рожку. Чтобы трубка не перекручивалась, она должна быть привязана, но короткий кусок ее нужно оставить свободным, чтобы можно было придавать трубке любое направление.

Хорошо также иметь поблизости часы, чтобы слышать удары маятника.

Когда все это устроено и приготовлены трубка и мыльный раствор (лучше всего по рецепту на стр. 106), возьмем в одну руку резиновую трубку. Когда требуется, мы ее будем зажимать, чтобы предупредить истечение газа. Погрузим трубку в раствор и, вынув ее оттуда, дадим газу выдуть мыльный пузырь. Когда пузырь станет величиной с яблоко или апельсин, он, оторвавшись от трубки, не будет ни падать, ни подыматься. Подходящий размер пузыря зависит от веса жидкости в нем и от подъемной силы газа. Если конец трубки мал, то и количество захваченной жидкости невелико, и даже маленький пузырь может плавать в воздухе; если трубку соединить с другой трубкой с расширенным концом, тогда жидкости будет захвачено больше и придется выдуть большой пузырь, чтобы он мог плавать в воздухе. Нетрудно, установив газовый кран в определенном положении, установить, сколько для этой цели необходимо газа. Для этого нужно считать удары маятника во время вытекания газа и потом в надлежащий момент отрывать пузырь. При достаточном навыке число ударов маятника, найденное опытом, может служить хорошим руководством.

Если выдуть пузырь, как раз едва способный плавать, и выпустить его в окно, он полетит прочь. Если дело происходит в городе среди зданий, а не среди деревьев, тогда он может сверх ожидания сохраняться долгое время; он будет носиться в разные стороны, огибать стены, не касаясь их и удивительно ловко избегая действия вихрей; то он остановится неподвижно или почти неподвижно, то его подхватит и закрутит воздушный вихрь, растянув его в виде колбасы или даже, как мне пришлось видеть, разбив его на два или на три отдельных пузыря. Интересно также наблюдать, как долго могут летать пузыри небольшой величины сквозь завесу дождя.

Но среди деревьев их жизнь коротка: их увлекает ветром в гущу веток, и там им приходит конец. Если надувать мыльные пузыри только светильным газом, тогда пузыри, способные плавать, окажутся слишком маленькими, чтобы на них могли образоваться большие поверхности разнообразной окраски. Вдувать же большее количество газа в них нельзя, потому что иначе они сразу поднимутся вверх и исчезнут в воздушном пространстве. Выход один: вдувать в такой пузырь воздух. Вес мыльного раствора и подъемная сила газа уравновешивают друг друга; что же касается веса введенного воздуха, то он возмещается потерей веса пузыря, происходящей от увеличения в объеме. Поэтому для выдувания больших пузырей, способных только плавать, не падая вниз и не поднимаясь вверх, нужно выдуть воздухом с помощью трубки с широким раструбом пузырь и во время выдувания ввести сбоку в него смоченный мыльным раствором конец резиновой трубки, соединенной с источником газа.

Впуск газа нужно контролировать, следя за маятником. Продолжительность впуска газа здесь такая же, как прежде, но ее нужно увеличить, если взятая трубка захватывает большее количество жидкости.

Иногда удобно помещать пузырь на кольцо с рукояткой, чтобы его можно было ставить на треножник; кольцо может иметь пять или восемь сантиметров в диаметре и, конечно, предварительно смачивается раствором. Главная трудность при этом заключается в том, чтобы заставить пузырь полететь.

Правильным движением кольца будет легкое движение прямо от пузыря, но не вбок. Впрочем, практика научит этому лучше, чем любое описание. Другой способ заставить пузырь благополучно покинуть кольцо состоит в том, что вдувается другой пузырь в действительном соприкосновении с первым пузырем и кольцом. Затем заставляют малый пузырь войти в кольцо, тогда большой пузырь оторвется при ничтожном толчке. Таким образом можно выдувать и пускать отдельные пузыри с диаметром около 30 сантиметров, и хотя такие большие пузыри существуют не так долго, как малые, все же они сохраняются достаточно долго, чтобы успеть ими полюбоваться, когда они плавно проносятся в воздухе.

Если количество газа подобрано неудачно, тогда пузыри могут или медленно подниматься вверх, или опускаться. Случайно мне пришлось наблюдать пузырь, в котором не хватало легкого газа. От него оторвалась висевшая внизу капелька воды. Освободившись от лишнего груза, пузырь стал медленно подниматься и поплыл дальше. Часто случается, что от летящего пузыря отрывается капелька жидкости, и тогда замечается изменение пути, связанное с уменьшением веса.

Я уже говорил о том, что можно сделать перегородки нескольких соприкасающихся пузырей либо плоскими, либо слегка искривленными, придав соприкасающимся пузырям одинаковые или почти одинаковые размеры. С помощью поддерживающего кольца можно выдувать группы одинаковых или почти одинаковых пузырей, соединенных по два, по три, по четыре или по пяти вместе. Если угодно, можно вводить светильный газ только в один из них, и тогда он один будет поддерживать все расположенные ниже пузыри. Такие сложные пузыри еще более великолепны, чем одиночные, потому что солнечный свет, отражаясь от больших плоских поверхностей, переливается всеми оттенками драгоценных камней, что представляет поразительный контраст с более стойкими и скромными пятнами света, отражающегося от сферических поверхностей.

Другая разновидность сложных пузырей, которую можно рассматривать как крупноячеистую пену, тоже интересна, но не так красива, как только что описанные сложные пузыри. Зато ее очень нетрудно приготовить. Поместим в большой сосуд блюдце и нальем в блюдце мыльный раствор. Затем поместим конец резиновой трубки неглубоко под поверхностью жидкости и укрепим его в этом положении. Теперь будем регулировать приток газа таким образом, чтобы поднимающиеся на поверхности пузыри имели несколько больше двух сантиметров в диаметре. Такой пузырь в отдельности, если только он не будет очень тонким, не способен подниматься вверх, и, тем более, он не в состоянии будет оторваться от поверхности жидкости. Но, когда наберется достаточное количество пузырей, образуется крупноячеистая пена и жидкость будет стекать с верхних пузырей, пока они не станут достаточно легкими, чтобы поддерживать свой собственный вес. В результате сначала образуется большая полушаровидная масса пены, а затем, по мере того как верхние части, становясь легче, начнут вытягиваться вверх, вся масса примет продолговатую форму, пока, наконец, колонна высотой, может быть, в тридцать сантиметров и приблизительно такого диаметра, как блюдце, не станет постепенно подниматься, затем оторвется и полетит прочь. Такая масса может задеть встречную стену и, потеряв часть поверхностных пузырей, отлететь в сторону в уменьшенном несколько объеме. Блюдце ставится в большой сосуд потому, что масса пены заставляет большое количество жидкости переливаться через края, и без этой предосторожности она терялась бы без пользы. Если масса пены коснется большого сосуда, то она уже не отделится так легко, и во избежание этого следует ставить блюдце не просто на дно большого сосуда, а на какую-нибудь подставку, например на стакан. Конечно, и эта масса пены обладает теми же характерными свойствами, которые были описаны на стр. 94. Здесь тоже на одной линии не встречается более трех поверхностей или более четырех поверхностей в одной точке, причем они всегда образуют между собой углы в 120°. Группы из четырех или пяти больших пузырей одинаковой величины дают совершенное воспроизведение ромбоэдрического конца ячейки пчелиных сотов.

Заслуживает внимания вопрос, сколько газа необходимо для существования пузыря данного цвета или как мал может быть пузырь определенного цвета, поддерживаемый в воздухе светильным газом. Нетрудно при помощи несложных расчетов найти эту величину. Один кубический сантиметр воздуха весит 1,3 миллиграмма. Светильный газ весит около 2/3 веса того же объема воздуха, если только в нем не содержится слишком много водяного газа; таким образом, его подъемная сила составляет около 3/5 веса того же объема воздуха. Поэтому один кубический сантиметр будет поднимать 1,3 X 3/5 миллиграмма. Это составит 0,78 миллиграмма. Сферический пузырь содержит немного больше половины кубических сантиметров по сравнению с вмещающим его (описанным около него) кубом. Множителем для превращения объема куба в объем сферы с диаметром, равным стороне куба, является число 0,5236, немного больше 0,5; или объем шара в точности равен 2/3 объема вмещающего его (описанного около него) цилиндра. Поверхность шара в точности равна боковой поверхности цилиндра, а эта поверхность составляет 0,7854, или немного более 3/4 поверхности четырех граней описанного куба. Для примера предположим, что диаметр пузыря – один сантиметр: объем описанного куба составит один кубический сантиметр, а потому объем шара с диаметром в один сантиметр составит 0,5236 кубического сантиметра. Поверхность четырех граней односантиметрового куба составляет 4 квадратных сантиметра, а это число, умноженное на 0,7854, даст 3,1416 квадратного сантиметра, что представит собой поверхность односантиметрового шара. Возьмем пленку ярко-зеленого цвета, весящую 0,05 миллиграмма на квадратный сантиметр. Тогда наш зеленый односантиметровый пузырь будет содержать 0,05 X 3,1416 миллиграмма воды, т. е. 0,16 миллиграмма. Если его наполнить светильным газом, тогда подъемная сила газа составит 0,5236 X 0,78, или 0,4080 миллиграмма.

Это несколько меньше трехкратного веса пузыря. Если бы поэтому зеленый пузырь был выдут диаметром в одну треть сантиметра вместо одного сантиметра, тогда его поверхность, а следовательно, и вес были бы уменьшены в отношении 3 X 3: 1, тогда как количество газа, а следовательно, и его подъемная сила были бы уменьшены в отношении 3 X 3 X 3: 1. Поэтому пузырь яркого яблочно-зеленого цвета с диаметром в одну треть сантиметра, наполненный светильным газом, будет плавать в воздухе.


    Ваша оценка произведения:

Популярные книги за неделю