Текст книги "Мыльные пузыри"
Автор книги: Чарльз Бойс
сообщить о нарушении
Текущая страница: 3 (всего у книги 8 страниц)
Мыльные пленки, их натяжение и кривизна
До сих пор я еще не показал на опыте, что мыльная пленка или пузырь в самом деле упруги, подобно куску растянутой резиновой перепонки.
Однако, прежде чем приступить к опытам, посмотрим сначала, с какого рода силами мы будем иметь дело. Если мы имеем чистую воду, то силы, действующие в противоположных направлениях на протяжении линии в один миллиметр, соответствуют весу в 7,7 миллиграмма. Величину эту очень легко определить измеряя высоту, на какую поднимается чистая вода в тонкой стеклянной трубочке.
Известно, что пузыри выдуваются из мыльного раствора, но не из чистой воды. Очень часто поэтому думают, что упругость и сила натяжения поверхностной пленки у мыльной воды должны быть больше чем у чистой. Однако, в действительности дело обстоит как раз наоборот, и в этом можно сразу убедиться, посмотрев, на какую высоту поднимается мыльный раствор в той же тонкой трубочке, в которой раньше поднималась вода. Оказывается, что мыльный раствор поднимается лишь на одну треть прежней высоты. Сила поверхностного натяжения у мыльного раствора немногим превосходит величину в 24 миллиграмма на один сантиметр, тогда как у воды она достигает вес личины в 7,7 миллиграмма на один миллиметр.
Мыльный пузырь образуется тонким слоем жидкости с двумя поверхностями, и каждая из них стремится сократиться с силой приблизительно в 24 миллиграмма на один сантиметр; поэтому мыльный пузырь стремится к сжатию с силой, несколько большей 48 миллиграммов на один сантиметр. Именно такова сила воздействия мыльной перепонки на предмет, к которому она прикреплена, что нетрудно показать различными способами. Самый простой, пожалуй, путь состоит в следующем. Привяжем совершенно свободно нитку поперек кольца и опустим кольцо в мыльную воду. Когда мы вынем кольцо из жидкости, окажется, что оно затянулось перепонкой, в которой наша нитка может двигаться совершенно свободно, как вы можете видеть на экране. Но стоит прорвать перепонку с одной стороны, как нить с другой стороны натянется перепонкой насколько возможно сильно и не будет висеть свободно, как прежде (рис. 18).
Рис. 18.
Вы замечаете также, что нить образует часть правильного круга, потому что именно благодаря такой форме линии на одной стороне площадь оказывается возможно большей, тогда как На другой стороне, где находится перепонка, возможно меньшей. А вот другой опыт. К другому кольцу привязывается нить, раздвоенная на небольшом протяжении посредине. Если прорвать пленку между нитями, они сразу растягиваются в стороны и образуют правильный круг (рис. 19), потому что это и есть форма, делающая площадь внутри наивозможно большей, площадь же вне его оказывается наивозможно меньшей.
Рис. 19.
Вы можете также и тут подметить, что хотя нельзя изменить форму крута, зато он может совершенно свободно двигаться внутри кольца, потому что при этом движении не создается никаких изменений в величине площади вне круга.
Теперь я произведу такой опыт. Я выдуваю пузырь и помещаю его на проволочном кольце. Затем я привешиваю к нему снизу маленькое кольцо и, чтобы лучше видеть, что случится, впускаю внутрь пузыря немного дыма. Я разрываю пленку внутри нижнего кольца, и вы видите, что дым выгоняется наружу, а подвешенное кольцо поднимается. И то и другое указывает на упругие свойства пленки. А вот еще один опыт. Я выдул пузырь на конце широкой трубки; если поднести открытий конец трубки к пламени свечи, то выходящий воздух сразу потушит пламя, что указывает на сходство мыльного пузыря с упругим растянутым мешком (рис 20).
Рис. 20.
В действительности при этом опыте тушению свечи в значительной мере способствует углекислый газ из наших легких. Но можно достичь того же результата при помощи чистого воздуха. Вы видите теперь, что вследствие упругости оболочки мыльного пузыря воздух или другой газ внутри него находится под давлением и при первой возможности стремится выйти наружу.
Поставим теперь вопрос: внутри какого пузыря воздух сдавливается сильнее – внутри большого или маленького? Попробуем решить этот вопрос путем опыта и попытаемся объяснить результат. Вот две трубки, каждая с краном. Они соединены между собою третьей трубкой, посреди которой тоже имеется кран. Сначала я выдуваю один пузырь и запираю его при помощи крана (рис. 21), а затем другой, который, в свою очередь, запирается краном.
Рис. 21.
Пузыри почти одинакового размера, но воздух не может переходить из одного в другой, потому что средний кран тоже заперт. Если давление внутри большого пузыря больше, то, когда я открою средний кран, воздух должен будет переходить из большого пузыря в малый, пока они не сравняются по величине; наоборот, если давление больше в маленьком пузыре, он будет вдувать воздух в большой, а сам будет уменьшаться, пока не исчезнет совершенно. Проверим эти соображения опытом. Вы видите сразу, что как только я открываю промежуточный кран, малый пузырь сжимается и вдувает воздух в большой, показывая, таким образом, что давление внутри маленького пузыря больше, чем внутри большого. Направления, в которых движется воздух и изменяются пузыри, указаны на рисунке стрелками. Мне хотелось бы обратить на этот опыт ваше особое внимание и просить запомнить его, потому что он является основой многого, о чем будет речь впоследствии. Чтобы запечатлеть его в вашей памяти, я хочу показать то же самое другим способом.
Вот здесь, перед фонарем, помещена трубка, изогнутая в виде дуги и наполовину наполненная водой. Левый конец этой трубки имеет продолжение, на котором можно выдуть пузырь (рис. 22).
Рис. 22.
Вы можете теперь видеть, как изменяется давление, когда размеры пузыря возрастают, так как вода в дугообразной трубочке перемещается сильнее при большом давлении и. слабее при малом. Вот теперь, когда на конце трубки находится очень маленький пузырь, давление, определяемое высотой столба воды на измерительной линейке, оказывается равным половине сантиметра. Когда пузырь увеличивается, мы видим, что давление падает, и вот, когда пузырь станет вдвое больше, давление окажется равным лишь половине прежней величины. Таким образом, оказывается верным, что чем меньше пузырь, тем больше давление. Так как перепонка всегда растянута с одной и той же силой, независимо от размеров пузыря, то ясно, что давление внутри пузыря может зависеть только от его кривизны. Когда речь идет об окружности, мы говорим, что чем она больше, тем меньше ее кривизна; отрезок маленькой окружности имеет, как мы говорим, большую кривизну, тогда как отрезок большой окружности той же длины имеет лишь малую кривизну; если бы мы взяли отрезок огромной окружности, то Не сумели бы отличить его от прямой линии и сказали бы, что у него нет кривизны вовсе. Совершенно так же обстоит дело с частью шаровой поверхности: чем больше шар, тем меньше его кривизна, и если бы шар имел величину нашей земли, т. е. около 13 000 километров в диаметре, мы не были бы в состоянии отличить небольшую часть поверхности такого шара от настоящей плоскости. Поверхность воды на земле представляет собой часть шаровой поверхности, хотя спокойная вода в небольшом озере или бассейне представляется совершенно плоской. Однако, можно убедиться, что в очень большом озере или море она оказывается искривленной. Мы видели, что в больших пузырях давление мало и кривизна мала, тогда как в маленьких пузырях давление велико и кривизна тоже большая. Давление и кривизна увеличиваются и уменьшаются одновременно. Теперь мы усвоили урок, данный нам опытом с двумя пузырями, из которых один был выдут при помощи другого.
Шар, или сфера, – не единственная форма, какую можно придать мыльному пузырю. Если поместить пузырь между двумя кольцами, его можно растягивать, пока он не примет вида круглой прямой трубки, так называемого цилиндра. Мы говорили о кривизне шара, или сферы; а какова будет кривизна цилиндра? Если смотреть сбоку на край деревянного цилиндра, поставленного на стол, то он будет представляться нам прямым, т. е. вовсе не имеющим кривизны; но если смотреть на цилиндр сверху, то конец его будет иметь вид круга; другими словами, он будет обладать определенной кривизной. Какова же в действительности кривизна поверхности цилиндра? Мы видели, что давление внутри пузыря зависит от его кривизны в том случае, когда пузырь имеет форму шара; но это верно для всяких пузырей, какой бы то ни было формы. Если нам удастся подобрать шар такого размера, чтобы воздух внутри него испытывал такое же давление, как и в цилиндрическом пузыре, тогда мы вправе будем сказать, что кривизна цилиндра равна кривизне уравновешивающего его шара.
Теперь на обоих концах короткой трубки я выдую по обыкновенному пузырю, притом нижнему пузырю придам при помощи другой трубки цилиндрическую форму, и буду вдуванием или выпусканием воздуха регулировать количество воздуха в нем, пока его стенки не станут совершенно прямыми. Вот теперь это удалось мне (рис. 23), и давление в обоих пузырях должно быть точно одинаковым, так как воздух может свободно переходить из одного в другой.
Рис. 23.
Мы видим, что поперечник шара ровно в два раза больше поперечника цилиндра. Но этот шар обладает лишь половиной кривизны, которой обладал бы шар с половинным диаметром. Отсюда мы видим, что кривизна цилиндра, равная, как мы знаем, кривизне большого шара (так как они. взаимно уравновешивают друг друга), составляет только половину кривизны шара равного диаметра, а потому давление внутри цилиндра равно только половине давления внутри шара с диаметром, равным диаметру цилиндра.
Теперь мне необходимо сделать еще шаг для разъяснения этого вопроса о кривизне. В тот момент, когда цилиндр и шар уравновешивают друг друга, я стану вдувать воздух так, чтобы шар увеличился. Что произойдет с цилиндром? Цилиндр наш, как видите, очень короткий; раздуется он тоже или случится что-нибудь другое? Вот я вдуваю воздух, и вы видите, что шар увеличился, причем давление внутри него уменьшилось; у цилиндра же появился перехват, это уже не цилиндр: его стенки вогнулись внутрь. По мере того как я вдуваю воздух и увеличиваю шар, они вгибаются все больше внутрь, но не беспредельно. Если бы я мог раздуть верхний пузырь до огромных размеров, давление внутри него стало бы ничтожно малым. Попробуем теперь совершенно и сразу уничтожить давление, просто заставив верхний пузырь лопнуть и давая таким образом свободный выход воздуху изнутри наружу. Повторим этот опыт в крупных размерах. Я беру два больших стеклянных кольца, между которыми образуется подобная же пленка, имеющая совершенно такую же форму с вогнутыми внутрь стенками (рис. 24).
Рис. 24.
Но так как внутри нет вовсе давления, то тут не должно быть и никакой кривизны, если то, что я сказал выше, правильно. Присмотримся, однако, к мыльной пленке. Кто же решится утверждать, что она не имеет кривизны? А между тем мы твердо установили, что давление и кривизна неизменно связаны друг с другом. По-видимому, мы пришли теперь к нелепому заключению. Так как давление сведено к нулю, то, как мы знаем, у поверхности не должно быть кривизны, а между тем достаточно беглого взгляда, чтобы заметить, что наша поверхность обладает кривизной, придающей ей вид элегантной фигуры с талией. Чтобы разобраться в этом, рассмотрим гипсовую модель геометрического тела, обладающего таким же перехватом.
Присмотримся к этому телу внимательнее. Я беру картонный кружок точно такого же диаметра, как и перехват нашей модели. Затем я прикладываю его ребром к перехвату (рис. 25), и вы видите, что, хотя кружок и не заполняет всей кривизны, он плотно соприкасается с частью, прилегающей к перехвату.
Рис. 25.
Далее мы обратим внимание на то, что эта часть модели при рассматривании сбоку кажется вогнутой внутрь, но она же показалась бы нам выгнутой наружу, если бы мы могли посмотреть на эту часть модели сверху. Итак, если рассматривать отдельно перехват, мы видим, что он одновременно и в одинаковой степени вогнут внутрь и выгнут наружу, в зависимости от точки зрения, с какой мы его рассматриваем. Кривизна, направленная внутрь, должна уменьшать давление внутри, кривизна же, направленная наружу, должна увеличивать его, а так как они равны, то как раз уравновешивают одна другую, и тут совсем не будет никакого давления. Если бы мы могли таким же путем исследовать пузырь с перехватом, мы убедились бы, что это справедливо не только по отношению к перехвату, но и по отношению к каждой части пузыря. Когда мы имеем дело с какой-нибудь изогнутой поверхностью, то для определения ее кривизны в какой-либо точке надо измерить кривизны вдоль двух взаимно перпендикулярных линий. Всякая кривая поверхность, подобная нашей, у которой в каждой точке эти две кривизны противоположно направлены и равны, называется поверхностью без кривизны. Таким образом, то, что казалось нелепостью, теперь разъяснилось. Наша поверхность, единственная, за исключением плоскости, поверхность без кривизны, симметричная по отношению к оси, называется катеноидом, потому что линии ее похожи, как вы непосредственно видите, на цепь, укрепленную в двух точках, a «catena» по-латыни и значит «цепь». Я привешиваю цепь к двум крючкам на горизонтальной палке и освещаю ее сильным светом так, что ее вам теперь хорошо видно (рис. 26).
Рис. 26.
Это та же самая форма, что и у боковой поверхности мыльного пузыря, образованного между двумя кольцами и открытого на концах доступу воздуха.
Может случиться, что кривизны, измеренные вдоль двух взаимно перпендикулярных линий, не равны и противоположны, как у только что рассмотренного катеноида; тогда, если поверхность имеет натяжение, подобное поверхностному натяжению воды, давление окажется бóльшим на более вогнутой стороне, причем оно прямо пропорционально разности между двумя кривизнами. Эти соображения дают нам ключ к решению проблемы о точной форме капли воды (рис. 2) или спирта. Давление внутри определенного количества жидкости возрастает постепенно сверху вниз, подобно тому как в море давление возрастает по мере опускания вглубь. Форма капли такова, что на каком-нибудь уровне полная кривизна, определенная, как было указано выше, т. е. сумма или разность кривизн, измеренных в двух взаимно перпендикулярных направлениях (сумма, если их центры лежат по одну сторону поверхности, или разность, если по обеим сторонам), пропорциональна расстоянию от уровня воды или спирта. Вода – более тяжелая жидкость, а потому капли ее должны были бы быть сами по себе меньше, но, с другой стороны, ее поверхностное натяжение превосходит поверхностное натяжение спирта, так что в результате капли воды оказываются крупнее капель спирта.
Мы нашли, что давление внутри короткого цилиндра уменьшается, если у него начинает образовываться перехват, и, наоборот, увеличивается, когда стенки цилиндра выпячиваются. Попробуем теперь уравновесить два пузыря: один с перехватом, а другой с раздутыми стенками. Как только я открываю кран и даю возможность воздуху переходить из одного пузыря в другой, раздутый пузырь перегоняет воздух в пузырь с перехватом и оба они становятся прямыми. На рис. 27 направление движения воздуха, а также стенок пузырей, обозначено стрелками.
Рис. 27.
Произведем теперь тот же самый опыт с двумя гораздо более длинными цилиндрами, у которых длина, примерно, в два или три раза больше диаметра. Вот они и готовы: один с раздутыми стенками, а другой с перехватом посредине. Я открываю кран и даю воздуху возможность переходить из одного в другой. Что же оказывается? Пузырь с перехватом сжимается и раздувает другой еще сильнее (рис. 28), пока, наконец, сам не разделится пополам.
Рис. 28.
Таким образом, он ведет себя прямо противоположно тому, как действовал короткий цилиндр. Если вы станете испытывать несколько цилиндров различной длины, вы убедитесь, что перемена эта происходит как раз у тех цилиндров, у которых длина ровно в полтора раза больше диаметра. Если теперь вы вообразите, что один из этих цилиндров соединяется концом с другим, вы увидите, что цилиндр, у которого длина в три раза превосходит диаметр, может существовать лишь мгновенье; причина в том, что, как только один конец чуть-чуть сожмется, давление здесь возрастает и узкий конец начинает вдувать воздух в широкий конец (рис. 29), пока стенки узкого конца не соприкоснутся.
Рис. 29.
Точная длина самого длинного устойчивого цилиндра немногим больше трех его диаметров. Цилиндр становится неустойчивым как раз в тот момент, когда длина его становится равной окружности, а это почти в точности соответствует величине в 3 1/7 его диаметра.
Я постепенно раздвигаю эти кольца, поддерживая приток воздуха, и вы видите, что, как только длина трубки становится приблизительно в три раза больше ее диаметра, оказывается очень трудным поддерживать ее, и вот вдруг образуется перехват ближе к одному концу и трубка разрывается, образуя два отдельных неравных пузыря.
Мыльный пузырь обладает натяжением и всегда принимает такую форму, чтобы его поверхность стала возможно меньшей, поскольку это допускается условиями, а именно – содержащимся в нем воздухом и формой твердой опоры, которая поддерживает пузырь. Очевидно, что это дает нам возможность установить, увеличивает или уменьшает данное изменение формы общую поверхность. Остановимся, например, на только что рассмотренном цилиндре, опирающемся на два кольца и содержащем достаточно воздуха; если длина его меньше 3 1/7 диаметра, тогда сужение одного конца и расширение другого увеличивают общую поверхность. Это мы знаем потому, что мыльный пузырь такой формы может существовать. Пузырь длиной больше 3 1/7 диаметра не может существовать. Следовательно, движение, ведущее к образованию на одном конце перехвата и раздутия на другом, как бы мало оно ни было, ведет к уменьшению поверхности; пузырь уже не возвратится к прежнему положению, но это уменьшение поверхности будет идти все дальше, пока пузырь не разорвется, как мы уже видели. Как раз при критической длине в 3 1/7 диаметра небольшому такому движению соответствует крайне малое изменение поверхности. Пузырь или сопротивляется с очень небольшой силой, или способствует этому движению. Такие пузыри называются очень малоустойчивыми или просто неустойчивыми. Подобный пузырь может быть использован для изучения таких малых сил, действующих на находящийся внутри него газ, каких мы не подметили бы у пузыря более стойкой формы, например у обыкновенного шарообразного мыльного пузыря. Вот тут я выдуваю сферический пузырь с помощью чистого кислорода и помещаю этот пузырь между двумя полюсами электромагнита, т. е. куска мягкого железа, который превращается в магнит только при пропускании по обвивающей его изолированной проволоке электрического тока (рис. 30).
Рис. 30.
Пузырь и магнит можно видеть на экране, и вы слышите стук выключателя, замыкающего ток. Внутри пузыря должно происходить какое-то движение, потому что кислород слабо магнитен, однако, я сомневаюсь, чтобы кому-нибудь удалось подметить это движение. А теперь, пользуясь подставкой с двумя передвигающимися кольцами, я выдуваю другой пузырь, наполненный тем же самым газом, и вытягиваю его в цилиндр с длиной, очень близкой к критической (рис. 31).
Рис. 31.
В тот момент, когда вы слышите стук выключателя, магнит действует на газ, придает ему силу преодолеть слабое сопротивление почти неустойчивого пузыря, и в мгновение, слишком короткое, чтобы процесс можно было проследить глазом, наш пузырь разрывается на два (рис. 32).
Рис. 32.
Жидкие цилиндры и струи
Представим себе теперь внезапно образовавшийся цилиндр жидкости большой длины, который предоставлен самому себе; ясно, что он не в состоянии будет сохранить эту форму. Он должен распасться на множество капель. К сожалению, в падающей струе воды изменения происходят так быстро, что простым глазом нет возможности проследить движения отдельных капель. Однако, я надеюсь показать вам двумя или тремя способами, что при этом происходит. Вы помните, что мы научились получать большие капли одной жидкости внутри другой, и таким путем нам удавалось устранить действие силы тяжести. Большие капли изменяют свою форму гораздо медленнее, чем маленькие, и потому на них гораздо удобнее наблюдать, что при этом происходит. Вот в этом стеклянном ящике у меня вода, окрашенная в синий цвет. На ее поверхности плавает керосин. Мне пришлось для этого опыта сделать керосин более тяжелым, подмешав к нему дурно пахнущую и огнеопасную жидкость – сероуглерод.
Вода лишь едва-едва тяжелее этой смеси. Погрузим в воду трубку, дадим ей наполниться и затем, подняв ее, будем медленно, по каплям, выпускать воду в керосин. Образуются крупные капли размером в двухкопеечную монету, и, когда каждая из них достигнет своей предельной величины, у нее начинает образовываться вверху шейка, которая вытягивается падающей каплей в маленький цилиндр. Вы заметите, что жидкость шейки в свою очередь собирается в маленькую капельку, которая падает сейчас же вслед за большой. Весь процесс протекает достаточно медленно, и вы можете проследить его. Если я снова наполню трубку водой и быстро выну ее из жидкости, то вслед за трубкой вытягивается водяной цилиндр, который разбивается на шары, как вы легко можете видеть (рис. 33).
Рис. 33.
Теперь мне хотелось бы показать вам, пользуясь готовым прибором, как внутри керосиновой смеси вы можете выдуть пузыри из воды, и некоторые из них, как вы увидите, будут содержать другие пузыри и капли из той или иной жидкости. Одна из таких пузыревидных капель остановилась теперь в покое над более тяжелым слоем жидкости, что дает вам возможность рассмотреть ее наилучшим образом (рис. 34).
Рис. 34.
Когда я быстро вынимаю трубку из ящика, внутри остается длинный цилиндрический пузырь воды, содержащий керосин; этот цилиндрический пузырь, как это было с водяным цилиндром, медленно разбивается на сферические пузыри. Еще более пригодны для этих опытов ортотолуидин и вода. Иногда, случайно, помещая одну жидкость внутри другой, удается наблюдать красивейшие пузыри, какие только могут быть получены. Если сосуд с водой и ртутью поместить под сильно бьющую струю воды, то вода и воздух, загнанные внутрь, вызовут образование пузырей ртути, которые будут плавать по водной поверхности. Вот мне удалось получить эти пузыри в другом сосуде, где по временам в течение нескольких секунд вы видите сияющие шары чистого серебра, превосходной формы и полировки. Когда они лопаются, остается только маленький шарик ртути, однако, значительно более крупный, чем количество жидкости от мыльного пузыря того же размера. Мне удавалось получать пузыри из ртути в 2 сантиметра диаметром. Ученый, по имени Мельсенс, впервые описавший это явление в 1845 году, нашел, что верхняя часть пузыря была так тонка, что просвечивала серовато-синим светом, чего мне не удалось наблюдать. Этот опыт не удается, если его производить в свинцовой посуде или в раковине со свинцовым стоком. Нужно позаботиться о том, чтобы сосуд для опыта помещался внутри другого большого сосуда, в котором можно собрать вытекающую ртуть.
Показав, что очень большой жидкий цилиндр разбивается на капли, я перейду теперь к другой край– кости и возьму для примера чрезвычайно маленький цилиндр. Вот перед вами фотографический снимок паука в его геометрически правильных тенетах (рис. 35).
Рис. 35.
Если бы я располагал временем, я охотно рассказал бы вам, каким образом паук создает свою удивительную ткань, и вообще многое об этих удивительных существах, однако, я ограничусь только тем, что имеет непосредственное отношение к предмету нашей беседы. Вы видите здесь два рода нитей паутины: одни крепки и гладки и расходятся радиусами, другие нити идут кругами, очень упруги и покрыты мелкими капельками клейкой жидкости. На хорошей паутине около четверти миллиона таких клейких бисеринок, которые ловят мух пауку на обед. Паук изготовляет свою паутину в течение часа и обыкновенно каждый день делает новую. Он не мог бы ходить по паутине и насаживать эти капельки, даже если бы знал, как это сделать, просто потому, что у него не хватило бы времени. Здесь приходит на помощь уже известное нам свойство жидких цилиндров – разбиваться на капельки. Паук вытягивает нить паутины и вместе с тем смачивает эту нить клейкой жидкостью; частицы жидкости первоначально в самом деле имеют форму цилиндра, но такой цилиндр не может сохраняться долго и разрывается на бисеринки, что великолепно видно на фотографии, снятой с помощью микроскопа (рис. 36).
Рис. 36.
Вы видите то большие, то маленькие капли, а иногда даже замечаете между ними совсем маленькие капельки. Чтобы точно установить, какой величины в действительности эти похожие на бисер капельки, можно поместить вдоль нити линейку с делениями в одну тысячную дюйма[6]6
Тысячная доля дюйма почти точно равна 1/40 миллиметра.
[Закрыть] и сфотографировать и то и другое одновременно. Убедить вас в правильности этих соображений я могу, показав вам паутинку, которую я изготовил сам, смазав кварцевую нить соломинкой, предварительно смоченной касторовым маслом. Тут мы тоже видим то большие, то маленькие бисеринки такой же совершенной формы, как и на паутине.
И в самом деле, открыть разницу между моей искусственной и настоящей паутиной простым глазом невозможно. Вы можете сказать, что большой цилиндр воды в масле и микроскопический цилиндр, располагающийся вокруг нити паутины, – это не то же самое, что обыкновенная струя воды, и вы пожелаете убедиться, будет ли она вести себя так, как было мною описано. Следующий фотографический снимок (рис. 37), сделанный при свете мгновенной электрической искры и увеличенный в три с четвертью раза, показывает нам такой столбик воды в виде падающей водяной струи.
Рис. 37.
Сначала струя представляет собою цилиндр, который по мере падения вниз начинает образовывать перетяжки и утолщения и, наконец, отделять капли, которые вы хорошо можете рассмотреть. Капли эти вибрируют, то удлиняясь, то расширяясь, и не может быть никакого сомнения, что сверкающая часть струи, хотя и кажется непрерывной, в действительности состоит из отдельных капель, которые пролетают так быстро, что наш глаз не в состоянии уследить за ними. (Должен добавить, что по причине, которая уяснится впоследствии, в момент фотографирования струи я произвел громкий звук, свистя в этот ключ.)
В струе воды диаметром в один миллиметр образующиеся на струе шейки, как бы они ни были ничтожны, в течение каждой сороковой доли секунды углубляются на величину, в тысячу раз большую. Таким образом нетрудно понять, что такая струя воды распадается на капли, прежде чем она упадет на несколько сантиметров. Свободные водяные капли пульсируют со скоростью, которую можно установить следующим образом. Капля в 50 миллиметров диаметром совершает полное колебание в течение одной секунды. Если диаметр капли уменьшить до одной четверти прежней величины, время (период) одного колебания сократится до одной восьмой, или, если диаметр сократится до одной сотой, время одного колебания уменьшится до одной тысячной, и т. д.[7]7
Время колебания определяется выражением 1/125 X г·3/2, где r – диаметр капли, измеренной в миллиметрах.
[Закрыть]. То же самое отношение между диаметром и временем разрывания существует и у цилиндрического столбика воды. Мы сразу можем видеть, как быстро будут пульсировать капли воды таких же размеров, как капельки жидкости на нитях паутины, если изменить их форму и затем внезапно предоставить самим себе. Если предположить, что диаметр капельки достигает одной тридцать второй доли миллиметра, а в действительности он даже меньше, то он составит одну тысяча шестисотую часть диаметра капли в 50 миллиметров, которая совершает одно колебание в течение секунды. Она должна поэтому пульсировать в шестьдесят четыре тысячи раз быстрее, или шестьдесят четыре тысячи раз в секунду.
Водяные капельки малых размеров с диаметром, меньшим одной сто двадцатой доли миллиметра, должны пульсировать полмиллиона раз в секунду под одним только влиянием слабой упругой оболочки воды. Мы видим таким образам, как могущественно влияние слабой упругой перепонки воды на водяные капли, если они достаточно малы.
Теперь я устрою маленький фонтан и дам возможность падающей струе ударять в подложенный внизу лист бумаги. Вы видите сейчас и самый фонтан и его тень на экране. Вы замечаете, что вода выходит из трубочки в виде гладкого столбика, который начинает в этом месте сверкать, и вот отдельные капли барабанят на большом пространстве по бумаге (рис. 38).
Рис. 38.
Почему же капли барабанят? Вся вода вырывается в виде струи в одном и том же направлении, и все же на небольшом расстоянии отдельные капли уже перестают следовать по одному и тому же пути. Но теперь, вместо того чтобы объяснить это, а затем показывать опыты для проверки этого объяснения, я хочу отказаться от обычного порядка и показать сначала два– три опыта, которые – я думаю, вы согласитесь, – покажутся чуть ли не чудесными.
Вы видите сейчас, что струя воды разбрасывается по всем направлениям, и слышите, как капли барабанят по бумаге. Но вот я вынимаю из кармана палочку сургуча, и вдруг все переменилось, хотя я нахожусь на некотором расстоянии от фонтана и ни к чему не прикасаюсь. Вода перестает разбрасываться; она льется непрерывной струей (рис. 39) и падает на бумагу, производя громкий грохочущий звук, который напоминает шум грозового ливня.
Рис. 39.
Я подхожу немного ближе к фонтану, и вода снова разбрасывается, хотя теперь совершенно иным способом. Падающие капли теперь значительно больше прежних. Как только я прячу сургуч, струя воды приобретает прежний вид, но стоит вынуть сургуч – и вода опять льется в виде сплошной струи.
Теперь вместо сургуча я воспользуюсь коптящим пламенем, которое легко получить, если опустить кусочек ваты на палочке в бензол, а затем зажечь ее. Пока я держу пламя вдали от фонтана, не замечается никаких перемен, но в тот момент, когда я подношу пламя близко, так, чтобы вода проходила через него, струя воды перестает разбрасываться; вода стремится в виде сплошной линии и падает темной грязной струей на бумагу. Самого ничтожного количества масла, впущенного в струю воды при помощи тоненькой, как волос, трубочки, достаточно, чтобы получить тот же самый результат.
Теперь на другом конце стола я заставляю звучать камертон. Вид фонтана не изменился. Но вот я прикасаюсь к подставке камертона длинной палкой, другой конец которой прикасается к носику прибора, откуда бьет фонтан. Снова вода собирается в сплошную струю, и бумага, на которую падает вода, гудит в той же ноте, как и камертон. Если я изменяю скорость струи, вы видите, явление снова меняется, но эта струя никогда не станет похожей на струю, не подвергающуюся действию музыкального звука. Порою струя разбивается на две или на три, порою на еще большее число отдельных струй, как будто бы они выходят из нескольких трубок различного размера и притом в разных направлениях (рис. 40).