355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Чарльз Бойс » Мыльные пузыри » Текст книги (страница 1)
Мыльные пузыри
  • Текст добавлен: 5 августа 2018, 15:00

Текст книги "Мыльные пузыри"


Автор книги: Чарльз Бойс



сообщить о нарушении

Текущая страница: 1 (всего у книги 8 страниц)

Чарльз Бойс
МЫЛЬНЫЕ ПУЗЫРИ


Из предисловия автора к первому изданию

Я советую молодым людям постараться повторить все описанные здесь опыты; они увидят, что во многих случаях для этого не требуется ничего, кроме стеклянной или каучуковой трубки или других предметов, которые так же легко достать. Я думаю, что их первоначальные затруднения будут вознаграждены дальнейшим легким успехом; и если, вместо того чтобы отчаиваться при первых неудачах, они постараются повторить опыт при помощи лучших из находящихся в их распоряжении средств, то самые трудные опыты станут для них самыми интересными.

МЫЛЬНЫЕ ПУЗЫРИ И ОБРАЗУЮЩИЕ ИХ СИЛЫ

«Выдуйте мыльный пузырь и смотрите на него; вы можете заниматься, может быть, вою жизнь изучением этого пузыря, не переставая извлекать из него уроки физики».

Кельвин, «Величина атомов»

Введение

Не думаю, чтобы среди вас нашелся хоть один, кто когда-нибудь не занимался пусканием мыльных пузырей и, любуясь совершенством их формы и дивными переливами цветов, не задавался вопросом, почему с такой легкостью можно вызвать к жизни эта великолепные явления.

Надеюсь, что никому из вас еще не наскучило пускать мыльные пузыри, и я рассчитываю показать вам, что простой мыльный пузырь представляет гораздо больше поучительного, чем это часто думают.

Восхищение и удивление мыльными пузырями, которые так великолепно изобразил на своей известной картине Миллэ, я надеюсь, не исчезнут после этих лекций; я полагаю, вы сами увидите, как ваше удивление будет расти при более близком знакомстве с этими явлениями. Плато в своем знаменитом труде «Статика жидкостей» упоминает о хранившейся в парижском Лувре этрусской вазе, на которой были изображены дети, пускающие мыльные пузыри. Однако, Плато говорит, что ни у одного классического автора нет упоминания о таких развлечениях, и только два намека на них встречаются у Овидия и Марциала. Напрасно я старался разыскать эту вазу в Лувре. Мне не удалось ее найти. Возможно, что она оказалась поддельной и была удалена из коллекций музея.

Быть может, некоторые из вас пожелают узнать, почему я выбрал предметом своих бесед мыльные пузыри; охотно удовлетворю их желание. Правда, есть множество вещей, еще более удивительных и увлекательных, но силы, образующие мыльные пузыри, тесно связаны с окружающими нас повседневными явлениями. Мы не можем налить воды из кувшина или из чайника, мы не можем ничего проделать с какой бы то ни было жидкостью, чтобы не привести в действие эти силы. Ваши собственные наблюдения не раз заставят вас вспомнить о том, чтó вы услышите и увидите в этой аудитории; но – и это, быть может, важнее всего – многие из вещей, которые я намерен вам показать, настолько просты, что вы сумеете сами без всяких приборов воспроизвести их у себя дома; а это, вы увидите, гораздо интереснее и поучительнее моих лекций.

Я хотел бы коснуться здесь еще одного вопроса, а именно – для чего я вообще показываю опыты. Вы, конечно, не задумываясь, ответите, что без опытов лекции были бы очень скучны. Это, может быть, и верно, но это не единственное основание. Когда перед нами возникает какой-нибудь новый вопрос, то открываются к его разрешению два пути. Мы можем обратиться к кому-нибудь, кто знаком с этим предметом, или же поискать ответа в книгах, написанных учеными; это очень хороший путь, если при этом нам посчастливится напасть на сведущего человека или дельную книгу; но мы можем избрать и другой путь, а именно– путь собственного опыта: мы можем добиться разгадки своими силами. Опыт, или эксперимент, – это вопрос, который мы ставим природе, и она всегда готова дать нам правильный ответ, если только мы правильно ставим вопрос, т. е. если мы умеем произвести надлежащий опыт. Опыт – это не фокус, не какая-нибудь хитрая штука, которая должна поразить вас; он показывается не ради красоты и не потому, что может внести разнообразие в монотонность лекций; если некоторые из моих опытов красивы или могут сделать беседу менее скучной, тем лучше; но главное их значение не в этом: они должны дать вам возможность самим получить правильные ответы на ваши вопросы.

Упругая перепонка на поверхности жидкости

Я начну с явления, которое вы все, вероятно, видели десятки раз, не подозревая, что имеете дело с настоящим физическим опытом. Вот у меня обыкновенная кисточка, какую употребляют для рисования красками. Как сделать, чтобы волоски кисточки слиплись и образовали заостренный кончик? Вы скажете, надо кисточку смочить, и тогда ее волоски слипнутся, потому что будут мокрыми. Хорошо. Попробуем произвести опыт. Так как кисточка мала и плохо видна сидящим далеко, я помещаю ее перед фонарем, и теперь вы все видите ее в увеличенном виде на экране (рис. 1, слева). Сейчас она суха, и волоски ее видны в отдельности. Теперь я погружаю кисточку в воду, вынимаю ее, и, как мы ожидали, волоски слипаются (рис. 1, справа), потому что, как мы обыкновенно говорим, кисточка мокрая. Теперь я опускаю кисточку в воду и оставляю ее там; и что же – волоски совсем не слипаются (рис. 1, посредине), а ведь они, несомненно, мокрые, раз они находятся в воде.


Рис. 1.

Очевидно, что наше обычное объяснение этого явления не вполне точно. Этот опыт, не требующий для своего выполнения ничего, кроме кисточки и стакана воды, показывает, что волоски кисточки слипаются не только потому, что они мокрые, но еще по какой-то другой причине, которая нам еще не известна. Он показывает также, что довольно распространенное мнение, будто мы не в состоянии открыть глаза под водою, не основывается: на фактах. Часто утверждают, что, когда мы ныряем в воду с закрытыми глазами, мы не можем как следует видеть, открывая глаза под водою, потому что вода будто бы склеивает ресницы; а потому, чтобы видеть под водой, рекомендуется нырять с открытыми глазами. В действительности же ничего подобного нет; совершенно безразлично, будете ли вы нырять с открытыми или закрытыми глазами, вы можете открыть их под водою и будете видеть так же хорошо, как и в первом случае. На примере нашей кисточки мы убедились, что вода сама по себе не вызывает слипания волосков, пока кисточка находится в воде, но, как только мы вынем ее из воды, волоски слипаются. Итак, хотя этот опыт и не объяснил нам причины слипания волосков, он нам показал по крайней мере, что обычное объяснение не совсем верно.

Произведем теперь другой опыт, такой же простой, как и предыдущий. Вот у меня трубка, из которой медленно, не сплошной струей, а по капелькам, вытекает вода; каждая капля медленно нарастает, пока не достигнет известной предельной величины и не оторвется сразу. Обращаю ваше внимание на то, что всякий раз, когда капля отрывается, она имеет одну и ту же величину и одну и ту же форму. Это не может быть делом простой случайности; должна существовать какая-нибудь причина, обусловливающая предельный размер и форму капли. Почему вообще вода держится на кончике трубки? Ведь вода обладает тяжестью и стремится упасть, однако, не падает сразу; она прилипает к кончику трубки и держится на нем, пока количество ее не достигнет определенной величины, а тогда капля сразу отрывается, как будто то, что держало воду, оказалось недостаточно крепким. Один ученый тщательно вычертил в увеличенном масштабе точные формы капли при различной ее величине, и этот рисунок перед вашими глазами (рис. 2, слева).


Рис. 2.

Этот рисунок может натолкнуть на мысль, что вода как будто подвешена в упругом мешочке, и этот мешочек разрывается или отрывается, когда вес воды превосходит предел его прочности. Правда, на деле такого мешочка не существует, а все же меняющаяся форма капли сама по себе уже вызывает у нас представление об упругом, постепенно растягивающемся мешочке. Чтобы показать вам, что это вовсе не плод воображения, я сделаю следующий опыт. На треножнике я укреплю большое деревянное кольцо, которое затянуто тонкой резиновой перепонкой. Станем теперь понемногу напускать воду из трубки на эту перепонку, и вы увидите, как перепонка станет постепенно растягиваться от увеличения веса воды. Присмотритесь внимательнее, и вы увидите, что резиновая перепонка принимает как раз те формы, какие были изображены на нашем рис. 2, слева. По мере того как вес воды увеличивается, перепонка растягивается, и теперь, когда в ней содержится около ведра воды, видно, что в таком состоянии она уже не может оставаться: она напоминает каплю воды перед самым моментом ее отрывания (рис. 2, справа). Если еще немного прибавить воды, наша искусственная капля сразу меняет свою форму (рис. 3), но не отрывается, как настоящая, потому что ее удерживает резиновая перепонка.


Рис. 3.

Когда мы дошли до известной границы, она перестает растягиваться и может выдержать большое давление, не изменяя формы. Поэтому теперь она все время будет сохранять форму капли воды в самый момент ее отрывания. Теперь я стану посредством сифона понемногу удалять воду из этого упругого мешка, и капля снова начнет медленно сокращаться. Итак, в данном случае мы своими глазами видели тяжелую жидкость в упругом мешке. Обыкновенная капля воды отличается от этой искусственной капли размерами да еще тем, что ее упругий мешочек невидим. А раз две капли ведут себя почти в точности одинаковым образом, мы, естественно, можем ждать, что их форма и движения обусловливаются одной и той же причиной и что маленькую водяную капельку поддерживает нечто вроде той резиновой перепонки, какую мы только что видели.

Посмотрим теперь, какое это имеет отношение к первому опыту с кисточкой. Этот опыт показал нам, что волоски кисточки слипаются не просто потому, что они мокры; необходимо еще, чтобы кисточка была вынута из воды, или, иными словами, нужно, чтобы у нас получился поверхностный слой, или водяная оболочка, и только тогда волоски слипнутся вместе. Если мы предположим, что поверхностный слой воды подобен упругой перепонке, тогда оба опыта – с мокрой кисточкой и водяной каплей – получат свое объяснение.

Попробуем сделать другой опыт, чтобы посмотреть, не будет ли вода и в других случаях обнаруживать такие свойства, которые приводили бы нас к заключению, что у нее существует невидимая упругая перепонка.

Вот у меня прибор, устроенный следующим образом. Длинный металлический стержень пропущен через полый стеклянный шарик, прикрепленный к стержню сургучом, так что вода не может проникнуть в шарик. К нижнему концу стержня прикреплен свинцовый груз, а недалеко от верхнего конца припаяна перпендикулярно к стержню металлическая сетка. Если опустить наш аппарат в сосуд с водою, он будет плавать стоймя, причем сетка должна находиться над водою. Чтобы сделать движения аппарата более заметными, к верхнему концу стержня прикреплен бумажный флажок (рис. 4).


Рис. 4.

Теперь погрузим наш прибор так, чтобы сетка оказалась под водой, и снова отпустим его. Что произойдет? Если поверхность воды в самом деле обладает свойствами упругой перепонки, она должна помешать прибору с сеткой подняться вверх в свое прежнее положение. Я отпускаю прибор, и, вместо того чтобы выскочить наверх, как было бы, если бы ему ничто не мешало, он остается в воде, удерживаемый этой перепонкой. Когда я взбалтываю воду так, чтобы освободился один угол сетки, тогда, как вы видите, аппарат немедленно выпрыгивает вверх. Вы можете убедиться, что эта перепонка на поверхности воды должна быть довольно прочной, так как, чтобы погрузить аппарат в воду, нам нужно положить на сетку гирьки весом приблизительно в 7 граммов.

К этому прибору, который был впервые описан физиком Ван дер-Менсбрюгге, я обращусь снова через несколько минут.

На поверхности чистой, прозрачной воды имеется особый упругий слой, подобный упругой перепонке. Вот у меня маленькое ситечко, сделанное из проволочной сетки, достаточно крупной, чтобы через ее отверстия могла проходить обыкновенная булавка. Между прочим, заметим, что в дне ситечка имеется около одиннадцати тысяч таких отверстий. Далее, как вам известно, чистая проволока смачивается водой, т. е., вынутая из воды, она оказывается мокрой; но бывают вещества, как, например, парафин, которые не смачиваются водой: вода не прилипает к парафину, в чем вы можете убедиться сами, погрузив парафиновую свечу в воду. В расплавленный на сковородке парафин я и опустил эту сетку, чтобы вся она покрылась тонким слоем парафина; но, чтобы парафин не залепил отверстий, я хорошенько встряхну ее, пока парафин еще не застыл. Вы видите на экране, что все отверстия, за исключением одного-двух, остались открытыми и что обыкновенная булавка свободно проходит сквозь них. Наш прибор готов. Итак, если поверхность воды обладает подобием упругой перепонки, для разрыва которой необходима сила, воде будет не так-то легко вытечь через эти отверстия, она вообще не будет протекать через них, пока ее не заставят, потому что, чтобы пройти на другую сторону, воде нужно разорвать свою упругую оболочку в каждом отверстии. Вы понимаете, что это рассуждение правильно только в том случае, если вода не может придти в тесное соприкосновение с проволокой, т. е. не смачивает ее. Я стану наливать теперь в ситечко воду, и, чтобы помешать ей ударяться о дно с большой силой, что заставило бы ее пройти насквозь, я кладу на дно маленький кусочек бумаги и лью воду на бумагу, которая и разбивает струю (рис. 5).


Рис. 5.

Вот я налил в ситечко около полстакана воды и мог бы налить еще больше. Я вынимаю бумажку – и ни одна капля не проходит насквозь. Но стоит дать толчок ситечку, вода пробьется сквозь дно и быстро выльется вся.

Если теперь вытряхнуть воду из ситечка, можно будет пустить его плавать по воде, потому что вес его недостаточен для того, чтобы разорвать перепонку, затягивающую все отверстия. Вода не проходит насквозь, и ситечко плавает на воде, хотя, как я уже говорил, в его дне имеется одиннадцать тысяч отверстий, каждое такой величины, что через него может пройти обыкновенная булавка.

Это явление было использовано для фабрикации тканей, свободно пропускающих воздух и водяной пар, но не проницаемых для воды. Сквозь кусочек такой ткани легко задуть свечу, но зато, сложенная в виде мешка, она держит налитую в нее воду.

Я хочу привести еще один пример, подтверждающий существование такой упругой перепонки на поверхности воды. Попробуйте налить воду из стакана в узкогорлую бутылку. Вы знаете, что если вы будете наливать медленно, то почти вся вода станет стекать по стенке стакана и будет литься мимо бутылки; если же вы станете лить быстро, то в узком горлышке бутылки не хватит места сразу для большого количества воды, и она опять-таки прольется мимо. Но если вы возьмете какой-нибудь прутик или стеклянную палочку, и прислоните ее к краю стакана, то вода будет отекать по палочке в бутылку и ничего не прольется (рис. 6); вы можете даже держать палочку наклонно, как это я делаю сейчас, и вода все же будет течь по палочке, потому что упругая перепонка внешнего слоя образует своего рода трубку, которая не дает воде проливаться.


Рис. 6.

Этот способ может пригодиться в деревне, когда нужно провести в воду из желоба под крышей в поставленные внизу ушаты.

Какая-нибудь палка служит для этой цели почти так же хорошо, как и металлическая труба.

Итак, я полагаю, мы наблюдали достаточное количество фактов, убеждающих нас в том, что на поверхности воды имеется нечто вроде упругой перепонки. Я хочу сказать, что поверхность воды – это та же вода; но вода внутри своей массы и на поверхности обладает неодинаковыми свойствами: ее поверхность проявляет себя так, как будто на воде натянута какая-то упругая перепонка, вроде резиновой, с тем только отличием, что эта перепонка обнаруживает способность беспредельно растягиваться, тогда как резина таким свойством не обладает.

Капиллярные поднятия и понижения

Постараемся теперь понять, почему узких трубках вода не устанавливается на уровне, который она имела бы в (широком сосуде, а поднимается выше. Я поместил здесь, перед фонарем, сосуд с водой, окрашенной в синий цвет, чтобы вы лучше могли видеть все, что с нею происходит. Затем я опускаю в воду довольно узкую стеклянную трубку, и вода немедленно устремляется вверх, поднимаясь приблизительно на сантиметр над общим уровнем. Трубка внутри мокрая. Поэтому упругая перепонка поверхности воды прилипает к трубке и приподнимает воду, пока вес воды, поднятой над общим уровнем, не уравновесит силу этой перепонки[1]1
  Слой воды, облекающий трубку изнутри, и поверхность водяного столбика образуют одну жидкую пленку, и она поднимает уровень воды в трубке. – Ред.


[Закрыть]
. Когда я беру трубку, с просветом приблизительно вдвое большим, чем у предыдущей, то поднимающая воду сила, которая действует по всей окружности трубки, должна поднять вдвое большее количество воды, однако, вода не поднимается на высоту вдвое большую, потому что в широкой трубке и воды больше, чем в узкой. Вода даже не достигает той высоты, на какой она стояла в более узкой трубке, потому что если бы это произошло, то вес поднятой воды был бы больше, чем прежде, в четыре раза, как легко понять на основании простых геометрических правил, а не в два только раза, как вы, может быть, сначала подумали. Действительно, в широкой трубке вода поднимается только на половинную высоту, и теперь, когда обе трубки помещены рядом, вы можете видеть, что в узкой трубке вода стоит в два раза выше, чем в широкой трубке. Равным образом, если бы я взял трубку толщиной в волос, то вода в ней стояла бы соответственно выше. Вот почему это явление называется капиллярностью, от латинского слова capillus – волос, так как оно особенно заметно в очень тонких трубках волосного диаметра.

Предположим теперь, что у вас имеется большое число трубок разного размера и вы разместили их в ряд по диаметру, начиная с самой узенькой; тогда, очевидно, вода будет стоять выше всего в самой узкой трубке и все ниже и ниже в каждой из следующих трубок по мере увеличения их диаметра (рис. 7).


Рис. 7.

Наконец, когда мы дойдем до самой широкой трубки, мы не в состоянии будем заметить в ней какое-нибудь повышение уровня воды. Тот же самый результат вы можете легко получить, если просто возьмете две четырехугольные стеклянные пластинки и поставите их друг к другу ребром, поместив между ними спичку или другую тоненькую палочку так, чтобы они расходились на небольшое расстояние у одного края и сходились до соприкосновения на другом. Скрепить пластинки можно с помощью надетого на них резинового кольца. К этому прибору подводится подкрашенная вода, и вы сразу видите, что вода вползает к верхнему краю пластинок на том конце, где они касаются друг друга своими ребрами, и по мере увеличения расстояния между пластинками уровень воды постепенно понижается; в результате поверхность жидкости в месте соприкосновения со стеклом образует красивую правильную кривую линию, которую математики называют равносторонней гиперболой (рис. 8).


Рис. 8.

Мне следовало бы сейчас сообщить некоторые сведения относительно этой и некоторых других кривых, однако, я теперь могу только установить, что гипербола здесь возникает потому, что, в то время как расстояние между пластинками увеличивается, высота слоя жидкости становится меньше, иначе говоря, причина образования гиперболы связана с таким явлением; вес столбика жидкости, поддерживаемого какой-либо частью кривой, повсюду остается одинаковым.

Если бы пластинки и трубки были сделаны из материала, не смачиваемого водой, тогда действие поверхностного натяжения привело бы к прямо противоположным результатам. Поверхность жидкости в узком месте оказалась бы опущенной и притом тем больше, чем уже промежуток между пластинками. Это явление затруднительно наблюдать, пользуясь парафиновыми пластинками или трубками и водой; поэтому мы возьмем другую жидкость – такую, которая не смачивает чистого стекла, – ртуть. Ртуть непрозрачна, и мы не увидим понижения уровня жидкостей в узкой трубке по сравнению с уровнем ее в широком сосуде. Чтобы наблюдать это явление, мы возьмем две соединенные друг с другом трубки, широкую и узкую.

Нальем теперь в них ртуть, и мы увидим, что в узкой трубке уровень ртути ниже (рис. 9, справа), чем в широкой, тогда как в таком же приборе с водой дело обстоит как раз наоборот (рис. 9, слева).


Рис. 9.

Упругое натяжение пленки, или так называемое поверхностное натяжение, очень невелико по сравнению с большими силами, но оно становится заметным, когда мы имеем дело с маленькими и легкими предметами. Те из вас, кому приходилось жить в деревне и проводить время на берегу ручья, не раз, конечно, наблюдали, как водомерки и другие маленькие существа бегают по поверхности воды, не погружаясь в нее.

По какой-то причине лапки их не смачиваются водой, отчего под каждой из лапок образуется маленькая ямка. Дно этой ямки, подтягиваемое стенками кверху, поддерживает тяжесть водомерки. Отсюда можно заключить, что вес насекомого в точности равен весу воды, которая потребовалась бы, чтобы заполнить ямки до общего уровня. Одному ученому удалось чрезвычайно остроумным способом измерить силу, с какой водомерка давит на воду каждой из своих лапок. Он сфотографировал тень от насекомого и от ямок под его лапками на белом фарфоровом блюде с водой. Затем он прикреплял лапку водомерки к чашке очень чувствительных весов, этой лапкой производил давление на воду с различной силой и снова фотографировал тень от ямки для каждой степени давления. Таким путем он составил целую таблицу и, пользуясь ею, мог определить величину давления одной лапки водомерки, сравнивая величину тени от ямок с размерами теней, показанными на таблице. Он мог даже проследить, в каком порядке водомерка переставляет свои лапки.

Другой ученый описал одного паука[2]2
  Argyroneta («серебряная пряжа») – водяной паук. – Ред.


[Закрыть]
, который сплетает под водой особую сетку – паутину. Эта паутина не пропускает сквозь себя воздух так же, как не пропускает воду сито, которое не смачивается водой. Паук отправляется на поверхность воды за воздухом, уносит его вниз в виде пузырька и освобождает под паутиной. Таким образом здесь мало-помалу образуется целый резервуар воздуха, которым и дышит паук.

Подобно водяным паукам и насекомым, бегающим по воде, свойствами упругой водяной перепонки пользуются и некоторые живущие в воде личинки. Обыкновенный комар кладет свои яйца в стоячую воду и, по-видимому, особенно любит кадки с водой и бассейны в садах и теплицах. Из этих яиц в свое время появляются личинки, соответствующие шелковичным червячкам, личинкам мошек или гусеницам бабочек. В теплую погоду вы можете видеть тысячи таких личинок в обыкновенных кадках с дождевой водой. Тут вы заметите маленькие темные существа, которые плавают забавными скачками и скрываются на дно, если вы внезапно приблизитесь к воде и вспугнете их. Однако, если вы будете держаться спокойно, не пройдет много времени, как они снова выплывут на поверхность и, прикрепившись к ней, будут оставаться в висячем положении. Очень легко показать такие живые личинки на экране. Перед фонарем вместо прозрачной картинки я поместил плоский сосуд с водой, в котором плавает некоторое количество личинок. Вы видите, как они выплывают к поверхности и привешиваются к ней с помощью придатка вроде хвоста (рис. 10).


Рис. 10.

Это дыхательная трубочка. Таким образом, хотя они тяжелее воды и должны были бы тонуть, дыхательные трубочки помогают им висеть у поверхности, дышать и питаться опавшими и гниющими листьями. Личинка, изображенная на рисунке слева оторвалась от поверхности и медленно падала на дно как раз в тот момент, когда производился фотографический снимок.

Если вы станете рассматривать поверхность воды например, в стакане, куда вы пустили несколько таких личинок, та вы заметите в том месте, где висит личинка, маленькое углубление поверхности, вроде ямки. Вес воды, которая могла бы заполнить эту ямку, в точности равен той силе, с какой личинка тянет вниз. С помощью лупы можно рассмотреть это явление и вместе с тем убедиться, что за удивительное существо личинка комара.

Очень интересно остановиться на том, как появляется на свет муха Simuillia. Куколка этой мухи чаще всего прикрепляется к подводным растениям в гнездышке, похожем на гнезда некоторых ласточек. Когда же ей приходит время выйти из оболочки, она скопляет воздух, выделяемый ею из воды, в своей трахее и раздувает оболочку, которую должна будет вскоре оставить. Оболочка лопается, и муха всплывает на поверхность, заключенная в маленький воздушный пузырек. Этот пузырек через некоторое время тоже лопается, и муха в первый раз расправляет свои лапки. С их помощью она бежит по поверхности воды до какого-нибудь твердого предмета и прицепляется к нему до тех пор, пока не разовьются ее крылышки.


    Ваша оценка произведения:

Популярные книги за неделю