355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Чарльз Бойс » Мыльные пузыри » Текст книги (страница 5)
Мыльные пузыри
  • Текст добавлен: 5 августа 2018, 15:00

Текст книги "Мыльные пузыри"


Автор книги: Чарльз Бойс



сообщить о нарушении

Текущая страница: 5 (всего у книги 8 страниц)

Мыльные пленки на проволочных рамках

Возвращаясь теперь к мыльным пузырям, вспомним, что, как нами было установлено, катеноид и плоскость являются единственными поверхностями вращения, у которых нет кривизны и которые поэтому и в том случае, когда они образованы упругими перепонками, не производят давления. Существует множество других поверхностей, которые кажутся кривыми во всех направлениях и все же не имеют кривизны, а потому и не производят давления; но это не будут тела вращения, то есть их нельзя получить простым вращением некоторой кривой линии вокруг оси. Некоторое количество таких тел можно получить при помощи проволочных рамок различной формы, погружая их в мыльную воду. Вынимая рамки из воды, мы увидим удивительное разнообразие поверхностей без кривизны. Одна из таких поверхностей известна под названием винтовой поверхности. Чтобы получить ее, нужно лишь взять кусок проволоки, закрутить ее несколько раз в открытый завиток (называемый обыкновенно спиралью) и загнуть оба конца таким образом, чтобы они встретили другую, прямую проволоку, представляющую ось этой спирали. Винтовая поверхность, полученная погружением в мыльную воду проволочного прибора, стоит того, чтобы на нее посмотреть (рис. 47).


Рис. 47.

С помощью рисунка невозможно дать представление о дивном совершенстве ее формы, но, к счастью, этот опыт относится к числу тех, которые очень легко может произвести каждый.

Стоит упомянуть о любопытном соотношении между винтовой поверхностью и поверхностью катеноида вращения (рис. 47 и 24). И та и другая представляют собой поверхности без кривизны, а потому их можно получить при помощи мыльных пленок. Вам известно, что плоский кусок бумаги можно сгибать, но нельзя растягивать, а потому листу бумаги можно придать форму цилиндра или конуса, причем ни одна часть его не будет растянута. Но его нельзя согнуть так, чтобы получился шар или часть шаровой поверхности, так как при этом средняя часть листа должна была бы растянуться или внешние части сжаться, чему бумага противодействует. Возьмем теперь сделанную из дерева или гипса модель катеноида и будем прикладывать к ее поверхности целый ряд смазанных клейстером полосок тонкой бумаги таким образом, чтобы они перекрещивались и находили одна на другую своими краями. У нас получится катеноид из бумаги, на котором мы обнаружим интересное соотношение. Когда клейстер высохнет, разрежем бумагу ножом вдоль какой– нибудь радиальной плоскости, чтобы можно было снять бумагу с модели. Затем, держа бумагу за два разрезанных конца в месте перехвата, станем ее разводить, закручивая в го же время в разные стороны. Тогда перехват распрямится и станет плоским, а остальная часть бумаги изогнется без какого бы то ни было растягивания в правильную двухлопастную винтовую поверхность.

С помощью проволочных фигур, которым придана форма правильных геометрических тел, можно получить очень красивые образования из мыльных пленок, погружая эти рамки в мыльную воду. В случае трехгранной призмы все эти поверхности плоски, и всегда в одном ребре встречаются лишь три такие плоскости, притом под равными углами (рис. 48).


Рис. 48.

Это и не удивительно, если принять во внимание, что сама проволочная фигура трехсторонняя. Рассматривая эту трехстороннюю фигуру с тремя пленками, встречающимися на центральной линии, вы склонны ожидать, что в случае четырехсторонней или квадратной призмы мы увидим четыре пленки, встречающие одна другую на средней линии. Замечательно, однако, что этого никогда не происходит, какую бы неправильную форму ни имела рамка и какое бы сложное строение ни имел клочок пены. На одном ребре никогда не может встретиться более трех плоскостей, а в одной точке – четырех ребер и шести плоскостей. Кроме того, пленки и ребра должны пересекать друг друга лишь под равными углами. Если случайно на один момент в одном ребре встретятся четыре плоскости или если углы не будут в точности равны друг другу, тогда получится во всяком случае неустойчивая форма; она не может оставаться в покое, и пленки будут все время скользить одна вдоль другой, пока они не придут в положение, при котором условия устойчивости будут выполнены В результате кубическая форма дает фигуру, изображенную на рис. 49, в которой центральный квадрат должен быть параллельным одной из шести граней куба и двенадцать других пленок встречаются одна с другой так, что выполняется основное правило, а именно: все углы равны 120°.


Рис. 49.

Это основное правило можно иллюстрировать очень простым опытом, который каждый из вас может легко воспроизвести дома и который вы можете видеть теперь на экране. При помощи двух кусков оконного стекла, помещенных, приблизительно, на расстоянии сантиметра один от другого, устроено нечто вроде плоского стеклянного ящика, куда налито некоторое количество мыльной воды. Если теперь дуть через трубку, погруженную в воду, между пластинками образуется большое количество пузырей. Если пузыри достаточно велики, чтобы достать от одной стенки до другой, вы сразу увидите, что тут нигде не встречается больше трех пленок вместе и что все углы, под которыми пересекаются пластинки и ребра, равны между собой. Кривизна пузырей мешает видеть, что все углы действительно равны друг другу, но, если вы, чтобы избежать обманчивого влияния кривизны, рассмотрите небольшой участок пленок как раз там, где они встречаются, вы увидите, что сказанное мной верно. Вы увидите также, если только достаточно наблюдательны, что, когда выдуваются пузыри, порой на один момент встречаются вместе четыре пленки, но тогда они сразу начинают скользить одна вдоль другой и успокаиваются, когда приходят лишь в единственно возможное для них положение равновесия.

Мыльные пузыри и эфир

Воздух внутри пузыря находится под давлением, производимым вследствие упругости и кривизны пленки пузыря. Если бы дать возможность воздуху проходить через стенку пузыря, то пузырь, конечно, скоро лопнул бы, как это и происходило, когда мы привешивали к пузырю кольцо и перепонку внутри кольца разрывали. Но в пузыре ведь нет отверстий, а потому вы можете ожидать, что газ, подобно воздуху, не будет проходить через стенки пузыря. Тем не менее в действительности газы могут медленно проникать через стенки пузыря, а если производить опыт с некоторыми парами, то проникают они гораздо быстрее, чем мы могли бы предположить.

Эфир образует очень тяжелый и легко воспламеняющийся пар. Этот пар может почти мгновенно проходить сквозь стенки пузыря. Правда, это выражение не вполне точно: в действительности пар сгущается на наружной стороне оболочки и снова испаряется на внутренней ее стороне. На пропускную бумагу, брошенную на дно стеклянного колокола, я наливаю немного эфира, и колокол вскоре заполняется тяжелым паром эфира. Вы можете убедиться, что в колоколе что-то есть, но не простым глазом, так как колокол кажется пустым, а при рассматривании его тени на экране. Я осторожно наклоняю сосуд, и вы видите, как что-то выливается из него. Это и есть пар эфира. Нетрудно убедиться, что он тяжел; достаточно выдуть пузырь и сбросить его в колокол: как только пузырь коснется пара, он перестанет падать и будет плавать по поверхности, подобно пробке на поверхности воды (рис. 50).


Рис. 50.

Теперь исследуем пузырь и посмотрим, не проник ли пар внутрь пузыря. Я вынимаю его из колокола при помощи проволочного кольца и подношу его к огню: пузырь тотчас же вспыхивает. Этого, однако, недостаточно для доказательства того, что пар проник внутрь пузыря, потому что он мог сгуститься в достаточном количестве на поверхности пузыря и сделать его воспламеняемым. Вы припоминаете (см. стр. 24), что, когда я наливал пар эфира на поверхность воды, он сгущался на ней и в такой степени ослаблял силу поверхностного натяжения, что позволял проволочной сетке легко проходить через верхний слой воды. Чтобы проверить правильность первоначального объяснения, поступим иначе. Я выдуваю пузырь с помощью воронки и на короткое время опускаю его в пар эфира. Вынимаем пузырь из сосуда, и вы замечаете, что он висит подобно тяжелой капле; он утратил свою прежнюю правильную шарообразную форму, и кажется, что пар нашел себе путь внутрь пузыря. Удостовериться в этом мы можем, поднеся огонь к узкому концу воронки: пар вспыхивает и, выталкиваемый упругостью стенок пузыря, горит языком в двенадцать или пятнадцать сантиметров длиной (рис. 51).


Рис. 51.

Вы могли также подметить, что, когда я вынул пузырь, пар стал выходить из пузыря наружу и падать тяжелым потоком. Конечно, это можно заметить, только рассматривая тень пузыря на экране.

Опыты с мыльными пузырями

Вы, вероятно, заметили, что когда я производил опыты с каплями масла в смеси спирта с водой, то капли, сталкиваясь одна с другой, не сливались сразу. Они нажимали одна на другую и расходились, если их предоставляли самим себе, подобно тому как это происходило с каплями воды в фонтане, фотографический снимок которого я вам показывал. Вы, может быть, подметили также, что капли воды в керосиновой (или парафиновой) смеси отскакивали одна от другой или, если они были наполнены керосином, образовывали пузыри, в которых плавали другие маленькие капельки, состоящие из воды. Во всех этих случаях между каплями оставался тонкий слой какого-нибудь вещества, который они не в состоянии были продавить. В одном случае это была вода, в другом – керосин, в третьем – воздух, смотря по обстоятельствам.

Окажутся ли и мыльные пузыри не способными продавить находящийся между ними слой воздуха, если их прижать друг к другу? Вы можете испробовать это дома так же хорошо, как и я здесь, однако, я сейчас произведу этот опыт. Я выдуваю два пузыря, и вот, когда я нажимаю одним на другой, они не сливаются и остаются раздельными (рис. 52).


Рис. 52.

Теперь я помещаю пузырь на кольцо, достаточно большое, чтобы через него мог пройти пузырь. Тут у меня в руке другое кольцо с плоской пленкой, полученной из пузыря после того, как у него был разорван один бок. Надавливая осторожно на пузырь плоской пленкой, я могу заставить пузырь пройти на другую сторону (рис. 53), и все же пленка и пузырь не сливаются.


Рис. 53.

Пузырь можно проталкивать таким образом вверх и вниз много раз.

Теперь я выдуваю новый пузырь и подвешиваю его к кольцу. К этому пузырю я могу привесить другое кольцо из тонкой проволоки; я ввожу внутрь пузыря конец трубки и выдуваю второй пузырь, оставляя его внутри первого. Он медленно падает и останавливается только тогда, когда дойдет до стенок наружного пузыря; он не будет лежать на дне наружного пузыря, так как тяжелое кольцо оттягивает эту часть сильно вниз, а будет касаться его несколько выше по круговой линии (рис. 54).


Рис. 54.

Теперь я могу при помощи трубки удалить тяжелые капли жидкости с нижних частей пузырей и придать им чистый и гладкий вид по всей поверхности. Оттягивая кольцо вниз, я сжимаю внутренний пузырь и придаю ему форму яйца (рис. 55), или же я могу, слегка поворачивая кольцо, легким боковым движением оторвать его от пузыря.


Рис. 55.

Тогда оба пузыря принимают совершенно правильную шарообразную форму (рис. 56).


Рис. 56.

Я могу вытянуть воздух из внешнего пузыря до такой степени, что вы едва ли будете в состоянии видеть промежуток между двумя пузырями. Затем я вдуваю воздух во внешний пузырь, и чем сильнее я дую, тем очевиднее, что оба пузыря в действительности вовсе не сливаются друг с другом; внутренний пузырь вращается кругом около центра внешнего пузыря, и, когда последний в конце концов лопается, внутренний пузырь летит прочь, нисколько не пострадав от такого необычного обращения.

Есть очень красивое видоизменение предыдущего опыта, требующее, однако, небольшого количества зеленого красящего вещества, флуоресцеина или, лучше, уранина, которое растворяют в мыльной воде, в другом сосуде. Тогда можно выдуть внешний пузырь из чистой мыльной воды, а внутренний пузырь из окрашенной. Если теперь посмотреть на пузыри при обыкновенном свете, вы едва ли обнаружите между ними разницу; но, если направить на них солнечный свет или электрический свет дуговой лампы, лучше всего сконцентрированный при помощи линзы, то внутренний пузырь будет переливаться зеленым цветом, тогда как наружный останется прозрачным, как прежде. Они не сливаются совершенно, и хотя кажется, что внутренний пузырь покоится на внешнем, в действительности между ними остается тонкая прослойка воздуха.

Вы знаете, что светильный газ легче воздуха, а потому мыльный пузырь, выдутый струей светильного газа и предоставленный самому себе, сразу же взлетает к потолку. Выдуем с помощью светильного газа пузырь и поместим его на кольце. Сразу же видно, что он стремится вверх. Будем вводить в него понемногу газ и обратим внимание на красивые формы, которые он принимает. Это все те же кривые поверхности. Их образует и падающая из трубки капля воды, с тем только различием, что здесь они обращены вверх. Прочность оболочки сейчас едва сдерживает стремление пузыря вверх, и вот он отрывается совершенно так же как это происходило с каплей воды.

Поместим на кольце выдутый с помощью воздуха пузырь, внутри него выдуем другой пузырь, наполненный смесью воздуха с газом. Он всплывает вверх и располагается у верхнего конца внешнего пузыря (рис. 57).


Рис. 57.

Затем начнем впускать понемногу светильный газ во внешний пузырь, пока окружающий газ не приобретет такую же плотность, какой обладает смесь во внутреннем пузыре. Теперь он уже не располагается у верхушки большого пузыря, а опускается и держится в центре его совершенно подобно тому, как плавала капля масла в смеси спирта с водой (рис. 58).


Рис. 58.

Убедиться в том, что внутренний пузырь действительно легче воздуха, очень нетрудно: стоит только разорвать внешний пузырь, и тогда внутренний пузырь быстро поднимется к потолку.

Вместо того чтобы помещать пузырь на тяжелое неподвижное кольцо, я выдую теперь пузырь на легком кольце, сделанном из очень тонкой проволоки. В этом пузыре содержится только воздух. Выдуем теперь внутри этого пузыря другой с помощью светильного газа; второй пузырь устремится вверх и будет давить на верхнюю часть внешнего пузыря с такой силой, что поднимет его вместе с проволочным кольцом, одним метром нитки и привязанным к ней кусочком бумаги (рис. 59); при этом, несмотря на то, что тянет вверх всю эту установку один только внутренний пузырь, между двумя пузырями настоящего, тесного соприкосновения нет вовсе.


Рис. 59.

Есть другое видоизменение этого опыта (рис. 60).


Рис. 60.

На проволочном кольце, которое у меня в одной руке, я выдуваю большой пузырь, а внутри него другой, маленький пузырь с газом. Затем другим кольцом, в другой руке, я прикасаюсь к большому пузырю подальше от того места, где внутренний пузырь прилегает к внешнему. Наконец, я растягиваю внешний пузырь в цилиндрическую трубку. Теперь можно перекатывать маленький пузырь по стенкам цилиндрического пузыря. Если маленький пузырь близок по величине к кольцам, то, растягивая несколько трубку, легко задержать внутренний пузырь в нижней половине трубки, а потом, когда вздумается, отпустить его. Если прослойка воздуха между ним и стенками трубки очень тонка, тогда он будет очень медленно всползать вверх, так как воздух верхней части трубки, чтобы пропустить сюда пузырь, должен перейти в нижний конец трубки через узкую кольцевую щель, остающуюся между внутренним пузырем и цилиндрической пленкой, Теперь я выдуваю воздушный пузырь на неподвижном кольце и ввожу проволоку с кольцом на конце. На этом внутреннем кольце я выдуваю новый воздушный пузырь. Следующий затем пузырь будет выдут с помощью светильного газа и помещен внутри двух других. Он поднимается к верхней части второго пузыря. Второй пузырь я делаю несколько легче, вдувая в него немного газа, а внешний пузырь еще сильнее раздуваю воздухом. Теперь я могу удалить внутреннее кольцо, оставляя два внутренних пузыря свободными внутри большого внешнего пузыря (рис. 61).


Рис. 61.

Многократное отражение света от поверхностей пузырей, дивные переливы цветов, красота и совершенство их форм представляют такую великолепную картину блеска и симметрии, равную которой трудно создать каким-либо другим путем. Мне остается теперь лишь выдуть четвертый пузырь в действительном соприкосновении с внешним пузырем и кольцом, чтобы дать возможность внешнему пузырю оторваться от кольца и всплыть вверх вместе с двумя другими пузырями внутри.

Пузыри и электричество

Мы видели, что пузыри и капли во многих отношениях ведут себя одинаковым образом. Посмотрим, не будет ли и электричество производить на пузыри то же действие, какое оно производило на капли. Вы помните, какое действие оказывал кусок наэлектризованного сургуча на фонтанную струю. Когда две капли сталкивались, они, вместо того чтобы отскакивать, сливались в одну. Вот здесь, на этих двух кольцах, у нас два пузыря, которые как бы прилегают друг к другу, но в действительности не соприкасаются (рис. 62).


Рис. 62.

В тот момент, когда я вынимаю палочку сургуча, они, как вы видите, соединяются и образуют один пузырь (рис. 63).


Рис. 63.

Не имея под руками ничего, кроме двух мыльных пузырей, можно обнаружить присутствие даже самого ничтожного количества электричества совершенно так же, как и при помощи водяных струй.

Как известно, внутри проводника электричества невозможно подметить влияние наружного электричества, как бы много его ни было или как бы близко вы ни подходили к поверхности проводника. Возьмем теперь два пузыря, один в другом, как это было изображено на рис. 51, и поднесем поближе к ним наэлектризованную палочку сургуча. Внешний пузырь представляет собой проводник, поэтому внутри него не будет заметно никакого действия электричества. Убедиться в этом легко. Пузыри остаются разделенными, хотя вы поднесли палочку сургуча так близко, что она оттягивает пузыри в сторону, и хотя оба пузыря так плотно прилегают друг к другу, что промежутка между ними вы не можете обнаружить. Будь здесь внутри хотя бы малейшее электрическое влияние, проникающее на глубину всего одной четырехтысячной доли миллиметра, оба пузыря сейчас же слились бы в один.

Вот еще один опыт, представляющий собой комбинацию двух последних и превосходно показывающий различие между внутренним и внешним пузырями. Здесь у меня третий пузырь, прилегающий к боковой стенке внешнего из тех двух пузырей, которыми я только что пользовался. В тот момент, когда я вытаскиваю палочку сургуча, два внешних пузыря сливаются, тогда, как внутренний пузырь остается нетронутым, и тяжелое кольцо скользит вниз, к основанию образовавшегося теперь единственного внешнего пузыря (рис. 64).


Рис. 64.

Мыльный пузырь

Мы хорошо знакомы с мыльными пузырями с самого раннего детства, и потому-то возможность их существования кажется нам чем-то само собой разумеющимся. Поэтому большинству из нас не приходит в голову задуматься над вопросом, почему возможно выдуть мыльный пузырь. А между тем уяснить себе возможность существования таких предметов гораздо труднее, чем понять все те явления, которые я показывал вам и которые относятся к их свойствам и форме. Когда кто-нибудь уяснил себе, что поверхность жидкости обладает натяжением, что она ведет себя подобно растянутой упругой перепонке, тогда объяснить существование мыльного пузыря кажется делом очень легким. Представляется естественным, что мыльный пузырь можно выдуть из мыльного раствора потому, что «перепонка» этого раствора очень прочна. В действительности же это совсем неверно. Чистая вода, из которой нельзя выдуть пузырь в воздухе и которая не образует даже пены, обладает «перепонкой», или поверхностным натяжением, в три раза большим, чем мыльный раствор, что подтверждается обычными способами, например, наблюдением поднятия жидкостей в капиллярных трубках. Даже в присутствии ничтожного количества мыла поверхностное натяжение воды падает с величины 7,7 миллиграмма на линейный миллиметр до 3 миллиграммов, как вычислил Плато из опытов над пузырями. Жидкость эта поднимается в капиллярной трубке лишь немного больше, чем на одну треть высоты поднятия воды. Мыльная пленка обладает двумя поверхностями, с натяжением каждая в три миллиграмма на один миллиметр, следовательно, растягивается с силой около шести миллиграммов на один миллиметр. Многие жидкости образуют пену, но не годятся для выдувания пузырей. Рэлей показал, что чистая жидкость не дает пены, тогда как смесь двух чистых жидкостей, например спирта и воды, образует пену. От чего бы ни зависело свойство жидкости давать пену, оно должно быть хорошо развито, чтобы из нее можно было выдувать пузыри. Я не раз говорил о натяжении мыльной пленки, как о величине постоянной, и это почти верно. Однако, профессор Виллард Гиббс показал, что это натяжение не может быть повсюду совершенно одинаковым. Рассмотрим, например, какой-нибудь большой пузырь или для удобства плоскую вертикальную пленку, натянутую на проволочном кольце. Если бы натяжение 6 миллиграммов на один миллиметр действительно было совершенно неизменным во всех частях, тогда средние части пленки, растягиваемые вверх и вниз верхней и нижней частями пленки, в результате не удерживались бы ими вовсе и подобно другим лишенным опоры телам должны были бы падать с ускорением, сообщаемым силой тяжести, как падает выпущенный из рук камень. Однако, ничего подобного нельзя заметить у средней части такой пленки. Она, по-видимому, остается в покое, и если здесь и есть какое-либо движение вниз, то слишком незначительное, чтобы его можно было подметить. Поэтому верхняя часть пленки должна быть натянута сильнее, чем нижняя часть, причем разность должна быть равна весу промежуточной части. Мы переворачиваем кольцо верхней частью вниз, и все же средняя часть пленки не падает. Пузырь поэтому обладает замечательным свойством приспособлять в тесных пределах свое натяжение к нагрузке. Виллард Гиббс считает, что это свойство пленки зависит от того, что вещество на ее поверхности не тождественно с веществом ее толщи. По его мнению, поверхность обогащена веществом, которое уменьшает ее поверхностное натяжение; это вещество при растягивании пленки становится на ее поверхности менее концентрированным, делая пленку более крепкой, а при сокращении концентрируется в пленке, делая ее более слабой. Его собственные слова настолько удачно и ясно излагают дело, что я предпочитаю просто процитировать из его «Термодинамики» относящееся сюда место: «В толстой пленке (в противоположность тонкой пленке) усиление поверхностного натяжения при растягивании, необходимое для поддержания ее устойчивости. связано с избытком мыла (или какого-либо из его компонентов) на поверхности по сравнению с внутренней областью пленки».

Это аналогично действию масла на воду, описанному на стр. 29. Красивый опыт подтвердил теорию «обогащения». Измерив поверхностное натяжение мыльного раствора в течение первой сотой доли секунды его существования, мы найдем, что поверхностное натяжение v него то же самое, что и у воды, так как «обогащение» поверхности не успело еще произойти. В этом опыте жидкость выходит из маленького эллиптического отверстия в тонкой пластинке, закрывающей конец трубки, соединенной с резервуаром, содержащим раствор. Когда жидкость выходит из такого отверстия, как показано на рис. 65, поперечный разрез через струю имеет эллиптическую форму, изображенную внизу. Под влиянием поверхностного натяжения эллипс стремится превратиться в круг, но в момент превращения сечения в круг раз начавшееся движение не может остановиться сразу, и жидкость продолжает движение, пока сечение струи не станет эллиптическим в другом направлении, как показано на рис. 65, b.


Рис. 65.

Этот процесс продолжается с определенной скоростью, зависящей от силы поверхностного натяжения, плотности жидкости и толщины струи. Скорость жидкости зависит в то же время от глубины отверстия под свободной поверхностью, и если условия хорошо подобраны, во время переноса жидкости от а до с эллипс успевает завершить свою полную эволюцию, и это повторяется несколько раз. Если поверхностное натяжение станет меньше, эволюция эта будет совершаться медленнее, и расстояние между узлами а – с – е – g будет больше. При одной и той же высоте уровня жидкости расстояние между узлами как для чистой воды, так и для мыльного раствора сначала то же самое; это показывает, что их поверхностные натяжения вначале одинаковы.

Если же берется спирт, обладающий собственным поверхностным натяжением с самого начала, промежутки между узлами становятся больше, так как поверхностное натяжение относительно уменьшено в большей степени, чем плотность. Происходит то самое поверхностное сгущение, о котором говорил Гиббс.

Следующий опыт также указывает на существование поверхностного сгущения. Выдуем пузырь на горизонтальном кольце с диаметром, немного лишь большим диаметра кольца, и поднесем к верхней части пузыря пробку, смоченную раствором аммиака. Пузырь сейчас же станет отходить от пробки и перебираться на другую сторону кольца, как будто ему неприятен запах аммиака. Если затем поднести пробку к нижней части пузыря, он станет перебираться наверх. Что же происходит здесь в действительности? Аммиак вступает в соединение с некоторыми из составных частей мыла, сгущающимися на поверхности, и таким образом увеличивает натяжение пленки по одну сторону кольца; поэтому эта часть пленки сокращается и гонит пленку на другую сторону, где она не подвергается действию аммиака. Часть пленки, подвергшаяся действию аммиака, становится, кроме того, толще, остальная же тоньше, что видно по цветам, которые в последнем случае бывают более красивы и пестры.

Возвращаясь теперь к мыльной пленке, мы видим, что, какова бы ни была ее форма, верхние части ее натянуты несколько больше, чем нижние, и в случае вертикальной пленки разность равна величине, необходимой для поддержания веса промежуточной пленки. Однако, существует предел, за которым процесс этот уже не будет совершаться, – другими словами, существует предел величины мыльного пузыря. Мне неизвестно, каков этот предел. Я выдувал шарообразные пузыри до шестидесяти восьми сантиметров в диаметре, а другие, без сомнения, выдували пузыри еще больших размеров. Я брал также тонкий шнур в 3 метра длиной, связывал его концы и смачивал петлю в мыльном растворе, не давая ей закручиваться. Держа по пальцу каждой руки в петле, я погружал ее в мыльный раствор, затем вынимал и растягивал, образуя таким способом мыльную пленку в полтора метра длиной. Когда я держал петлю вертикально, пленка не разрывалась, показывая, что полтора метра меньше предельной величины мыльного пузыря даже умеренной толщины. Для тонкого пузыря этот предел отодвигается значительно дальше.


    Ваша оценка произведения:

Популярные книги за неделю