Текст книги "Справочник по такелажным работам"
Автор книги: C. Свенссон
Жанр:
Спорт
сообщить о нарушении
Текущая страница: 2 (всего у книги 9 страниц)
Уход за тросами и их хранение
При укладке в бухту трос всегда сворачивают в направлении, противоположном направлению его свивки. На рис. 5, а показан способ укладки троса по часовой стрелке, на рис. 5, б – против часовой стрелки.
Рис. 5. Способы укладки троса
Если конец закреплен, то укладывать трос начинают от точки крепления, чтобы не образовывались колышки. Свободный конец для крепления вводят через всю бухту (рис. 5, в). На рис. 5, г трос уложен восьмеркой, шлаги лежат один на другом, концы свободны.
Даже нитки следует наматывать по определенным правилам. Нитки левой крутки наматывают от себя правой рукой, нитки правой крутки – от себя левой рукой или к себе правой рукой. Шкимушки, которые используют для оплетки, наматывают обычно восьмерками на мотовило или без него, в результате чего получаются попеременно правые и левые петли (см. рис. 135).
Бросательные концы укладывают в ровные круглые бухты удобной величины. Если условия позволяют, не рекомендуется подвешивать бухту, как поступают с другими тросами, так как при этом бросательные концы теряют равномерную гибкость, что является их весьма важным качеством.
Новую бухту распускают так, чтобы на тросе не образовалось колышек. Конец троса проводят через середину бухты левой свивки снизу вверх, правой – сверху вниз (рис. 6).
Когда речь идет о новых бухтах тросов, употребляют общепринятое на море английское слово coil – бухта или норвежское слово kveil, имеющее то же значение. Раньше употреблялось хорошее шведское слово trossbunke. Ныне здравствующие старые моряки помнят его. Слово это можно употреблять и сейчас. Изготовители для обозначения новых бухт тросов пользуются обычно термином "трос", что помимо собственного значения указывает на способ упаковки и длину троса.
Рис. 6. Бухты
Различают полные тросы и полутросы. Длина первых 120 саженей (220 м), последних 60 саженей (110 м). Упаковочную ткань или рогожу, которой обычно укрывают тросы, сохраняют в течение всего периода хранения бухты или ее части.
Когда бухты распускают, на концы троса обязательно ставят марки. Тросы, которые предназначены для хранения, нельзя оставлять влажными в закрытых помещениях. Их необходимо защищать не только от влаги, но и от воздействия солнечных лучей. Как в первом, так и во втором случае с волокон исчезает защитное масло, которым пропитаны тросы (обычно манильские). Толстые швартовы хранят на низких настилах или просторных стеллажах так, чтобы вода могла стекать, при этом бухты должны быть укрыты от солнца, дождя и снега брезентом. Мокрые тросы сворачивают в неплотные бухты, лучше всего восьмерками, как показано на рис. 5, и просушивают в хорошо вентилируемых помещениях.
Мокрые тросы, работающие под нагрузкой, необходимо потравливать во избежание их разрыва так как они укорачиваются при намокании (от дождя, от сильной росы).
Синтетические тросы обычно нечувствительны к воздействию влаги. В то же время соленая вода может уменьшить их гибкость из-за попадания кристаллов соли между волокнами. Гибкость восстанавливается промыванием троса в пресной воде.
Прочность тросов
Прочность троса зависит от сорта материала и его качества и колеблется в больших пределах. Так, нагрузка, возможная в одном случае, в другом оказывается слишком большой. Опыт показывает, что тонкие тросы в отличие от толстых имеют прочность, равномерную по всей длине. Причина в том, что чем толще трос, тем сложнее равномерно распределить нагрузку на все его пряди. Это наглядно показано в табл. 1 и 2, которые составлены для тросов с различной прочностью. Для синтетических тросов рекомендуется придерживаться данных, содержащихся в таблицах прочности для каждого конкретного материала. Такие таблицы составляются изготовителями. Важное значение имеют правильное хранение и уход за тросом. Изношенные, потертые, чем-либо поврежденные тросы теряют первоначальную прочность. Таблицы показывают приблизительную разрывную прочность для трехпрядного троса.
Таблица 1. Разрывная нагрузка для различных тросов величина согласно испытаниям), кН.
Таблица 2. Разрывная нагрузка для синтетических тросов (согласно стандартам Великобритании), кН.
Тали
Тали – это подъемные устройства, состоящие из блоков и проходящего в их шкивах троса (лопарей и ходового конца). Часто используются тали с двумя блоками. Однако встречаются тали, состоящие из трех и более блоков.
Рис. 7. Тали
В зависимости от числа шкивов в блоках, через которые проходят лопари, различают (рис. 7): а – простой гордень, проходящий через неподвижный блок; б – двойной гордень, проходящий через неподвижный и подвижный блоки; в – простые или двухшкивные тали; г – двойные или трехшкивные тали; д – четырехшкивные тали.
Большие тали называются гинями или полиспастами. Они имеют пять, шесть и более шкивов и предназначены для подъема тяжелых грузов. На рис. 9, б показаны гини с двух– и трехшкивными блоками. Тали дают различный выигрыш в силе в зависимости от их конструкции. Обычные простые тали дают, например, двойной и тройной выигрыш прилагаемого усилия. Если тали устроены так, как показано на рис. 7, а, то они дадут двойной выигрыш в силе, но если груз крепить к верхнему блоку, то выигрыш в силе утроится.
Рис. 8. Полиспасты
На рис. 8 показаны некоторые специальные тали – сложные блоки – полиспасты. На рис. 8, а показан блок с горденем, на ходовом конце которого имеется подвижный блок. Приспособление дает двойной выигрыш в силе. Используется в бегучем такелаже на парусниках для фалов, брасов, бык-горденей и т. п. На рис. 8, б показан так называемый простой испанский полиспаст. На древнешведском языке этот полиспаст называется карнат (karnat) – легкий разгрузочный полиспаст. Он применяется повсеместно для подъема и выгрузки соли и зерна в длинных мешках, смолы, а также грузов в мешках и тюках, вес которых не слишком большой. Использование полиспаста дает трехкратный выигрыш в силе с помощью всего лишь двух простых блоков. На рис. 8, в и г показаны так называемые двойные испанские полиспасты. Они дают пятикратный выигрыш в силе. Их использовали повсюду при погрузочно-разгрузочных работах для тяжелых штучных грузов и прежде всего огромных ящиков с сахаром в те далекие времена, когда сахар экспортировался в Европу из Вест-Индии. Этот полиспаст назывался раньше «сахарным» полиспастом. Иногда он был устроен несколько иначе. Сверху размещали два простых или один двойной блоки, но выигрыш в силе был всегда пятикратным. Полиспаст становился более удобным, трение уменьшалось, если полиспаст состоял всего из трех простых блоков, как показано на рис. 8, г.
В обычных талях лопарь проходит через блок по направлению часовой стрелки, рис. 9,а. Однако пяти– и шестишкивные гини иногда устроены таким образом, что лопарь закрепляется над средним шкивом. В этом случае оба блока располагают так, чтобы шкивы находились под прямым углом друг к другу и лопари проходили, как показано на рис. 9, б.
Для расчета талей надо разделить вес груза на число шкивов, через которые он проходит. Но так как на шкивах действует сила трения, то перед началом вычислений необходимо учесть, что вес груза увеличивается на 5-10% на каждом шкиве, через который проходят лопари. Трение уменьшается, если тали крупноблочные с высококачественными шкивами большего диаметра, тонким лопарем; трение увеличивается в талях с небольшими шкивами, толстым лопарем из троса низкого качества. Сила трения действует не только при вращении шкивов, но и при преодолении сопротивления на изгибе лопаря при прохождении его через каждый шкив, а также при последующем движении. Поэтому при работе с жестким смоленым пеньковым тросом требуется приложить большую силу, чем с мягким манильским.
Рис. 9. Гини
Рис. 10. К примеру 1
Рис. 11. К примеру 2
Пример 1 (рис. 10). С помощью трехшкивных талей требуется поднять груз весом 500 кг. Лопарь проходит через три шкива, сила трения на каждом составляет 10% веса. В сумме это дает силу трения, соответствующую 150 кг, что прибавляют к весу нетто (чистому весу). Весь груз теперь имеет вес, равный 650 кг. Груз распределяется на три части шкива, следовательно, 650 кг делят на три, что дает приблизительно 217 кг. Вычисления записывают следующим образом: (500 + 3*0,1*500): 3 = = 217 кг.
Пример 2 (рис. 11). С помощью четырехшкивных талей со шкивами высокого качества и лопарем, проходящим через ведущий блок, в общей сложности пяти шкивов, требуется поднять груз весом 2 т. Здесь трение составляет 5% веса груза на каждый шкив и становится равным 5*0,05*2 = 0,5, а весь груз – 2,5 т. Нагрузка делится на четыре части. 2,5 т делим на 4, получаем 0,625 т = 625 кг. Вычисления записываются следующим образом: (2 + 5*0,05*2): 4 = 0,625 т.
Когда груз опускают при помощи талей, то сила трения действует в обратном направлении, а следовательно, при расчетах следует вычитать 5-10% от веса груза на каждый шкив, через который проходит лопарь. Чтобы опустить груз весом 500 кг с помощью трехшкивных талей, необходимо приложить силу 117 кг, т. е. (500 – 3*50): 3 = 117 кг. Чтобы опустить груз весом 2 т с помощью талей, описанных во втором примере, необходимо приложить силу (2 – 5*0,1):4 = 0,375 т.
Если сила трения превышает вес груза, то результат в скобках и даже ответ будет отрицательным. Это значит, что груз не опустится под собственной тяжестью, следовательно, необходимо приложить дополнительную силу или переделать тали.
Необходимо принимать в расчет не только вес груза и прилагаемое усилие, но и нагрузку на блок и скобу. Чтобы поднять груз весом 2 т на простом стальном тросе, необходимо (без учета трения) закрепить груз весом 2 т на другом конце троса. Результат получается такой же, как если бы на каждом конце стального троса прикрепить груз весом 2 т, а нагрузку на подъемном блоке сделать равной 4 т. Чтобы поднять те же 2 т с помощью четырехшкивных талей, необходимо всего лишь подвесить груз весом 0,5 т к ходовому концу, вся нагрузка на подъемный блок и скобу станет равной 2,5 т. Из этого следует, что использование талей разгружает лебедку и дает возможность поднимать на ноке стрелы более тяжелые грузы, при учете общей прочности грузового устройства.
Рис. 12. Силы трения на талях и силы, необходимые для подъема и опускания груза
На рис. 12 показаны силы трения. Цифры, написанные вдоль лопаря, показывают преодолеваемые силы трения при подъеме и опускании груза. Величина А показывает силу на блоке при подъеме, величина В – при опускании груза. Из приведенных данных ясно, что больший выигрыш при подъеме получается, если лопари проходят через большее число шкивов. Данные приведены без учета веса самих талей. Системы блоков, лопари и стропы имеют значительный вес, которые в действительности следует прибавлять к величинам А и В.
Канифас-блоки и металлические блоки измеряют по диаметру шкива. Деревянные блоки подбирают с учетом величины лопаря. Ширина деревянного блока должна быть в три раза больше длины окружности лопаря, т. е. для лопаря с длиной окружности 50,8 мм необходим блок шириной 152,4 мм, для лопаря с длиной окружности 76,2 мм – блок шириной 228,6 мм.
Стальные тросы
Стальные тросы, используемые на судах, изготовляют из проволоки, свитой по спирали. Обычно тросы состоят из шести прядей, свитых вокруг пенькового манильского или джутового сердечника. Сердечник заполняет пустоту в центре троса, образованную между прядями, предохраняет пряди от проваливания к центру и защищает внутренние слои проволок троса от коррозии, так как пропитан антикоррозионной смазкой, которая выделяется между проволоками прядей при изгибе троса. Стальные тросы изготовляют из стальной проволоки разного качества. Ее сорта указаны в перечнях продукции изготовителей. Жесткие тросы, пряди которых состоят только из стальной проволоки, используют для стоячего такелажа, их называют стальными такелажными тросами. Обычные стальные тросы для лебедок также состоят из проволочных прядей без пеньковых нитей. Если диаметр троса достигает 57 мм, то он должен быть снабжен сертификатом.
Швартовные стальные тросы обычно свиты из 72 проволок, по 12 в каждой пряди вокруг пенькового сердечника. Это гибкие тросы. Тросы, свитые из 144 тонких проволок (по 24 в каждой пряди) вокруг пенькового сердечника, называют тросами повышенной гибкости Раньше их использовали для обшивки шкаторин на больших парусных судах, а в настоящее время как грубый бегучий такелаж на топенантах грузовых стрел, для работы с которыми обычные гибкие стальные тросы оказываются слишком неудобными.
Рис. 13. Типы стальных тросов
Бензельные тросы изготовляют из мягкой железной проволоки. На рис. 13 слева направо показаны: такелажный трос из 42 проволок, трос лебедки крана из 114 проволок, гибкий швартовный трос из 72 проволок, трос повышенной гибкости для бегучего такелажа из 144 проволок, а также бензельный трос из 7 и 12 проволок.
На небольших судах широкое применение получили гибкие тросы, которые используются как швартовные. Они свиваются из тончайших проволочных прядей, соединенных с прядями из лучшей пеньки. Около 50-60 лет назад Фагерста изобрел другой вид троса, так называемый тайфун-трос, в каждой пряди которого стальной сердечник оплетался пеньковой нитью. Такие тросы были гибкими, но не очень прочными, потому что внешняя пеньковая нить легко рвалась и цеплялась за выступающие части лебедки, что постепенно выводило трос из строя. В настоящее время выпускают тросы, подобные описанным выше, так называемые комбинированные, со стальным сердечником и внешними нитями из манилы или сизаля, которые используют на рыболовных траулерах в качестве траловых тросов и футрепов.
Рис. 14 Приспособление для распускания бухты троса
При распускании бухты стального троса его сматывают за наружный конец. Это первое условие для того, чтобы не образовались колышки. Легче всего, это делать, поставив бухту на деревянный крест, который подвешивают на гак лебедки (рис. 14). За неимением такого креста бухту можно поставить на ребро и катить ее по палубе или подвесить за нок грузовой стрелы и медленно вращать, разматывая трос. Один человек контролирует бухту, а другой тянет трос и, в случае если это швартовый трос, наматывает его на вьюшку. Если на старом швартовом тросе много колышек, их можно расправить, перемещая трос с правого борта на левый и обратно, или с помощью лебедки, пуская ее на задний ход.
Если размотанный трос необходимо раскрутить на плоской поверхности, то это делают по часовой стрелке так, чтобы последующая петля ложилась на середину предыдущей (рис. 15).
Прежде чем отрубить отрезок стального троса какой-либо длины, на трос накладывают марки. Марки нельзя ставить близко друг к другу, так как они могут распуститься от деформации троса при его обрубке. Толстые такелажные тросы легче пилить пилой. Участок троса плотно стягивают шкимушгаром и разрезают по центру этой обмотки.
Рис. 15. Раскручивание троса
В настоящее время тросы изготовляют из оцинкованной стальной проволоки. Оцинковка в большой степени увеличивает надежность троса, так как предохраняет его от коррозии. Но со временем на блоках и кнехтах цинковое покрытие стирается и трос начинает ржаветь под воздействием соленой воды. Трение проволок друг о друга при изгибе троса приводит к стиранию цинка внутри троса. Поэтому время от времени тросы следует пропитывать антикоррозионным веществом. Лучше всего для этого пользоваться специальными смазками.
Кислота разъедает цинк. Для оцинкованных тросов лучше всего подходит минеральное масло (консистентная смазка для защиты от коррозии). Для старых тросов, на которых стерт цинковый слой, хорошо подходят льняное масло, тюлений или китовый жир.
Гибкость троса в значительной степени определяется толщиной проволоки. Поэтому для жестких тросов не следует использовать блоки малого диаметра. Диаметр шкива должен быть по крайней мере в 300 раз больше диаметра проволок в составе троса. Следовательно, например, стальной трос, свитый из толстых проволок диаметром 1 мм, нельзя использовать в блоках, диаметр шкивов в которых меньше 30 см. Для тросов, свитых из проволок диаметром 0,8 мм, требуется шкив диаметром 25,4 см. Такие размеры рекомендованы для шкивов, вращающихся с малой скоростью, что характерно для судов. При вращении с большими скоростями диаметр шкива должен быть увеличен. Толщина стальных тросов, используемых на судах, определяется по длине окружности троса в английских дюймах или по диаметру в миллиметрах. Толщина тонких тросов, используемых на яхтах и в промышленности, всегда дается по диаметру в миллиметрах.
Прочность тросов в большой степени зависит от качества стали и типа свивки. Так, например, стальной цельнометаллический трос, пряди которого состоят только из стальных проволок, намного прочнее троса с пеньковым сердечником. Ниже приведены данные о разрывной прочности тросов в зависимости от качества стали для тросов толщиной 76,2 мм (данные крупнейшей английской фабрики по производству тросов, г.Кардифф-Буливан):
Рис. 16. Нагрузка на стропы при различных углах между ними при подъеме груза
Нагрузка на двойные стропы зависит от величины угла, образующегося между стропами при подъеме груза. Для обычных нагрузок величина угла не должна превышать 45°. Нагрузка возрастает пропорционально величине угла (рис. 16). Это общее правило относится к стропам из стальных тросов и цепей, а также к случаю подъема груза двумя лебедками.
Стальные тросы для судового такелажа начали выпускать в Великобритании более 100 лет назад. Фирма по производству тросов Ньюол в г.Ньюкаслэн-Тайн запатентовала усовершенствованный стальной трос. В 50-х гг. XIX в. большинство новых судов флота Англии оснащалось стальным такелажем, который стал отличительной особенностью английских судов.
В Швеции стальной такелаж начали применять позднее. Первым судном с полным стальным такелажем был "Франс Шартан", построенный в 1864 г. в Евле, Швеция. В 70-х гг. XIX в. на шведских одномачтовых судах ванты были пеньковыми, а штаги – стальными. На шведских пароходах в это же время стоячий такелаж изготовляли только из стального троса. Для бегучего такелажа стальные тросы было сложнее приспособить. И только через 60 лет на многих шведских судах появились цепные топенанты грузовых стрел. В те времена суда долго подготавливались к отплытию. Когда-то пенька помогла освоению мирового океана, теперь стальные тросы привели к индустриализации морских плаваний.
В настоящее время нержавеющие стальные тросы помогли сделать новый шаг в освоении морских просторов. Материал, из которого изготовляют тросы: нержавеющая, легированная, хромоникельмолибденовая сталь, стандарт SIS 2343. Для уменьшения напряженности троса проволоку обычно полируют и придают ей нужную форму.
Данные о надежности и прочности различных тросов даются в таблицах, прилагаемых изготовителями тросов.
Для расчета максимальной рабочей прочности троса следует исходить из квадрата диаметра, который нужно умножить на 18 – для стальных тросов без растительных волокон, или на 14 – для стальных тросов с растительными волокнами, оплетающими сердечник; на 12 – для стальных тросов с растительным сердечником; на 8 – для стальных тросов с растительными волокнами, вплетенными в пряди.
Пример 1. Трос диаметром 9 мм с растительными волокнами вокруг сердечника:
9^2-14 = 1134 кг.
Пример 2. Трос диаметром 12 мм с растительным сердечником:
12^2 – 12= 1728 кг.
Такие расчеты гарантируют пятикратный запас прочности. Вышеупомянутые волокна – растительные. Для стальных тросов с синтетическими волокнами запас прочности должен быть увеличен.
Для оплетенных стальных тросов, например штур-тросов с 5-миллиметровой оплеткой из поливинилхлорида, рабочая прочность рассчитывается по цельнометаллическому тросу диаметром 2,5 мм: 2,5^2-18 – = 6,25-18= 112,5 кг.
Цепи
Звенья, из которых состоят цепи, различаются по калибру. Они бывают короткими, длинными и с распорками (контрфорсами) (рис. 17). На судах цепи с короткими звеньями в настоящее время не имеют широкого применения. Однако на малых судах их используют в рулевом механизме, для крепления грузов на палубе, при разгрузке тяжелых штучных товаров и в качестве якорных цепей. В такелаже сейчас цепи используют реже, чем раньше, так как вместо них применяют стальные тросы.
Рис. 17. Цепи
Цепи с длинными звеньями на судах также встречаются не очень часто. Все же иногда их используют в качестве опорных концов стальных топенантов, чтобы на палубе было легко закреплять на нужной высоте грузовые стрелы. Их используют также для крепления грузов на палубе. Если цепи используют в такелаже или для палубных работ, их необходимо как следует смазывать, так как ржавые звенья сильно трутся друг о друга. Цепи с короткими и длинными звеньями изготовляют из кованого железа. Цепи бывают ручной ковки, машинной ковки или электросварными.
Кованые цепи с короткими звеньями испытывают под пробной нагрузкой. Они должны выдерживать груз 25 кг на 1 мм поперечного сечения звена. Если цепь сварная, то общая нагрузка должна быть на 25% меньше. Считается, что цепи с длинными звеньями на 30% слабее цепей с короткими звеньями. Цепи, используемые при погрузочно-разгрузочных работах, должны быть снабжены сертификатом, если их толщина 16 мм и более. Если такие цепи из незакаленной стали используют на судах водоизмещением 300 т и выше, то по мере пользования их следует прокаливать через промежутки времени, предписанные Управлением морских перевозок.
Толщина цепей измеряется в английских дюймах по диаметру поперечного сечения металла звена. В шведских справочниках она дается соответственно в миллиметрах. Для кованых цепей с короткими звеньями действует зависимость А = D^2 и В = 5 D^2, где А – рабочая нагрузка, т; В – разрывная нагрузка, т; D – диаметр поперечного сечения металла звена, см.
Следует обратить внимание на то, что в этих формулах диаметр поперечного сечения звена взят в сантиметрах, а не в дюймах. Нагрузка, рассчитанная по этим формулам, дает пятикратный запас прочности цепи.
Хорошие цепи без дефектов можно использовать под нагрузками:
Такая нагрузка, выраженная в тоннах, соответствует квадрату диаметра поперечного сечения металла звена в сантиметрах и гарантирует пятикратный запас прочности, как и по приведенным выше формулам для расчета разрывной нагрузки.
Цепи с контрфорсами используют исключительно как якорные и швартовные. Их куют вручную из железа, а также из литой стали. Распорки не увеличивают прочности цепей, но предотвращают их спутывание.
Якорные цепи изготовляют из отрезков (смычек) длиной по 27 м, которые соединяют в цепи необходимой для данного судна длины. Дуга концевой скобы должна быть обращена к якорю, чтобы цепь не застряла в клюзе или на брашпиле, когда она отдается при постановке судна на якорь.
Поперечное сечение штыря концевой скобы бывает овальным. Он скрепляется со скобой деревянным нагелем, который вставляют в отверстие конической формы на концах концевой скобы. Во избежание появления ржавчины перед установкой на место штырь следует смазать, для смазки пользуются бараньим или говяжий жиром или свинцовыми белилами. Также надо промазать и деревянный нагель, чтобы предотвратить ржавление отверстия, в которое он входит, При разъеме скобы деревянный нагель можно не выбивать, его обрезают.