Текст книги "Расшифрованный код Ледового человека: От кого мы произошли, или Семь дочерей Евы"
Автор книги: Брайан Сайкс
Жанры:
Биология
,сообщить о нарушении
Текущая страница: 4 (всего у книги 20 страниц)
Это древо выглядит более разумным и правдоподобным, чем то, которое можно было бы изобразить по данным исследований групп крови в Первую мировую войну – там, если помните, вскрылась генетическая связь России и Мадагаскара, которая была подробно описана.
Эдвардс, признавая, что «эволюционные древа, построенные по результатам исследований, едва ли окажутся последним и окончательным словом в изучении эволюции человека», предлагал вместо них использовать диаграммы, как наиболее приемлемый способ наглядно представить генетическую информацию. Поначалу авторы генетических древ составляли их со скромными и похвальными намерениями, но, к сожалению, впоследствии (при их интерпретации) они стали делать чересчур смелые выводы, ставшие источником споров и разногласий. Тому было много причин, одна из них – то, как выглядят эти схемы. Внешне они и в самом деле напоминают настоящие эволюционные древа, часто их и принимают за таковые. Однако истинными эволюционными древами они могли бы стать лишь при условии, что человеческая эволюция действительно представляла бы собой постепенное разделение народов в точном соответствии с линиями схемы (точно как в выдуманных Эдвардсом для примера племенах с их шестами и дисками). Тогда и только тогда мы были бы вправе сказать, что те узлы или точки на древе, из которых расходятся линии, отражают реально существующую картину. Тогда возможно было бы различить народы или другие популяции, которые существовали до разделения, так сказать, протопопуляции. Но так ли все обстоит в настоящей, реальной эволюции? Например, в европейской части древа существовала ли когда-либо такая штука, как англо-итальянская протопопуляция, этакая преднация, которая однажды решительно и бесповоротно разделилась пополам, дав начало двум современным народам, населяющим ныне Англию и Италию? О чем-то подобном можно было бы говорить в том случае, если бы англичане и итальянцы стали двумя разными биологическими видами, лишенными возможности скрещиваться между собой и давать общее потомство. Но англичане и итальянцы этой способности не лишены, они женятся друг на друге, и такие смешанные браки заключались во все времена. Как мы увидим в следующих главах книги, людям просто не свойственно развиваться иначе.
Возможно, наиболее серьезный довод против обсуждаемых нами древ состоит в следующем: сама их структура подразумевает, что на концах ветвей, а именно, популяции (народы), представляют собой нечто законченное, неизменное и полностью сформированное. Подобное безапелляционное разделение людей на группы грозит тем, что может произойти увековечивание расизма и расистского подхода к классификации человечества. На схеме каждый народ изображен как некая отвлеченная генетическая величина, которой в действительности не существует. Есть люди, реально живущие на Тибете и в Японии, но целостная популяция– или народ Тибета или Японии – это бессмыслица с точки зрения генетики. Как покажет эта книга, объективного разграничения рас не существует, оно невозможно в принципе. Даже Артур Мурант полвека назад признавал этот факт: «Пожалуй, исследование групп крови демонстрирует гетерогенность любой, даже самой надменной нации и свидетельствует, что современные человеческие расы есть не что иное, как временные объединения, постоянно находящиеся в процессе... перемешивания, каковое характерно для любого биологического вида в его развитии». Соблазн классифицировать человечество, распределить людей по каким-то категориям, не имеющим под собой объективных оснований, есть неизбежное, но прискорбное следствие системы повторяемости генов, когда с ней заходят слишком далеко. Труды по генетике человека окончательно погрязли в интеллектуально бесцельной (и нравственно опасной) трясине попыток сконструировать все более детализированные классификации человечества. Так продолжалось довольно долго.
К счастью, из этого тупика наметился выход. Перелом наступил с появлением в январе 1987 года в журнале «Nature» статьи, авторами которой был ветеран американской эволюционной биохимии, недавно ушедший от нас Аллан Уилсон и двое его студентов – Ребекка Канн и Марк Стоункинг. Статья называлась «Митохондриальная ДНК и эволюция человека». Самым важным в статье была диаграмма, внешне напоминающая только что раскритикованные мною древа. Я воспроизвел небольшой ее фрагмент на схеме 2. В него попали только 16 человек из 134 представленных в оригинальной статье.
Это действительно эволюционное древо; только на этот раз диаграмма имеет значение. Значки на концах ветвей в правой части древа представляют не популяции (народы), а шестнадцать индивидуальностей,отобранных мной для иллюстрации. Шестнадцать человек из четырех различных частей света: африканцы, азиаты, европейцы и жители Папуа-Новой Гвинеи. Первое преимущество по сравнению с другими древами и состоит в том, что, в отличие от народов,ни у кого не может возникнуть сомнений в том, что существуют ли реально отдельные люди.
Они существуют, это безусловно так. Другое преимущество заключается в том, что узлы на ветвях древа также реальные люди, а не какие-то гипотетические понятия вроде «протопопуляций». Каждый узел соответствует последнему общему предку двух человек, которые ответвляются в этой точке от общего ствола. Линии, соединяющие шестнадцать людей на диаграмме, вычерчены, чтобы показать генетические различия между ними по одному весьма своеобразному гену, митохондриальной ДНК, о необычных и важных свойствах которого я собираюсь вам рассказать. По причинам, которые я объясню в следующей главе, нам точно известно, что если два человека обладают очень похожей митохондриальной ДНК, то они находятся в более близком родстве по материнской линии, чем два человека, митохондриальная ДНК у которых сильно различается.
У этих двух человек имелся общий предок, причем жил он в сравнительно более недавнем прошлом, поэтому такая пара соединена более короткими ветвями на диаграмме. Люди с более существенными различиями митохондриальной ДНК имеют более отдаленных общих предков и связаны более длинными ветвями.
Чтобы увидеть, как все это происходит, мы можем опять воспользоваться образом племени с его шестом, на который нанизаны черные и белые диски. Но условимся на сей раз, что шест – это митохондриальная ДНК, а племя, которое делится на две группы,– это человек, у которого есть двое детей. Оба ребенка наследуют одинаковую митохондриальную ДНК, что генетически эквивалентно одинаковому набору и последовательности дисков на шестах. Когда у них появляются свои дети, родители передают шесты им, так и происходит из поколения в поколение. Изредка в структуре митохондриальной ДНК происходят сбои; эти сбои, называемые мутациями, каждый раз немного изменяют ее строение. Это происходит случайно, как правило, в момент копирования ДНК при делении клетки. По прошествии времени такие случайные изменения, а их становится все больше, передаются последующим поколениям. Постепенно (это очень медленный процесс, так как случайные мутации происходят крайне редко) митохондриальная ДНК потомков делается все более непохожей на митохондриальную ДНК их предка, того самого человека, с которого начался наш пример.
Линии на диаграмме на схеме 2 – реконструкции взаимоотношений между этими шестнадцатью людьми, разработанные на основе изучения различий их митохондриальной ДНК, о которой мы вскоре будет говорить подробно. Но сейчас давайте внимательно взглянем на сам рисунок, на это древо. Уходящий вглубь длинный ствол наверху оканчивается четырьмя африканцами, в то время как на противоположном конце ствола – люди из остальной части мира, а также присутствует еще один африканец. В части ствола – остальной мир, близко расположенные ветви объединяют людей из одной части света, например, азиаты или папуасы вверху или европейцы внизу. Но мы видим, что иногда они также связывают и людей из разных мест, например, ветвь у середины древа, которая объединяет папуаса с азиатом и двумя европейцами. Что происходит? То, что чисто африканская ветвь отделена от остального мира так рано – это дополнительное доказательство древности Африки, которую демонстрировало и эволюционное древо. Запутанная картина в стволе остального мира подтверждает как раз то, что имел в виду Артур Мурант. Это и есть то самое «перемешивание, каковое характерно для любого биологического вида в его развитии». Следовательно, не приходится удивляться тому, что эта диаграмма показывает, что генетически связанные человеческие особи непредсказуемо возникают там и тут, вовсе не в тех популяциях, где можно было бы ожидать, вопреки всем теоретическим расчетам. Основополагающая фундаментальная идея о народе (популяции) как генетически и биологически обособленной единице трещит по всем швам, когда оказывается, что у представителей одного народа имеются близкие родственники среди представителей другого. Более того, используя описанный выше процесс мутаций, мы можем оценить уровень, на котором митохондриальная ДНК изменяется со временем (позднее мы убедимся в этом и подробно узнаем, как это происходит). Это означает, что мы можем разработать соответствующую временную шкалу. Когда мы это сделаем, то увидим, что все ветви и стволы сходятся в единой точке, «корне» древа, точнее, расходятся от нее примерно на 150 тысяч лет назад. А это может означать только одно – человечество, как биологический вид, намного моложе, а все люди намного теснее связаны между собой, чем полагают многие из нас.
Эффект от статьи «Митохондриальная ДНК и эволюция человека» оказался поразительным. Эта статья стала на одну из сторон в многолетней дискуссии об основополагающем вопросе эволюции человека. На протяжении долгих лет ее участники ожесточенно ломали копья, споря о происхождении современного человека, базируя свои гипотезы и выводы на ископаемых скелетах, так и эдак интерпретируя археологические находки, главным образом черепа. Обе стороны пришли к соглашению относительно того, что современный Homo sapiens,вид, к которому мы все принадлежим, происходит из Африки. Обе стороны согласились и насчет того, что более древний вид человека, Homo erectus,представлял собой промежуточное эволюционное звено между нами и еще более древними, более напоминающими обезьяну видами, известными по ископаемым останкам. Homo erectusвпервые появился около двух миллионов лет назад или даже раньше в Африке, оттуда он расселился в более теплые части Старого Света. Ископаемые останки Homo erectusнаходили в самых разных местах, от Европы на западе до Китая и Индонезии на востоке.
Реконструкция человека из Брокен-Хилла (по А. Шульцу)
Реконструкция черепа из Салданья-Бей в Южной Африке
Все это признавалось – и признается – обеими сторонами, принимающими участие в дискуссии. Расхождения касаются того, имело ли место гораздо более недавнее расселение из Африки современного человека. Сторонники африканской школы считают, что такое событие имело место приблизительно сто тысяч лет назад, что эти новые люди, принадлежащие к нашему собственному виду Homo sapiens,полностью и повсеместно вытеснили и заменили Homo erectus.В этой книге я так и назову эту школу – школой вытеснения. Придерживающиеся противоположных взглядов ученые – назовем их мультирегионалистами – на основании изучения ископаемых костей доказывают, что Homo sapiensэволюционировал непосредственно из местных популяций Homo erectus.To есть предлагается считать, что, например, современные китайцы являются прямыми потомками китайских Homo erectus,а современные европейцы сходным образом эволюционировали из европейских Homo erectus,в противовес предположению, что те и другие – потомки общего предка, африканского Homo sapiens,который вначале стал этим видом, а затем расселился в разные места из Африки. В мультирегионалистской схеме современный европеец и современный китаец имеют очень древнего общего предка, который жил в глубокой древности, не менее одного миллиона лет назад, тогда как по «африканскому» сценарию выходит, что их общий предок может быть существенно «моложе».
Значение древа, построенного на основе изучения митохондриального гена, состоит в том, что с его появлением впервые стало возможным объективно оценить сроки событий прошлого. Со всей очевидностью было показано, что общий митохондриальный предок всех современных людей жил на Земле всего 150 тысяч лет назад. Такие выводы прекрасно согласовались с идеями сторонников «африканской» теории и были с энтузиазмом поддержаны ее сторонниками. Что до мультирегионалистов, то они, можно сказать, потерпели поражение. Если все современные люди связаны общим предком, который жил совсем недавно – каких-то 150 тысяч лет назад, это означает, что они не могли, просто не успели бы эволюционировать из местных популяций Homo erectus,который разбрелся по разным местам миллион лет назад. И хотя мультирегионалисты отказываются признать поражение, однако древо митохондриального гена пробило зияющую брешь в их теории, нанеся ей тяжелый удар, от которого она и сейчас еще не оправилась.
Нас новость просто потрясла. Наличие научной интриги мгновенно вознесло митохондриальную ДНК на почетное место первого молекулярного интерпретатора человеческого прошлого. В генетических лабораториях во всем мире возник заметный всплеск интереса к этой проблеме. А это означает, что появится множество данных, которые мы сможем сопоставить с нашими. Если уж мы собирались заниматься интерпретацией данных по ископаемым костям, проецируя результаты на современность, то ничего лучше, чем митохондриальная ДНК, просто нельзя было придумать.
Глава IV
ОСОБЫЙ ПОСЛАННИК
Митохондрии – это мельчайшие образования, которые есть в каждой живой клетке. Они располагаются не в ядре клетки, крохотном мешочке в центре клетки, в котором находятся хромосомы, а вне его – в заполняющей клетку среде, которая называется цитоплазмой. Работа, которую выполняют в клетке митохондрии, состоит в том, чтобы помогать клетке, используя кислород, получать энергию. Чем деятельнее клетка, тем больше энергии ей требуется, тем, стало быть, больше митохондрий она содержит. Клетки активных тканей, например, мышечной, нервной, а также клетки мозга содержат до тысячи митохондрий каждая.
Каждая митохондрия ограничена двойной мембраной, внутри сложнейшей мембранной структуры находятся все ферменты, участвующие в конечном этапе кислородного обмена. Это то место, где горючее, которое мы поставляем в организм в виде пищи, сгорает в море кислорода. Здесь нет языков пламени, а кислород здесь находится в растворенном виде, однако происходящие здесь процессы вполне сопоставимы с тем, что происходит в газовой горелке или моторе автомобиля, и горение здесь тоже имеет место. Горючее и кислород соединяются и производят энергию. Энергия в горелках, печках и моторах имеет облик тепла и света. Когда топливо сгорает в митохондрии, она не начинает светиться, а вот тепло выделяется – часть того тепла, которое дают митохондрии, расходуется на поддержание температуры тела. Однако основной продукт – это высокоэнергетичные молекулы вещества, которое называется АТФ; оно-то используется организмом практически повсюду, от сокращения сердечной мышцы до процессов в нервных окончаниях сетчатки ваших глаз, которые сейчас читают эту страницу, и клеток вашего мозга, которые обрабатывают полученную от глаз информацию.
В глубине каждой митохондрии имеется крошечный фрагментик ДНК, мини-хромосома, длина которой очень мала – всего шестнадцать с половиной тысяч оснований. Это действительно очень мало по сравнению с хромосомами ядра, содержащими три тысячи миллионов оснований. Сам по себе факт наличия ДНК в митохондрии оказался для всех полной неожиданностью. Но к тому же она весьма необычна во всех отношениях. Начнем с того, что двойная спираль этой ДНК замкнута в окружность. Циркулярные хромосомы известны у бактерий и других микроорганизмов, но в многоклеточных организмах и тем более у человека их нет. Следующий сюрприз состоит в том, что генетический код в митохондриальной ДНК слегка отличается от кода в ДНК ядерных хромосом. Митохондриальные гены содержат код участвующих в обработке молекул кислорода ферментов, тех самых, которые трудятся в митохондрии. Однако многие гены, управляющие процессами, происходящими в митохондриях, надежно внедрены в хромосомы ядра.
В чем причина таких странностей? Современное объяснение звучит фантастично. Есть гипотеза, согласно которой митохондрии некогда были свободно живущими микроорганизмами, которые очень давно, сотни миллионов лет назад, внедрились в более развитые клетки и стали жить в них. Можно назвать их паразитами, а можно сказать, что возник симбиоз, в котором клетки и митохондрии стали полезными друг для друга. Клетки получили громадную выгоду – способность использовать кислород. Ведь с помощью кислорода можно производить гораздо больше молекул АТФ, чем без него. В свою очередь митохондрии, очевидно, сочли жизнь внутри клетки более удобной, чем самостоятельное существование в среде. Постепенно, за миллионы лет, некоторые митохондриальные гены перекочевали в ядро клетки и остались там. Это значит, что отныне митохондрии стали пленницами клеток и не могут перейти к свободному образу жизни, даже если бы захотели. Их существование в клетке узаконено и закреплено генетически. Даже сейчас можно видеть следы неудавшихся попыток обмена генами между митохондрией и ядром. Ядерные хромосомы изобилуют фрагментами – обломками митохондриальных генов, которые перебрались в ядро в ходе эволюции. Они не в состоянии принимать участия ни в какой деятельности, потому что эта их целостность нарушена. Так что они просто «сидят» там, словно молекулярные ископаемые, напоминания о неудачных перемещениях, происходивших в далеком прошлом.
Митохондрии имеют и еще одну уникальную черту. В отличие от ДНК в хромосомах ядра, которая достается нам в наследство от обоих родителей, митохондрии каждый из нас получает только от одного из родителей – от матери. Цитоплазма человеческой яйцеклетки буквально набита ими – она содержит четверть миллиона митохондрий. Клетки же спермы бедны митохондриями – их буквально несколько штук, ровно столько, чтобы сперматозоиду хватило энергии доплыть до яйцеклетки и проникнуть в нее. После успешного оплодотворения сперматозоид, доставивший к пункту назначения свой набор ядерных хромосом, больше в митохондриях не нуждается, и они отбрасываются вместе с хвостом-жгутиком. В располневшей оплодотворенной яйцеклетке теперь содержится ядерная ДНК, полученная от обоих родителей, но при этом единственные митохондрии в ее цитоплазме – те, что находились там все время, и все они попали туда от матери. Вот по этой простой причине митохондриальная ДНК всегда наследуется по материнской линии.
Оплодотворенная яйцеклетка делится раз за разом, формируя вначале эмбрион, затем плод, который в конечном итоге превращается в новорожденного младенца, и, наконец, вырастает во взрослого человека. В ходе этого процесса единственные митохондрии, которые можно обнаружить,– это копии оригинальных митохондрий из материнской яйцеклетки. Хотя митохондрии имеются во всех клетках тела и у мужчин, и у женщин, однако детям по наследству их передают только женщины, потому что только у женщин в организме развиваются яйцеклетки. Отцы передают потомству ядерные хромосомы с ДНК, но их митохондриальная ДНК к последующим поколениям не переходит.
Время от времени в ДНК, как митохондриальной, так и ядерной, происходят незапланированные изменения просто потому, что в процессе копирования при делении клеток случаются сбои и ошибки. Клетки снабжены особыми механизмами, которые отлавливают и исправляют большую часть подобных ошибок, но время от времени их бдительности оказывается недостаточно, и нарушителям удается проскользнуть. Если такие мутации возникают в клетках, из которых впоследствии разовьются яйцеклетки и сперматозоиды (такие клетки называются половыми),то они могут передаться и последующим поколениям. Мутации, возникающие в других клетках тела, называемых соматическими,из которых не будут развиваться половые клетки, не могут быть переданы дальше. Большая часть генных мутаций вообще не имеет никакого значения. Лишь изредка, если мутация поразит или выведет из строя какой-нибудь важный для жизни ген, ее удается заметить. В худшем случае такие мутации могут привести к серьезному наследственному заболеванию, о некоторых из них мы поговорим в следующей главе, но по большей части они безвредны.
Уровень возникновения мутаций в ядерных хромосомах чрезвычайно низок – грубо говоря, в норме при каждом делении клетки мутирует одно азотистое основание из тысячи миллионов. В митохондриях же контроль за ошибоками не настолько отлажен, поэтому мутации возникают примерно раз в двадцать чаще. Это означает, что в митохондриальной ДНК можно обнаружить существенно больше изменений, чем в отрезке ядерной ДНК той же длины. Другими словами, «молекулярные часы», с помощью которых мы, посредством мутаций в ДНК, можем определять время, в митохондриях тикают намного быстрее по сравнению с ядром. Это делает митохондрии даже более привлекательными в качестве инструмента для исследования эволюции человека. Если уровень мутаций был бы чересчур низким, то у подавляющего большинства людей на Земле митохондриальная ДНК была бы совершенно одинаковой, и из-за малого числа изменений было бы практически невозможно заметить происходящее со временем развитие.
А нас ждала и еще одна награда. Мутации, конечно, обнаруживаются по всей окружности митохондриальной ДНК, и Аллан Уилсон со своими студентами в «Митохондриальной ДНК и эволюции человека» изучали ее целиком. Однако имеется коротенький отрезок ДНК, где мутации особенно часты. Этот участок, длиной около пятисот оснований, назвали контрольным регионом. Ему удалось накапливать особенно большое количество мутаций благодаря тому, что, в отличие от остальной части митохондриальной ДНК, он не несет каких-то конкретных кодов. Если бы они там были, тогда повышенное количество мутаций могло повлиять на функционирование митохондриальных ферментов. Такое порой случается, если мутации поражают другие участки митохондриальной ДНК, вне контрольного региона. Некоторые редкие неврологические заболевания развиваются как раз оттого, что мутации этих генов выводят из строя важные части митохондриального механизма. Такие митохондрии из-за того, что слишком сильно повреждены, редко выживают, а следовательно, следующим поколениям они передаются лишь в исключительных случаях. Поэтому такие мутации постепенно сглаживаются и, наконец, исчезают вовсе. С другой стороны, мутации контрольного региона не исчезают именно потому, что зона не имеет никаких специфических функций. Эти мутации нейтральны. Создается впечатление, что, хотя для того, чтобы митохондрия могла правильно разделиться, этот участок ДНК должен находиться на своем месте, его собственная точная последовательность при этом большой роли не играет.
Таким образом, для нашего исследования эта ситуация просто идеальна: короткий отрезок ДНК, до отказа набитый нейтральными мутациями. Конечно, куда быстрее и дешевле считывать последовательность этого участка, всего пятьсот оснований, чем последовательность всей митохондриальной ДНК, в которой оснований, как вы помните, шестнадцать тысяч. Но окажется ли контрольный регион стабильным настолько, чтобы можно было опираться на нее в эволюционных исследованиях? Что, если контрольный регион мутирует себе напропалую в каждом поколении, да еще и с непомерно высокой частотой? В этом случае было бы практически невозможно отследить хоть какие-то закономерности на больших отрезках времени. Нам уже было понятно из работы Аллана Уилсона, что если мы хотим с помощью митохондриальной ДНК копнуть поглубже генетическую историю своего вида, Homo sapiens,то придется углубиться как минимум на 150 тысяч лет человеческой эволюции – примерно шесть тысяч поколений, считая по 25 лет на поколение. Если мутации в контрольном регионе окажутся слишком беспорядочными или бурными, будет очень трудно, чтобы не сказать невозможно, различить важные сигналы и выделить их среди всех случайных изменений на протяжении нескольких поколений. Нам необходимо было найти способ удостовериться в том, что это не так, прежде чем замахиваться на масштабное и требующее колоссальных денежных и временных затрат исследование. Каким образом проверить это и получить убедительные подтверждения?
В идеале мне хотелось найти побольше людей из числа ныне живущих, для которых удалось бы доказать связь по материнской линии от одной-единственной женщины. Когда я занимался исследованиями в области медицинской генетики, изучая наследственное заболевание костей, то мне приходилось иметь дело с большими семьями; теперь я извлек из архивов списки, в которые вносил когда-то многочисленных родственников и предков.
Списки уходили вглубь на много поколений, однако, к моему разочарованию, в них было до обидного мало непрерывных материнских линий, которые связывали бы живых членов семейств. Конечно, можно было обратиться за помощью к семьям, чтобы выйти на других, не вошедших в мои таблицы родственников; правда, это была бы слишком долгая история. И все же казалось, что другого выхода не существует, так что я со вздохом принялся выписывать адреса и фамилии. В тот вечер, по пути домой, я пытался придумать, как еще можно выйти из положения, и тут меня осенило – то есть я испытал то редкое состояние, когда из дальних закоулков разума всплывает нечто, какая-то невнятная мысль, и в считанные доли секунды человек понимает, что нашел решение проблемы, еще даже не успев сообразить, в чем же именно оно состоит. В данном случае я внезапно вспомнил о золотистом хомячке.
Когда я был маленьким мальчиком, то прочитал в детской энциклопедии, что все золотистые хомячки – зверьки, которых держат в качестве домашних питомцев по всему миру, что все они являются потомками одной-единственной самки. Я могу с уверенностью сказать, что не вспоминал о прочитанном в течение десятилетий. И лишь теперь это всплыло в моей памяти. Я отчетливо помню, как подумал, что это не может быть правдой. А что, если все же правда? Тогда это идеальная модель для проверки стабильности контрольного региона. Если все золотистые хомячки мира представляют собой прямую линию потомков по материнской линии от этой «праматери всех хомячков». Следовательно, все они должны были унаследовать от нее митохондриальную ДНК, ведь у хомячков она передается по материнской линии, точно так же, как и у людей. Оставалось только собрать образцы ДНК у как можно большего количества живых хомячков и сравнить последовательность азотистых оснований в контрольном регионе. И если и вправду все началось с одной самки, то не нужно было кропотливо отслеживать родословные – ведь они в любом случае привели бы к ней. А в том случае, если контрольный регион стабилен настолько, чтобы удовлетворять условиям наших исследований, его последовательность должна оказаться одинаковой или почти одинаковой у всех живущих на свете хомячков.
Я попросил Криса Томкинса, студента, который летом 1990 года как раз работал у нас в лаборатории над дипломным проектом по генетике, подобрать все возможные материалы по золотистому хомячку. Первое сделанное им открытие касалось названия – оказалось, что правильнее называть золотистого хомячка сирийским. После этого Крис отправился в Оксфордскую публичную библиотеку и вернулся оттуда с добрыми вестями: он обнаружил существование Национального совета Великобритании по сирийскому хомячку. Звонок секретарю, и на другой день мы уже ехали по полученному адресу в Илинг, что в западной части Лондона. Нас ждал радушный прием, секретарь Британского клуба по сирийским хомячкам Рой Робинсон (ныне, к сожалению, покойный) встретил нас весьма дружелюбно и приветливо.
Мистер Робинсон был человеком прошлой эпохи – самоучка, исследователь-любитель, но при этом великолепный и тонкий знаток в своей области. Его тускло освещенный кабинет оказался полон книг по генетике животных, многие из которых написал он сам. Он снял с полки книгу по сирийскому хомячку. Мистер Робинсон очень плохо видел, даже надев очки с толстенными стеклами, он различал текст, только поднеся книгу к самому лицу. Он подтвердил, что история, вычитанная мною в детстве, была правдой. По-видимому, в 1930 году члены зоологической экспедиции в горные районы вокруг Алеппо (сейчас Халаб) на северо-западе Сирии поймали четырех необычных грызунов, некрупных, золотисто-коричневых, трех самцов и одну самку. Зверьков взяли с собой, в Еврейский университет в Иерусалиме. Их держали в одной клетке, вскоре самка забеременела и принесла потомство, так что размножение в неволе оказалось делом совсем не сложным. Университет начал рассылать хомячков в медицинские исследовательские институты по всему миру, и вскоре они стали очень популярны как лабораторные животные в качестве альтернативы более обычным крысам и мышам,– и это несмотря на то, что хомячки были активны только по ночам. Они отличались скверным характером: так и норовили цапнуть за палец того, кто нарушал их покой (и правильно делали!). Первым начал работать с сирийскими хомячками Институт Совета по медицинским исследованиям в Милл-Хилле (на севере Лондона). Отсюда несколько зверьков было передано в Лондонский зоопарк. К 1938 году хомячки добрались до Соединенных Штатов.
Случается, что лабораторных животных, которые отработали свое и больше не нужны для исследования, сотрудники забирают домой, вместо того чтобы умертвить. Хомячки переходили из дома в дом, от владельца к владельцу, их популярность росла, со временем ими заинтересовались зоомагазины и торговцы животными. Хомячков внесли в каталоги, стали возникать объединения любителей. В 1947 году в одном из пометов родился хомячок с пегой окраской. Это была первая из многочисленных цветовых вариаций, возникающих в результате спонтанных мутаций генов, ответственных за окраску шкурки, а проявилась она из-за близкородственных скрещиваний между животными. Скрестить мутантов было совсем не трудно, так была выведена чистопородная линия. Началась настоящая лихорадка – каждый стремился обнаружить у хомячков все новые варианты окраски, так что в последующие годы было найдено немало таких мутантов и выведено огромное количество чистопородных линий – кремовые, шоколадные, шелковые, черепаховые и множество других. Хомячки оказались прекрасными домашними питомцами, а разнообразие в окраске только добавило к ним интерес. Произошел своего рода популяционный взрыв – в наши дни любители животных по всему миру держат, в общей сложности, более трех миллионов хомячков.