355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Смагин » Вблизи абсолютного нуля » Текст книги (страница 5)
Вблизи абсолютного нуля
  • Текст добавлен: 7 марта 2018, 20:30

Текст книги "Вблизи абсолютного нуля"


Автор книги: Борис Смагин



сообщить о нарушении

Текущая страница: 5 (всего у книги 8 страниц)

На Северном руднике

Далеко на Севере расположен Норильский горный комбинат. Его создали за Полярным кругом советские люди. Город большой, со всеми удобствами настоящего европейского города.

А между тем Норильск находится там, где еще недавно и нога человека не ступала, где лишь изредка попадались охотники.

Почему же людей потянуло в такую даль? Норильск сказочно богатый край. Чего тут только нет! Черные руды почти на поверхности земли. Нагибайся и собирай! Кроме того, там есть масса драгоценнейших веществ, которые ценятся, как говорится, на вес золота.

Поэтому и появился здесь большой красивый город. Полезные ископаемые добывают самым простым способом. Гордые породы взрывают, благо далеко углубляться не нужно. Потом взорванное сырье собирают, чистят, выплавляют металлы.

Но главное для нас, главное, для чего мы вспомнили о Норильске, – это, конечно, взрывы, потому что во взрывчатку, особенно часто используемую в Норильске, входит жидкий кислород.

В сотнях приключенческих книг и кинокартин рассказывают, как под покровом ночи наши храбрые партизаны подрывали эшелоны с фашистскими солдатами, грузами, оружием.

Кусок взрывчатки лежит под рельсами, от него в сторону тянется шнур. Шнур поджигают, пламя устремляется к взрывчатке. И вот страшный взрыв поднял вверх и рельсы и шпалы, сбросил под откос вагоны фашистского эшелона. Громовой удар, сопровождаемый тучей пыли, – вот что такое взрыв.

Иногда вместо горящего шнура действует электрическая искра. Но и в этом случае взрыв происходит от детонации. Детонатор – начальная затравка взрывчатого вещества. От высокой температуры рвется сначала детонатор. А за ним уже взлетает на воздух основная масса взрывчатки.

Взрывчатку обычно готовят на специальных химических заводах и привозят к местам взрыва в готовом виде. Там ее снабжают детонатором. И – взрыв! Но взрывчатку с жидким кислородом – оксиликвит – изготовить удивительно просто.

Как раз из-за этого оксиликвитами так удобно пользоваться. Посудите сами. Положили мы в бумажный патрон кусок торфа. А потом осторожно нальем в торф жидкий кислород. Налили? Ну, все в порядке. Взрывчатка создана. Надо поместить ее на место взрыва, прикрепить детонирующий шнур, поджечь и спрятаться в укрытии. Через несколько минут грянет взрыв.

И незачем возить на далекий комбинат изготовленные где-то взрывчатые вещества, когда их можно дешево соорудить прямо на месте! В Норильске оксиликвиты готовят из торфа. Но можно делать взрывчатку из дерева, стружек, соломы, сажи…

Эти материалы называются поглотителями, так как поглощают жидкий кислород.

Что там происходит?

Пористое вещество заполнилось жидким кислородом. Много его туда ушло. Кислород с веществами органическими, то есть образованными естественно природой, соединяется легко. В этом и состоит смысл взрыва оксиликвитов. Детонация как бы подстегивает жидкий кислород – окисляй, организуй, действуй! И начинается бурная реакция. При реакции выделяется тепло. Быстрое выделение тепла в небольшом пространстве и есть взрыв.

И знаете, чем еще хороши заряды оксиликвита?

До сих пор в разных местах, в городах и селах нашей страны находят неразорвавшиеся снаряды, старые мины, авиационные бомбы. Их обезвреживать очень опасно. Саперы рискуют жизнью, чтобы ликвидировать какую-нибудь бомбу, пролежавшую в земле пятнадцать – двадцать лет.

А если бы взрывчатка в бомбе была оксиликвитом, то и бояться было бы нечего. Потому что оксиликвит через несколько часов становится абсолютно безвредным. Кислород постепенно испарится, снова станет газом. И останется кусок торфа, который так же способен взорваться, как, например, вспорхнуть в воздух.

Так жидкий кислород производит полезные взрывы!

До цели остается двадцать градусов

Настала пора проститься с жидким воздухом и всеми газами, его «потомками». Правда, остается еще интересная встреча с гелием. Но его добывают не из воздуха. Гелий поступает к нам в смеси с природными газами, с тем самым газом, который горит у нас на кухне. Минус 252,8 °C. Всего лишь двадцать градусов отделяет нас от абсолютного нуля! Стал жидким самый легкий газ на свете – водород. Долгое время держался неон. Но за шесть градусов до сжижения водорода сдался и он.

Жидкий водород получить нелегко. И еще труднее удержать. Ведь температура упала почти до абсолютного нуля. Со всех сторон стремится к жидкому водороду тепловая энергия. Как будто раздается клич: «Здесь очень холодно, помогите!» Нужна хорошая защита!

Жидкий водород, как и другие бывшие газы, уже прошел путь от лабораторий к заводам. Он теперь нужен не только ученым, исследователям сверхнизких температур.

Многим вообще кажется, что сверхнизкие температуры встречаются только в лабораториях, только в научных работах. Между тем даже жидкий гелий и тот уже стал веществом, с которым имеют дело инженеры на производстве. А другие газы – тем более.

Водород как газ известен уже давно. Когда-то первые смельчаки, оторвавшиеся от Земли на воздушных шарах, заполняли их водородом. Водород – самое легкое вещество из всех известных на земле. Поэтому подъемная сила водородных шаров большая. Но есть у водорода и одна неприятная особенность. Водород легко загорается. Поджечь его – пара пустяков. Даже маленькая искра сразу вызовет пожар. Поэтому воздушные шары с водородом опасны. И в свое время отважные путешественники не раз гибли из-за того, что загоралась оболочка воздушного шара.

Так погиб в XVIII веке отважный ученый Пилатр де Розье.

Именно водородом наполнил свой воздушный шар герой романа Жюля Верна «Пять недель на воздушном шаре» доктор Фергюсон. Вы помните, конечно, как боялись отважные путешественники, что шар взорвется. Почему же водород ведет себя так воинственно? Дело в том, что вместе с кислородом этот газ образует особую горючую смесь. Ее название само говорит за себя – гремучий газ. Чуть только попадает в такой газ едва заметная искра, как уже не миновать страшного взрыва. А после взрыва на стенках сосуда, если он, конечно, остался в целости, можно увидеть капельки воды. Водород, соединяясь с кислородом, образует воду. Добывают его также из воды с помощью электролиза. В воду опускают две металлические пластинки – электроды. И к ним подключают электрическую батарею. Идет электрический ток. В воде появляются пузырьки газа. Один из этих газов и есть водород. Его можно собрать в какой-нибудь закрытый сосуд. Из открытого сосуда водород быстро вытечет. А так как он самый легкий, то поднимется высоко, уйдет в верхние слои атмосферы.

Газообразный водород нужен химикам. Например, чтобы изготовить перекись водорода или другие соединения.

Нас с вами гораздо больше интересует водород жидкий. Ведь мы занимаемся сверххолодом. Это одна из самых холодных жидкостей на земле.

Получить жидкий водород гораздо труднее, чем сжимать воздух и разделять его на составные части. Можно использовать детандеры. А можно сжимать водород и в дроссельных установках. Только надо учесть, что «жары» это вещество не любит и на подходе к дросселю должно быть не теплее —69 °C!

Куда идет эта «холодная» жидкость? Где она нужнее? Ведь не зря сооружают большие установки, чтобы получить жидким самый легкий газ на свете.

Вероятно, жидкому водороду обеспечено славное будущее в ракетных кораблях. Но он нужен и сейчас.

Используют водород и в лабораториях.

Но, видимо, очень скоро жидкий водород ожидает всемирная слава. С одной из разновидностей его – дейтерием – люди будут так же хорошо знакомы, как сейчас с углем или нефтью. История эта длинная и начинается она с тяжелой воды.

«Мертвая» вода

Мы много говорили о молекулах. Молекулы – мельчайшие частички вещества. Они сохраняют все свойства этого вещества.

В самом маленьком кусочке тела, в капле жидкости содержится громадное количество молекул. Все они в точности одинаковы. И по виду, и по массе, и по свойствам.

Молекулы непрерывно двигаются, обладают внутренней энергией. Если эту энергию отнять, то тела охлаждаются.

Это все мы уже хорошо знаем. Но молекулы еще не самые маленькие частички вещества. Все молекулы состоят из атомов. Если молекула – карлик, лилипут, то атом – совсем малютка. Правда, у некоторых молекул всего лишь один-два атома. Зато в составе других – тысячи и десятки тысяч атомов. В нашем теле есть белковые молекулы. Они сложнее любой машины. Даже не верится. Вы видите, художник нарисовал нам макет одной такой молекулы. Даже не самой молекулы, а ее составной части. Спираль вроде лестницы с восемнадцатью витками тянется вверх. А от нее во все стороны – отростки. И это все атомы. Сотни, тысячи атомов. Стоит только один из них переменить, как сразу же изменится и молекула.

Молекул в мире огромное количество. А вот атомов значительно меньше. Отдельных разновидностей атомов – их называют элементами – немногим больше сотни. Конечно, складываются атомы по-разному, можно набрать сколько угодно различных молекул. Даже если взять пять атомов и только переставлять местами по-всякому, то сколько будет таких пятиатомных молекул? Сто двадцать! Понятно, что таким образом можно получить бесчисленное множество всевозможных молекул. Химики чуть ли не каждый день готовят их.

Атомы одного элемента похожи друг на друга, как близнецы. Но и тут имеется разница. Опять-таки встречается несколько сортов этих близнецов. Называются они изотопами. Для химика все они одинаковы, в химических реакциях их не различить никаким способом.

А вот физики говорят – близнецы, да не совсем. Вес у них различный. Возьмем водород. У него есть целых три изотопа.

Называются они – обычным или легким водородом, тяжелым и сверхтяжелым.

Тяжелый водород – дейтерий – в два раза тяжелее легкого, а сверхтяжелый – в три. Что такое вода? Два атома водорода и один кислорода – вот и получается молекула воды. Если вместо водорода в молекуле поселится дейтерий, тогда вода станет тяжелой.

Правда, не такая уж тяжелая. Если дать вам в руки стакан простой и тяжелой воды, то вы не отличите их по весу. Молекула тяжелой воды в 10/9 раза тяжелее обычной молекулы. Зато по многим свойствам тяжелая вода отличается от обычной – от той, которую мы пьем, которой умываемся. Говорят иногда, что тяжелая вода вроде мертвой воды наших сказок.

В любом водоеме вместе с обычной водой есть и тяжелая. Всего лишь 0,02 %. 0,2 грамма в каждом литре. А спрос на нее очень велик.

Тяжелая вода нужна атомной физике, атомной технике.

В чем разница? Атомная физика – наука, которая занимается исследованиями самых тонких свойств вещества, проникает в глубь молекул и атомов, изучает их строение. Вы думаете, меньше атома ничего нет? Ошибаетесь. Атом совсем не такой простой и неделимый. В нем есть частички еще меньших размеров. Бывает даже много этих частичек. До двух-трех сотен! Исследовать все частички, изучить их, проникнуть в глубь атома – нелегкая задача. И тяжелая вода помогает ученым в этой работе. Но еще чаще тяжелую воду мы встретим в атомных котлах. Их называют ядерными реакторами.

При обычных взрывах, скажем, пороха или динамита, выделяется мгновенно тепловая энергия. Она хранилась до этих пор внутри молекул. И запас этой скрытой энергии в момент взрыва стремительно вырывается наружу.

Гораздо больший запас энергии хранится внутри атомов. Но зато до него и труднее добраться. Лишь двадцать лет назад ученые добились этого. Человек начал осваивать энергию атомных ядер – атомную энергию. Сначала она появилась тоже при взрыве – атомном взрыве.

Атом напоминает нашу солнечную систему. Внутри – солнце, а вокруг него вращаются планеты. В атоме подобием солнца служит ядро. Это и есть самая сокровенная кладовая природы. Здесь скрываются бессчетные запасы энергии. Надо только уметь ее оттуда изъять. Первыми «раскошелились» ядра тяжелого темного металла урана. Ученые нашли способ освобождать энергию ядер урана. Происходит это в атомном котле. Кроме «топлива» – длинных урановых стержней урана, в таком котле есть одна весьма существенная часть – замедлитель.

Жители японских городов Хиросимы и Нагасаки хорошо запомнили августовские дни 1945 года. Они узнали, что получается, когда атомная энергия вырывается наружу мгновенным взрывом. Но человеку не нужна атомная бомба. Надо обуздать взрыв, чтобы атомная энергия выделялась постепенно, определенными порциями. Вот, например, электрическая энергия непрерывно вырабатывается электростанцией. И по проводам ее доставляют всюду. Работают станки, идут электропоезда, горят лампочки в квартирах, экраны кинотеатров. И все это благодаря тому, что электростанции исправно поставляют городу электричество. Вот таким способом надо поступать и с энергией атома.

Надо заставить атомы урана выделять ее не спеша. Эту работу выполняет замедлитель. Он успокаивает, замедляет реакцию. И вместо мгновенного взрыва атомы урана работают долго и равномерно.

Одним из лучших замедлителей является тяжелая вода.

Вот наконец-то мы добрались до дела.

Тяжелая вода нужна атомным реакторам. А их становится все больше и больше. Казалось бы, легче всего получать тяжелую воду из обычной воды. Выделить каким-нибудь образом эти 0,02 процента. Раньше так и поступали. И вдруг совсем недавно ученые доказали, что гораздо выгоднее окольный путь. Сначала из воды с помощью электричества получают водород. Разумеется, в этом случае водород появится на свет вместе со своим двойником – изотопом дейтерием. Химически они неразлучны, как настоящие двойники. Затем водород надо превратить в жидкость и тогда развести «близнецов» в разные стороны: дейтерию предложить для реакции атомы кислорода, чтобы он превратился в тяжелую воду, а водород отпустить на волю или передать химикам.

Так в атомную технику пришли температуры, лишь на двадцать градусов отличающиеся от абсолютного нуля. Сейчас к ним уже привыкли.

Газы удобно разделять в жидком виде из-за того, что они кипят при различных температурах. Азоту надо – 195,8 °C, а для кислорода хватит —183 °C.

Дейтерий и легкий водород ведут себя точно так же. Но точки кипения азота и кислорода различаются на целых двенадцать градусов. А для дейтерия и легкого водорода разница всего около трех градусов. Но и это уже хорошо. Ведь обычно изотопы почти не отличаются друг от друга. Поэтому и разделять их чрезвычайно трудно.

Значит, для разделения изотопов водорода нужно построить такие же разделительные колонны, заставить водород путешествовать по тарелкам, как это проделывают с жидким воздухом. Но сначала придется добывать обычный водород. Это ведь не воздух, который окружает нас. Поэтому первая ступень «дейтериевого» завода – электролизная ванна. Электрический ток разлагает воду. Затем водород очищают. Вымораживают воду, углекислый газ, кислород, азот, Особенно опасен кислород. Если в машину для сжатия водорода попадает хоть немного кислорода, ожидай взрыва. Дальше начинается знакомая нам работа. Жидкая смесь легкого и тяжелого водорода понемногу переходит с одной тарелки на другую, тянется в низ колонны. Навстречу – струя газа. Жидкость по дороге приобретает все больше и больше дейтерия, а газ, поднимающийся наверх, становится более чистым водородом. Полностью отделить изотопы с одного раза не удается.

Для того чтобы получить дейтерий, почаще приходится повторять эту операцию.

Когда дейтерий почти очищен от своего двойника – легкого водорода, можно приглашать кислород. Небольшой взрыв – это хлопнул гремучий газ, и вот она, желанная тяжелая вода. Теперь дейтерий крепко связан с кислородом и уже никуда не может улетучиться. Скоро дейтерий будет ценнейшим веществом сам по себе, а не только как составная часть тяжелой воды.

Еще одно «укрощение»

Запомните хорошенько слово «дейтерий». Он скоро сможет заменить уголь, нефть, горючие газы. И «загорится» в топках новых электростанций, самых удобных, самых лучших в мире.

Слово «загорится» стоит в кавычках. Это не зря. Гореть пламенем дейтерий не будет. Он ведь такой же горючий газ, как и обычный водород, его легко поджечь. Но ученые хотят зажечь особенный костер. Он называется термоядерным. Для костра термоядерного и предназначается дейтерий. Атомная реакция урановых ядер – уже близкий друг и помощник человека. Есть чудовище пострашнее атомной бомбы – водородная бомба. Миллионы, десятки, сотни миллионов градусов.

Атомная бомба уже укрощена учеными. Появились атомные котлы – источники энергии. Работают атомные электростанции, в том числе и первая в мире наша советская электростанция на ядерном горючем.

Теперь ученые хотят заставить мирно работать водородную бомбу. Какую замечательную победу одержали бы в этом случае люди!

Электростанцию, где работают ядра дейтерия, называют термоядерной. Таких электростанций еще нет. Но ученые надеются, что не за горами тот день, когда впервые родится ток самой удивительной фабрики электричества, работающей… на воде!

Знаете, сколько полезных веществ сжигают ежедневно наши тепловые электростанции? Химики могут изготовить из них миллионы ботинок, пальто, галош, соорудить великолепные дома, построить автомобили, пароходы, самолеты. Вот что можно поучить из угля и нефти, которые так бесследно исчезают в прожорливых топках. Кстати, обычного топлива на земле не так уж много: хватит еще лет на двести…

А что потом? Вот вода есть кругом. Вода и будет служить источником энергии. В каждой капле воды – дейтерий. Малюсенькая доля дейтерия таит большие силы. Там, где сейчас тратятся тонны угля, хватит грамма дейтерия.

В атомных урановых котлах крошечные частички – ядра атомов урана разделяются на две половинки. Каждая несет энергию. Работают дружно, выделяют тепло. Это тепло можно забрать и использовать. Так и поступают на атомных электростанциях. Греют на «урановых топках» воду. Вскипятят ее, и пар летит крутить турбину. А турбина берет в работу генератор. Появляется электрический ток.

Для термоядерных реакций нужны особые условия. Тут ядра уже не делятся, а, наоборот, соединяются. Из двух получается одно. Проще всего заставить соединиться ядра дейтерия. Когда они сливаются, образуется новое вещество – гелий и выделяется тепло – энергия. На электростанции каждую секунду будут «сгорать» миллиарды миллиардов ядер. Вот и получится Днепрогэс в маленькой коробочке!

Зажечь такой термоядерный костер, приручить, замедлить реакцию – трудно. Нужна своеобразная топка для ядер. Сто миллионов градусов – никак не меньше. Иначе капризные ядра не желают соединяться. Можно даже догадаться почему. Атомы и атомные ядра, так же как и молекулы, вечно движутся. И на близких расстояниях отталкиваются друг от друга. Помните законы молекул: издалека – братья, вблизи – враги! Чтобы ядра соединить, надо разогнать их до огромной скорости. Чем выше температура, тем больше скорость. Вот и миллионы градусов!

Такая жара царит, например, в недрах звезд и нашего Солнца. Энергия, которую несут нам солнечные лучи, – термоядерная.

Конечно, получить такую температуру на земле страшно трудно. Пока что ученые только нащупывают пути, по которым им предстоит идти. Еще труднее задержать реакцию, чтобы шла она не доли секунды, как в водородной бомбе, а долго, сколько нужно. Но уже появились в лабораториях температуры в миллионы градусов, уже созданы «сосуды», в которых можно долгое время удерживать сверхвысокую температуру. А ведь и низкие и высокие температуры требуют особой защиты.

Наука стоит на пороге великих открытий, великих решений. Дейтерий – сколько надежд возлагают на него!

Вот тогда появятся тысячи установок жидкого водорода. Около водоемов, озер, рек, морей поднимутся башни ректификационных колонн, а само слово «дейтерий» станет таким же привычным, как дрова, уголь, нефть… И никто не удивится, что рядом мирно уживаются температуры космоса и звездные температуры. Никого не будет удивлять такое странное соседство – установка, где рождается дейтерий, и термоядерный котел, куда его посылают «работать». Минус 252 градуса и плюс сто миллионов – температуры космоса и Солнца рядом, ближайшие соседи. Ведь не удивляемся мы сейчас тому, что такими же соседями являются само Солнце и пространство, окружающее его.

Чудеса жидкого гелия

Ну вот, мы почти у цели. Появился жидкий гелий. От абсолютного нуля нас отделяют каких-то четыре с небольшим градуса. Чтобы преодолеть их, науке пришлось потратить столько же времени и сил, как и на весь предыдущий путь.

Последний газ стал жидкостью. А все остальные жидкости затвердели. Сначала сдались азот, кислород, аргон, неон. Вот уже замерз и водород.

Страшный это мир, где нет ни одного газа, где все мертво. Говорят: «ледяные просторы Антарктики». Вот где они – ледяные просторы. Только льды эти из кислорода, азота, водорода, воздуха. Наверное, нечто подобное найдут космические путешественники будущего на далеких планетах.

Жидкий гелий отделяют от жидкого водорода всего лишь 16 градусов. Небольшое пространство! Но как раз здесь и сосредоточены все чудеса мира сверххолода. На ближайших подступах к абсолютному нулю происходят самые чудесные превращения веществ, самые необычайные истории.

Ученым понадобилось немало времени, чтобы обнаружить эти чудеса. Но еще больше сил они потратили, пока их объяснили.

Сжижается гелий теми же способами, что и другие газы. Наверное, не стоит лишний раз упоминать их.

Гелий охлаждают жидким воздухом, азотом и водородом. Для сжижения обычно берут его не из воздуха. В природном горючем газе гелия больше, и добывать его оттуда легко.

«Чудеса» мира сверхнизких температур начинаются с самого гелия. У этой жидкости столько неожиданного, она так отличается от других жидкостей, что ученые посвятили гелию сотни, тысячи различных научных работ. Кто-то подсчитал, что по количеству этих исследований гелий даже обогнал воду, а, казалось бы, о воде написано очень много.

Сначала гелий не производит впечатления необыкновенной жидкости. Что особенного? Нелегко получить, быстро вскипает. Как будто бы и все. Но стоит лишь немного охладить эту прозрачную жидкость, как начинаются форменные чудеса. Когда до абсолютного нуля остается лишь два градуса, гелий вдруг переходит в особое состояние. Он и тот и не тот. Ученые дали этой разновидности название – гелий-2 (читается «гелий два») в отличие от обычного гелий-1.

Что такое трение, без сомнения, знают все. Колеса автомобиля трутся о шоссе, наши ботинки – о тротуар. Из-за трения трудно ходить по песку. Когда одно тело движется по поверхности другого, появляется трение. По гладкой дороге автомобилю легче ехать, чем по плохой, проселочной. На проселке трение больше. С другой стороны, трение и помогает нам двигаться. На скользком льду трудновато ходить. Трение там мало, ноги скользят, можно упасть. Многие писатели описывали выдуманный «мир без трения». Там просто жить невозможно. Не только ходить нельзя. Ничего нельзя делать. Люди сидят голые. Ведь наше платье держится потому, что сшито нитками. А нитки не выскакивают благодаря трению.

Столы и стулья, здания и машины лишь из-за трения не разваливаются. А то разлетелись бы на все свои составные части.

В жидкостях тоже есть трение. Когда течет вода, то одни ее слои перемещаются вдоль других. И при этом трутся друг о друга. Поэтому в середине реки течение быстрее, чем у берегов. Каждый следующий слой, считая от середины, движется немного медленнее.

Трение существует внутри всякой жидкости – всякой, кроме гелия-2. Для него трение отсутствует. Удивленные ученые назвали это явление, открытое в 1938 году П. Л. Капицей, сверхтекучестью. Эта жидкость может проникать в тончайшие трубочки – капилляры. И течет быстро, как будто ничто ей не препятствует. Да и в самом деле гелию-2 ничто не мешает.

Еще интереснее «ползучесть» жидкого гелия.

Ученые соорудили небольшой приборчик. Он называется «бочонок Капицы». Это действительно маленький бочонок. Наливают в него жидкий гелий-2. И жидкость храбро начинает взбираться наверх. Ползет, как будто и сила тяжести на нее не действует и законы физики не для нее писаны.

Пленка жидкого гелия может пропутешествовать таким образом очень далеко. Но это еще не все. Гелий – просто фантастическая жидкость. Когда из самовара или водопровода течет вода, мы ничего особенного не замечаем. А если гелий вытекает по очень узкой трубке из большого сосуда, то в трубке он охладится. Зато гелий, оставшийся в сосуде, почему-то нагревается.

Обычные жидкости плохо передают тепло. Зато гелий в этом отношении может поспорить с любым металлом. Невозможно добиться того, чтобы в одном углу сосуда с жидким гелием была одна температура, а в другом – другая. Тепло мгновенно уравновесится. Очевидно, жидкий гелий любит единство в своих рядах и тщательно следит за этим.

В каждом веществе – в воздухе, воде, дереве – звук распространяется по-разному. В воздухе звуковые волны проходят 330 метров в секунду. Если от вспышки молнии до удара грома прошло, скажем, три секунды, то каждый может подсчитать, где была молния. 330 метров в секунду – километр в три секунды. А у нас звук путешествовал ровно три секунды. Значит, молния сверкнула где-то на расстоянии одного километра от нас.

В воде звук распространяется быстрее почти в четыре раза. В твердых телах ему надо еще меньше времени.

Получили ученые жидкий гелий и стали его всячески обследовать. Дошла очередь и до звука. Тут-то и ждал ученых очередной сюрприз. Опять-таки гелий продемонстрировал свои чудесные свойства.

У него оказалось две скорости звука.

Обычная – она называется первым звуком.

И второй звук, это как раз и будет скорость, с которой в гелии распространяется тепло.

Думаете, чудеса на этом кончаются? Не тут-то было! Вот, пожалуйста, еще одно из чудес.


    Ваша оценка произведения:

Популярные книги за неделю