355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Смагин » Вблизи абсолютного нуля » Текст книги (страница 4)
Вблизи абсолютного нуля
  • Текст добавлен: 7 марта 2018, 20:30

Текст книги "Вблизи абсолютного нуля"


Автор книги: Борис Смагин



сообщить о нарушении

Текущая страница: 4 (всего у книги 8 страниц)

Кислород – газ жизни

Кислород – газ жизни, газ живой природы. Это знают все. Любой лектор, рассказывая о жизни на других планетах, начинает с кислорода. Действительно, без кислорода человек существовать не может. Альпинисты, уходя в горы, берут с собой кислородные аппараты. Кислородом дышит летчик в высотном полете. Больные используют кислородные подушки. После операций сердца больных держат но нескольку дней в особых кислородных палатках. Правда, если употреблять очень много кислорода, то может наступить и опьянение. Помните, как в романе Жюля Верна «Вокруг Луны» веселились опьяневшие Николь Барбикен и Ардан. Они забыли закрыть кран кислородного аппарата. И стали очень веселыми, пели, кричали, шумели.

Однако кислород нужен не только живым существам. Без кислорода в технике сейчас буквально и шагу ступить нельзя.

Прежде всего кислород очень нужен в металлургии. Металлургия занимается выплавкой металлов. Черная металлургия интересуется чугуном и сталью. Это и есть «черные» металлы.

Получают чугун в доменных печах. Закладывают туда железную руду, поджигают топливо. От тепла руда плавится, и появляется чугун. Его разливают в специальные отливки. Так получаются различные чугунные изделия. Зачем здесь нужен кислород? А вот зачем. Чтобы топливо лучше, полнее сгорало, в него вдувают струю кислорода. Это очень хорошо действует. Для плавки в этом случае требуется меньше топлива, значит, и чугун обходится дешевле.

Из чугуна в мартеновских печах добывают сталь. Там тоже вовсю используют кислород. Кислород добавляют в воздух, который идет к топливу. Жидкий металл также продувают чистым кислородом. Значит, топлива опять тратится меньше. И выходит, это выгодно.

Сейчас сталь получают новым, конверторным способом. Конвертор напоминает большую грушу. В нее заливают жидкий чугун. Потом сверху, через горловину, вдувают кислород. Так из чугуна образуется сталь.

Конверторный способ очень удобный. Сталь получается дешевле, заводы будут дешевыми. Да и строить их, оказывается, можно быстрее, чем обычные.

Кислородной струей можно резать стальные слитки и очищать их поверхность. Если сталь сильно нагреть, а потом пустить струю кислорода, то знаете что получится? Кислород, как ножом, разрежет прочный металл.

Примеси с поверхности слитков кислород тоже снимает. Они просто сгорают в струе кислорода. Этот процесс называется огневой чисткой.

А вот кислород в цветной металлургии. Цветные металлы – цинк, медь, никель, свинец – выплавляют с помощью кислорода. И чистят кислородной струей.

Конечно, кислород используют и в химии. Прежде всего на заводах искусственных удобрений. С помощью кислорода сейчас обрабатывают топливо. Давно известно, что гораздо лучше топить газом: он хорошо сгорает, всяких отбросов после газа нет. И дыма почти нет. В общем, удобно. Ученые нашли способ, как уголь или торф переделывать в горючий газ.

Образуется он в газогенераторах. Сначала туда загружают твердое топливо, а потом вдувают кислород и водяной пар. Происходят различные химические реакции, и образуется горючий газ. Можно использовать его и для других целей. Например, изготовлять аммиак.

Подземные залежи угля тоже можно газифицировать. И тоже с помощью вездесущего кислорода.

Поистине он – газ жизни!

Как разлучить неразлучных?

«Близок локоть, да не укусишь», – говорит старая пословица. Пословица вещая и мудрая. Вот, например, кислород. Казалось бы, чего проще – достать этот газ. Одна пятая часть воздуха, 18/9 частей воды. Кругом кислород. Но из воды взять его не просто. Надо сооружать электролизные ванны, разбивать молекулы воды электрическим током. А из воздуха?

Как разделить газы воздуха, отделить их один от другого? Ответить на этот вопрос несложно.

Сначала сделаем из воздуха жидкость. А потом пусть один газ испаряется, уходит, а другой – конденсируется. За этими двумя физическими явлениями и скрывается сложный технологический процесс – разделение газов – ректификация.

Собственно говоря, ректификацией называется происходящее много раз испарение жидкости и ее конденсация.

Испарение и конденсация – процессы взаимообратные. Переходит вещество в газообразное состояние – испаряется. Собираются капли жидкости из бывшего газа – конденсация.

Когда жидкость испаряется, она охлаждается. Помните пористые кувшины, фреон – основу работы наших домашних холодильников?

При конденсации это тепло возвращается жидкости. Таков великий закон природы – закон сохранения энергии. Тепловая энергия, как и всякая другая, не может возникнуть ниоткуда и не может пропасть. Она переходит от одного тела к другому или становится энергией другого вида. На тепловых электростанциях превращается в электрическую, в автомобиле – в механическую.

Жидкий воздух содержит в основном два сконденсировавшихся газа – азот и кислород. Давайте пока что говорить только о них. Ведь остальных газов в воздухе около процента. И мы ими пренебрежем на некоторое время.

Воздух становится жидким при —191,8 °C. А по другим данным его температура кипения даже —193,7 °C. Выходит, воздух сжижается не сразу. Почему это так? А потому, что газы воздуха кипят при разных температурах. Азот при —195,8 °C. Кислород сжижается гораздо раньше. Ему хватает —183 °C.

Как раз поэтому и можно отделять сжиженные газы один от другого. Если бы они кипели при одинаковых температурах, дело обстояло бы гораздо хуже.

Представьте себе такую операцию.

Получили мы в холодильной машине жидкий воздух. И в эту холодную жидкость направили струю газообразного кислорода.

Что произойдет в этом случае? Температура кипения кислорода гораздо выше, чем у жидкого воздуха. Значит, кислород немедленно сконденсируется. И сразу же на сцене появится тепловая энергия. Ее называют скрытой теплотой конденсации. Эта энергия скрыта в веществе. Только в момент конденсации, когда газ охлаждается, скрытое тепло становится явным. Куда денется эта энергия? Ее воспримет жидкость – жидкий воздух. У азота температура кипения ниже, чем у кислорода. Значит, часть азота вскипит и превратится в газ.

Вместо газа кислорода появится газ азот. Зато в жидкости будет больше кислорода, чем вначале.

Понимаете теперь, в чем дело? Таким способом мы можем постепенно разделять газы. Вначале в жидком воздухе – на четыре части азота приходится одна часть кислорода. Так же, как и в природном воздухе, из которого мы получали жидкий. После каждой такой операции, после того как кислород газообразный посетит жидкость, в ней будет накапливаться жидкий кислород. А азота там станет все меньше и меньше.

Вот и основа ректификации. Это в самом деле испарение и конденсация. Только испаряется одно вещество – азот, а конденсируется другое – кислород.

Фабрика кислорода

Завод, с которым мы хотим познакомиться, – кислородный. На нем получают жидкий кислород. Одним производствам нужен кислород в виде жидкости, других интересует газ. Но из жидкости газ получить уже легко. Она ведь быстро испаряется.

На кислородных заводах ректификация идет в длинных колоннах, которые так и называются ректификационными. Внутри колонн – тарелки! Они и в самом деле напоминают обычную столовую посуду. В каждой из них – воздух, смесь жидкого кислорода и азота. Жидкость стекает из одной тарелки в другую, стекает сверху вниз. Навстречу поднимается струя газа. Там тоже смесь кислорода и азота.

В верхней тарелке – обычный жидкий воздух, полученный тут же, в холодильной машине. А снизу идет не менее обычный воздух – газообразный.

На каждой тарелке происходит своя доля конденсации и испарения. Конденсируется кислород, испаряется азот. После посещения тарелки жидкость обогащается кислородом. С другой стороны, поднимающийся вверх газ захватывает с собой все больше и больше азота.

В результате всех этих операций газы разделяются.

Из крана в нижней части колонны вытекает почти чистый кислород, а вверху специальные устройства отводят газообразный азот.

Так расходятся пути газов в разделительных ректификационных колоннах.

Большая кислородная установка – действительно целый завод! Прежде чем приступить к охлаждению воздуха, его надо очистить. Во-первых, там есть разные примеси – пыль, сажа, всяческие частички. Их не так уж мало – одна сотая грамма на каждый кубометр воздуха. Освободиться от этих примесей нетрудно. Для этого стоят фильтры. Скажем, пористые материалы. Воздух легко проходит через фильтр, а твердые частички застревают в нем.

Во-вторых, в любом сухом воздухе есть немного водяных паров. Они вредны для холодильных установок. Вода будет вымерзать, забивать аппаратуру – в общем, мешать работе установки.

Следовательно, прежде всего надо расправиться с ней, чтобы воздух, попадающий в установку, был абсолютно сухим.

Воду вымораживают или поглощают специальными химическими веществами.

Остается еще один враг, пожалуй более страшный, – углекислый газ. Замерзая, он сразу обращается в твердое вещество и может моментально забить все трубопроводы установки. Поэтому от углекислого газа освобождаются особенно тщательно. Его и вымораживают, и удаляют химически.

Но вот воздух очищен. Можно производить с ним дальнейшие манипуляции. Прежде всего его сжимают. Для этого имеются мощные компрессоры. Это машины, напоминающие обычные насосы – те самые, с помощью которых накачивают автомобильные и велосипедные камеры. Только компрессор посильнее, а принцип работы один и тот же. При каждом рабочем ходе компрессор захватывает очередную порцию воздуха и вталкивает в сосуд. Чем больше воздуха он добавит туда, тем большим станет и давление.

Зачем повышают давление, вы тоже, конечно, помните?

Для дросселирования да и для хорошей работы детандера надо использовать газы повышенного давления. Причем при дросселировании чем больше это давление, тем лучше, тем сильнее будет охлаждение.

Из компрессора сжатый воздух попадает прямо в холодильную машину. Мы знаем машину Линде, уже знакомились с ней. Посмотрим теперь на более современную установку, которую когда-то в лаборатории создал Петр Леонидович Капица. Ее холодильный цикл так и называется циклом Капицы.

Охлаждение воздуха происходит сразу в двух частях установки.

Тут есть и дроссель, есть и турбодетандер. Турбодетандер – небольшая турбина, которую должен вращать охлаждаемый газ. А дроссель – узкая щель. Газ под большим давлением прорывается сквозь эту щель, охлаждаясь на ходу.

Многим кажется странным, зачем в одной установке иметь и детандер и дроссель. Оказалось, что получать жидкий газ в детандере не очень удобно. Там стоит поршень или турбина. Жидкость будет мешать им работать. Значит, охладить газ в детандере хорошо, а вот доводить до жидкого состояния лучше где-нибудь в другом месте. Другое дело – дроссельная установка. После дроссельного вентиля жидкий воздух никому уже не мешает.

Итак, цикл Капицы. Воздух под небольшим давлением попадает в установку. Это тоже преимущество установки Капицы – не надо сильно повышать давление газа.

На пути воздуха из компрессора в холодильную установку стоит… холодильник! Да, да, именно холодильник.

Как уже отмечалось, и при дросселировании и в детандере газ лучше отдает тепло, если он предварительно охлажден. Поэтому там стоят холодильные установки, в которых циркулирует жидкий аммиак – он сжижается при температуре минус 33,4 °C.

Предварительно охлажденный воздух не сразу попадает в детандер или на дроссельную установку. На его пути стоит теплообменник. Здесь воздух охлаждается встречным потоком холодного воздуха, который появляется после турбодетандера.

Охладили порцию воздуха. И тут ее разделяют на две части.

Одна, основная, мчится к турбодетандеру. Другая – на дроссельную установку. По пути воздух проходит еще один теплообменник и охлаждается очень сильно. Теперь уже после дроссельного вентиля появляются капельки жидкости.

В турбодетандере жидкость не образуется. Там только сильно охлаждают воздух, чтобы затем пустить его в оба теплообменника. И он делает свое дело.

Дальше жидкий воздух начинает свое неторопливое путешествие по разделительным тарелкам. Одна тарелка за другой – так и спускается газ, пока не обернется голубоватым кислородом.

А где его используют, вы уже знаете. Вот азот пока что для нас фигура темная. А между тем сосуды с жидким азотом можно встретить довольно часто.

Встреча в операционной

Температура минус 195,8 градуса. Жидкий азот.

Кислород – газ жизни. Но и значение азота не меньшее. Без азота нет нищи растениям, нет жизни на Земле. Сельское хозяйство не может существовать без удобрений, без аммиака, основной частью которого является азот.

Жидкий азот – постоянный гость и работник лабораторий и заводов. Инженеры и ученые пользуются им для охлаждения. Часто можно встретить большие сосуды, наполненные безопасной, слегка дымящейся жидкостью. Это азот. Холода от него вполне достаточно и обращаться с ним легко. Азот не взрывается, как кислород или тем более водород. Он почти не реагирует на различные окружающие его вещества. Химики говорят, что азот малоактивен, химически не ядовит. Это мы знаем сами – каждый день вполне безопасно для себя вдыхаем изрядные порции азота. Только на больших глубинах у пловцов может наступить азотное отравление. Но в обычных условиях этого никогда не произойдет.

Азот поистине незаменим в некоторых лабораториях и на заводах. Сейчас очень много различных опытов приходится проделывать в вакууме. Так в науке называют пустоту. Откачали мощные насосы из какого-нибудь сосуда весь воздух – тогда оставшееся пустое пространство можно назвать вакуумом. Но все молекулы оттуда отсосать невозможно. Никакой насос с этим не справится. Хоть и немного их, но все же останется. Но о себе в этом случае молекулы почти не дают знать. Вакуум – пустота. Установки, с помощью которых получают такую пустоту, называются вакуумными. Сколько их на одних только ламповых заводах! Ведь из электрической лампочки сначала откачивают воздух, а потом наполняют каким-нибудь спокойным, не склонным к реакциям газом, например криптоном или тем же азотом. Иногда лампочки оставляют пустыми.

А сейчас в вакууме сваривают металлы, изготовляют полупроводники, наносят тончайшие слои разных материалов. Везде вакуум. И везде жидкий азот. Он выполняет здесь роль бдительного сторожа. Есть много веществ, пары которых «гуляют» по вакуумным установкам, и тогда нет глубокого вакуума. Вот для таких вредных «гуляк» и устраивают холодные ловушки с жидким азотом. Через изогнутую трубочку насос качает воздух. Пока вредные пары путешествуют вместе с воздухом. Но вот трубочку окунули в жидкий азот. Мертвой хваткой своих минус ста девяноста шести градусов вцепляется он в трубочку. И пары падают на лету, замерзают, легким инеем оседают на дне трубочки.

А сейчас у нас будет еще одно очень интересное свидание с жидким азотом. Мы увидим жидкий азот в роли доктора. Он помогает людям, возвращает больных к жизни, как и полагается медику.

Человек устроен очень сложно. Никакая самая хитрая машина не сравнится с человеческим организмом. Ясно, что и различных дефектов – болезней у человека тоже хватает. Все может заболеть – и руки, и ноги, и живот, и голова. В голове находится командный пункт мышления, действий и поступков – большие полушария головного мозга. Оттуда получают распоряжения наши руки, ноги, глаза, уши – весь сложный организм человека. А если на командном пункте что-нибудь испортится? Тогда и команды понесутся или не по адресу, или какие-нибудь несуразные. Начал, например, человек как-то странно ходить, передергиваться, руки у него дрожат. Что случилось? Дело тут не в руках или ногах, говорит врач. Надо обратиться по адресу – в мозг. Рука послушно выполняет команду своего начальника – мозга. По длинной цепочке нервов поступает эта команда. Начинают действовать мышцы, рука сгибается, вот заработали кисти рук, пальцы. Если они делают что-то не то, то и винить надо мозг. Не ту команду послал!

У нервных больных часто дрожат руки. Это бывает и когда человек сильно устал. Но встречается тяжелая болезнь, ее называют болезнью Паркинсона: руки и ноги дрожат так сильно, что такие больные не могут работать, ходить, не в состоянии написать самые обычные буквы.

Головным мозгом занимаются нейрохирурги. Хирург, как вы знаете, – врач, который лечит с помощью «ножа». Хирурги выполняют смелые операции, удаляют поврежденные или заболевшие органы, сшивают ткани. Работы у них много. Сколько любой из них сделал хотя бы операций аппендицита? Сотни, тысячи! А ведь каждому такому больному врач спас жизнь.

Нейрохирургам особенно трудно. Их поле деятельности – человеческий мозг. Головной и спинной. Одно неосторожное движение ножа – и повреждены важнейшие центры дыхания, пищеварения, зрения. Оперировать трудно, опасно.

Но нейрохирурги смело занимаются своим нелегким делом. Возвращают больным зрение, слух, память, способность двигаться. Люди, годами прикованные к постели, становятся на ноги. Слепые прозревают. Много чудес на счету у этих замечательных врачей. Небольшая, совсем незаметная операция, скальпель хирурга только затронул уголочек мозга, и вдруг сразу у человека все меняется!

Заинтересовались хирурги и болезнью Паркинсона. Открытие пришло случайно. Как-то при операции хирург случайно задел скальпелем один из участков мозга. И рука больного, дрожавшая до этого добрых десять лет, разом остановилась. Паркинсонизм побежден, сообщили журналисты.

Но до полной победы пока еще очень далеко. Сотни операций сделали врачи лишь одной замечательной советской клиники – Московского института нейрохирургии, сотни безнадежно больных людей получили новую путевку в жизнь.

Однако нож хирурга не такой уж тонкий инструмент. Врачи стали искать что-нибудь поизящнее. Начал работать ультразвук, пошло в ход электричество. Вместо скальпеля пораженный участок мозга выжигают электрическим разрядом.

И вот самая последняя удача ученых, самый точный и тонкий метод. В трубочке жидкий азот. Температура минус 198 градусов. Хирург знает, где таится враг, знает очаг неизлечимой прежде болезни. И жидкий газ идет туда. Эта струя еще тоньше ножа, еще точнее. Ее можно включать на одно мгновение.

Сначала мозг «выжигали» углекислотой – сухим льдом. Думали, что семидесяти градусов мороза хватит. Но оказалось, надо еще больше. Вот тогда в дело пошел жидкий азот.

Тонкая, как волосок, струя. На вид ничего не изменилось там, куда так пристально смотрит хирург. Но больной сразу чувствует чудодейственное вмешательство. Все происходит почти мгновенно. В тот самый миг, когда хирург поразил больной участок ткани мозга капелькой сверххолода, когда воцарилась там температура минус сто девяносто градусов, неверные команды перестали поступать из мозга. И рука, дрожавшая до этого все время не переставая, успокоилась.

Потом очаг холода в мозгу исчез. Ведь сам по себе холод долго не держится. Но вместе с холодом от человека ушла и болезнь.

Газы, открытые на Солнце

Много различных веществ есть на Земле. Химия знает десятки тысяч различных соединений – сложных веществ, знает тысячи разнообразных реакций, когда вещества соединяются друг с другом, простые становятся сложными, а сложные разлагаются на простые.

Но есть одна небольшая группа особенно упорных веществ. Они не хотят ни с чем соединяться. Живут обособленно. Могут существовать только в чистом виде. Назвали эти газы инертными – безразличными. Они действительно безразличны ко всем веществам на Земле.

Правда, за последние годы ученые сумели заставить некоторые вещества соединяться с инертными газами. Но эти соединения непрочны. Они быстро разваливаются. Инертные газы разыскивали долго.

Это были очень интересные поиски. Один из них – гелий нашли сначала на Солнце. Поэтому и имя ему дали гелий – солнечный. Рассказал историю открытия инертных газов советский ученый Бронштейн. У него и книга написана – «Солнечное вещество». Тем, кто не читал ее, советуем прочесть.

В эту книгу инертные газы попали не случайно. Никаким другим способом, кроме сжижения и ректификации, выделить инертные газы из воздуха нельзя. Ведь и азот, и кислород, и водород можно получать не только ректификацией. Есть много и других способов. Правда, они дороже.

А вот для инертных газов такой возможности нет совсем. И пока ученые не научились сжижать газы, разделить их было невозможно.

Прежде всего давайте познакомимся с ними.

Инертных газов пять: аргон, неон, криптон, ксенон и гелий.

Инертные газы часто встречаются в нашей жизни. Они буквально везде вокруг нас.

Не только потому, что входят в состав воздуха. Посмотрите внимательно. Криптон и ксенон висят прямо над вами, в комнате. Не удивляйтесь и поищите их получше. Не смогли найти? Электрическая лампочка. Что у нее внутри? Раньше из лампочки откачивали воздух, так как тонкий волосок нити в воздухе может сгореть. Но пустотная лампочка не очень выгодна в работе. Как говорят инженеры, у нее небольшой коэффициент полезного действия. И температура нити может быть выше.

Надо наполнить лампу газом. Таким, который был бы безопасен для нити. Сначала употребляли азот. А потом вспомнили об инертных газах. Инертный газ ни с чем не соединяется. И нить в атмосфере инертного газа будет гореть в полной безопасности.

Вот и первое применение – наполнение электрических осветительных ламп.

Неон мы встречаем вечером. В городе зажигаются огни. И рекламы. Именно неон горит во многих рекламных надписях.

Для промышленности важнее всего, пожалуй, аргон. Вернее сказать, что роль аргона могли бы выполнить и другие инертные газы. Но просто аргона в воздухе больше, чем других инертных газов. И добывать его оттуда легче.

Поэтому аргон – весьма важное вещество для промышленности.

Конечно, пользуются его основным драгоценным качеством – нежеланием вступать в реакции, соединяться с различными веществами.

В металлургии часто нужно обрабатывать металлы, сваривать их в таких условиях, чтобы не появлялось никаких примесей. Металлы боятся кислорода, следовательно и воздуха: моментально возникнут окислы. Но и азот, который, вообще говоря, не очень склонен к реакциям, тоже может повредить. А вот аргону можно доверять полностью! Цветные металлы, например, очень часто обрабатывают в аргоне. Безопасно и удобно. Можно, конечно, откачать воздух, работать в вакууме, но в аргоновой среде все происходит гораздо удобнее.

Есть один очень важный металл, который буквально не может жить без аргона. Титан – замечательное вещество, его сплавы не боятся высоких температур, они очень твердые, крепкие. И главное, титановые сплавы могут работать при больших температурах. Вы, конечно, догадались, где материалам приходится жарко – в соплах ракетных двигателей. Далеко не всякие вещества могут выдержать такую страшную жару. А ведь «чем дальше в лес, тем больше дров». Появляются ракеты еще мощнее, скоро они понесут отважных путешественников к далеким планетам. Им нужны еще более жароустойчивые сплавы.

Чистый титан получают и потом обрабатывают только с помощью аргона. Иначе титан будет грязным, с разными примесями. А это уже никак не годится! Значит, аргон, который получается на установках сверххолода, служит для обработки материала, предназначенного для высоких температур.

Вот как бывает в технике!

Сейчас встречаются и не такие чудеса. Вот, например, термическая обработка. Термическая – значит тепловая. А между тем за последнее время инженеры разработали новый метод. Обработка по-прежнему называется термической, а производят ее с помощью… жидкого азота. Металл после ванны из жидкого азота закаляется так же, как будто побывал в жерле огнедышащей печи.

Высокие температуры и низкие переплетаются в технике сплошь да рядом.

Сталь на сталеплавильных заводах теперь стали чистить аргоном. Ведь к жидкой стали часто примешиваются пузырьки газов. Газы реагируют со сталью, появляются примеси. Как от них избавиться?

Продуть сталь аргоном!

Аргон быстро вытеснит все газы, которые «окопались» внутри стали, и займет их место. Но ведь для металла аргон безвреден. Он не способен окислить металл, дать какие-то примеси. Поэтому с ним можно мириться.

Таков аргон – подсобный материал металлургии. Металлурги мечтают создать целые цеха, где атмосфера была бы аргоновой. Вместо воздуха – аргон. А людям можно дать специальные кислородные баллоны.

Или еще лучше – создать безлюдные цехи. Пусть все делают автоматы. Автоматам аргон не страшен. Даже полезен. Есть такая мрачная болезнь металлов – коррозия. У железа она называется ржавчиной.

Если кругом один аргон, никакой коррозии не будет и в помине. Ведь при коррозии металл соединяется с газами воздуха. А с аргоном никому еще не удалось соединиться.

Но наиболее интересный из инертных газов, без сомнения, гелий. Ведь из него можно получить самую холодную жидкость. «Живет» жидкий гелий в самой непосредственной близости от абсолютного нуля. Как раз там, где разыгрываются весьма странные события, там, где привычный нам мир меняется до неузнаваемости.

И во всех случаях, когда надо исследовать или использовать самые низкие температуры, на «сцене» появляется гелий.

Мы пока что находимся на уровне минус 180 – минус 190 градусов Цельсия. До жидкого гелия еще добрых шестьдесят градусов с лишком. Но мы их скоро пройдем. И тогда начнутся настоящие чудеса.

Но мы, по-моему, что-то очень много времени тратим на довольно скучные описания. Только издали посмотрели, как получают жидкий кислород. Поближе с ним не познакомились. А надо бы.

Вот, скажем, куда отправилась эта цистерна с жидким кислородом?

Очень интересно проследить. Тем более, что известно заранее – будут взрывы!


    Ваша оценка произведения:

Популярные книги за неделю