Текст книги "Нейтрино - призрачная частица атома"
Автор книги: Айзек Азимов
Жанр:
Физика
сообщить о нарушении
Текущая страница: 8 (всего у книги 13 страниц)
Поглощение нейтрино
Постараемся теперь использовать все вышесказанное применительно к нейтрино и антинейтрино. Запишем еще раз реакцию распада нейтрона, в результате которой образуется протон, электрон и антинейтрино:
п→ р ++ е -+ 'ν.
Предположим, что при подходящих условиях возможен обратный процесс, в котором протон, захватывая электрон и антинейтрино, становится нейтроном. Тогда обратная реакция выглядела бы так:
р ++ е -+ 'ν → п.
Естественно, протон должен поймать электрон и антинейтрино одновременно, что очень сильно уменьшает вероятность успешного завершения процесса. (Это равносильно тому, чтобы просить баскетболиста поймать одной рукой одновременно два мяча, летящих на него с разных сторон.)
Для упрощения задачи изменим порядок обращения. Любой процесс, в котором происходит поглощение электрона, можно заменить процессом, в результате которого рождается позитрон. (Подобное правило существует в алгебре: вычитание -1 равносильно прибавлению +1.) Другими словами, вместо одновременного поглощения электрона и антинейтрино протон может поглотить антинейтрино и излучить позитрон:
р ++ 'ν → п + 'е+.
При таком варианте реакции законы сохранения выполняются. Поскольку протон заменяется нейтроном (оба с барионным числом +1), а антинейтрино заменяется позитроном (оба с лептонным числом -1), законы сохранения барионного и лептонного чисел выполняются.
Остается рассмотреть вероятность поглощения антинейтрино протоном. Период полураспада нейтрона равен 12,8 мин,хотя отдельным нейтронам для распада требуется больше или меньше 12,8 мин.Следовательно, для образования нейтрона при захвате протоном антинейтрино и излучении позитрона требуется в среднем 12,8 мин. Другими словами, антинейтрино поглощается протоном в среднем за 12,8 мин.
Но нейтрино распространяется со скоростью света и за 12,8 минпроходит расстояние 2,3·10 8 км(т. е. путь, приблизительно равный расстоянию от Солнца до Марса). Трудно поверить, что антинейтрино до поглощения способно пройти такое огромное расстояние в твердом веществе, даже если предположить, что объем его равен объему фотона. Но на самом деле антинейтрино значительно меньше атома.
В действительности дело обстоит гораздо сложнее, В случае фотонов поглощение происходит за счет электронов, занимающих большую часть объема атома, а в твердом веществе атомы плотно прилегают друг к другу. Антинейтрино же поглощается протонами, расположенными в атомных ядрах, которые занимают ничтожную часть атома. Антинейтрино, пролетая через твердое вещество, очень редко сталкивается с крошечным ядром. Лишь одну стомиллионную всего времени, в течение которого антинейтрино находится внутри атома, оно бывает настолько близко к протону, что последний может захватить его. Следовательно, для того чтобы у антинейтрино был определенный шанс быть пойманным протоном, оно должно пройти в твердом веществе путь в сто миллионов раз больший, чем 230 000 000 км.Было установлено, что в среднем антинейтрино должно пролететь в свинце около 3500 световых лет до поглощения.
Естественно, во Вселенной нигде нет слоя свинца толщиной в 3500 световых лет. Вселенная состоит из отдельных звезд, чрезвычайно редко распределенных в пространстве, а диаметр любой звезды значительно меньше одной миллионной светового года. Большинство звезд состоят из вещества, плотность которого значительно меньшей плотности свинца. Исключение составляет сверхплотное вещество сравнительно небольшого ядра звезды. (Во Вселенной имеются и сверхплотные звезды, но они очень малы – не больше планет.) Но задержать антинейтрино не могут даже сверхплотные части звезд. Пролетая через Вселенную в любом направлении, антинейтрино очень редко проходит сквозь звезду и еще реже – сквозь ее сверхплотное ядро. Суммарная толщина звездного вещества, через которое проходит антинейтрино, пролетая из одного конца видимой Вселенной в другой, значительно меньше одного светового года.
Все, что говорилось здесь относительно антинейтрино, применимо, естественно, к нейтрино, и можно, следовательно, утверждать, что нейтрино и антинейтрино практически не поглощаются. Однажды возникнув в каком-то субатомном процессе, они вечно движутся и не подвержены никаким изменениям и влияниям со стороны всего окружающего. Время от времени они поглощаются, но число поглощенных нейтрино ничтожно по сравнению с огромным числом уже существующих и вновь возникающих. Современные знания позволяют нам с уверенностью сказать, что фактически все нейтрино и антинейтрино, возникшие за время жизни Вселенной, существуют и по сей день.
Как же поймали антинейтрино?
Сделанный выше вывод явился не очень приятной новостью. Сколько бы ни выводил физик необходимость существования нейтрино и антинейтрино из законов сохранения, он был бы по-настоящему счастлив, только действительно обнаружив крошечные частицы прямым наблюдением. Но, чтобы продемонстрировать их существование, он должен сначала поймать хотя бы одну частицу, то есть заставить ее провзаимодействовать с какой-нибудь другой частицей, чтобы можно было обнаружить результат этого взаимодействия. А поскольку поймать нейтрино или антинейтрино фактически было невозможно, возникло серьезное сомнение в реальности их существования!
В результате физик спас свое представление о строении Вселенной, которое развивалось на протяжении трех столетий, настаивая на существовании чего-то, что нужно было принять на веру. Он доказывал существование нейтрино на основе своих теорий и спасал свои теории, утверждая существование нейтрино. Получился «замкнутый круг». Причины для сомнений и неопределенности оставались. Было чрезвычайно важно разработать какой-нибудь метод регистрации нейтрино или антинейтрино, если это вообще возможно.
Брешь в почти непроницаемой броне неуловимого нейтрино была пробита с помощью слова «в среднем». Я говорил, что до поглощения антинейтрино в среднем проходит через слой твердого свинца толщиной 3500 световых лет. Но это только в среднем.Некоторые антинейтрино, возможно, проходят более короткий путь, другие – более длинный, и лишь немногие пройдут до поглощения или очень маленькое, или очень большое расстояние. Следовательно, необходимо сосредоточить внимание на бесконечно малой доле антинейтрино, поглощающихся в такой толщине вещества (скажем, несколько метров), которую легко создать в лаборатории. Чтобы этот бесконечно малый процент содержал возможно большее число антинейтрино, необходимо иметь очень мощный источник этих частиц. Таким мощным источником антинейтрино является ядерный реактор. Образующиеся в реакторе избыточные нейтроны рано или поздно распадаются на протоны, электроны и антинейтрино. Когда реактор работает на полную мощность, непрерывно рождается огромное число антинейтрино. В 1953 году группа американских физиков, возглавляемая Клайдом Коуэном и Фредериком Рейнесом, начала опыты по регистрации антинейтрино. В качестве источника частиц они использовали ядерный реактор в Саванна-Ривер, штат Южная Каролина. Этот реактор испускал каждую секунду примерно 10 18антинейтрино.
Рис. 7. Детектирование антинейтрино.
Для такого несметного числа антинейтрино нужно было создать мишень, богатую протонами. Простейшей естественной мишенью является вода. Каждая молекула воды состоит из двух атомов водорода, ядра которых представляют собой протоны, и атома кислорода. Коуэн и Рейнес использовали пять баков воды длиной 1,9 ми шириной 1,4 м.Толщина баков была различной (рис. 7). Два тонких бака высотой 7,6 смиспользовались в качестве мишени. Три других бака высотой 60 смслужили детектором. Баки располагали в таком порядке: детектор – мишень – детектор – мишень – детектор. Вода в баках-мишенях содержала небольшое количество растворенного хлористого кадмия. Баки-детекторы содержали раствор сцинтиллятора – вещества, которое излучает часть энергии, полученной им при поглощении субатомной частицы, в виде короткой вспышки света. Такой «двойной сэндвич» из баков располагался на пути потока антинейтрино из реактора. Оставалось только ждать. Если антинейтрино действительно существуют, каждые Двадцать минут (в среднем) одно из них должно поглотиться протоном. Но баки подвергались непрерывному действию космического излучения из межпланетного пространства, бомбардировке частицами, испускаемыми небольшими количествами радиоактивных веществ, находящихся в воздухе, строительных материалах, почве. Вся трудность заключалась в том, чтобы на всем этом фоне событий, происходивших внутри баков с водой, выделить поглощение антинейтрино.
Вначале нежелательный субатомный «шум» не позволял обнаружить поглощение антинейтрино. Постепенно создавалось все более и более эффективное экранирование, чтобы избавиться от нежелательного излучения и частиц. Конечно, антинейтрино никакое экранирование, никакие толщины металла или бетона не могли задержать, и в конце концов «шум» уменьшился до уровня, который уже не скрывал слабый «шепот» очень редких антинейтрино, случайно захваченных протонами. Но этот шепот надо было еще идентифицировать.
При поглощении антинейтрино протоном образуется нейтрон и позитрон – комбинация частиц, которую легко отличить. Как только в одном из баков-мишеней образуется позитрон, он взаимодействует с электроном меньше, чем за одну миллионную секунды, при этом возникает два фотона, каждый из которых имеет энергию 0,51 МэВ. Согласно закону сохранения импульса, два фотона должны разлетаться в точно противоположных направлениях: если один из них из бака-мишени попадает в верхний бак-детектор, то другой должен попасть в нижний бак-детектор. В каждом баке-детекторе возникает вспышка света. Эти вспышки тотчас же автоматически регистрируются сотней или более фотоумножителей, расположенных вокруг баков с водой.
А что же происходит с нейтроном? Обычно он просто блуждает среди молекул воды (которые очень редко поглощают нейтрон), сталкиваясь с ними, пока самопроизвольно не распадется в среднем через 12,8 минпосле своего возникновения. Однако ждать так долго ни к чему, так как распад может произойти на несколько минут раньше или позже. Вот здесь-то и приходит на помощь хлористый кадмий в баке-мишени. Нейтрон блуждает до тех пор, пока не столкнется с атомом кадмия, тогда он почти мгновенно поглощается. Происходит это в течение нескольких миллионных долей секунды после аннигиляции позитрона – срок довольно короткий и все же достаточный, чтобы разделить во времени два события: аннигиляцию позитрона и поглощение нейтрона. При поглощении нейтрона атомом кадмия выделяется энергия, которая тотчас излучается в виде трех или четырех фотонов с суммарной энергией 9 Мэв.
Итак, Коуэн и Рейнес наблюдали следующую картину: сначала одновременно появлялись два фотона с энергией 0,5 Мэвкаждый, которые регистрировались двумя фотоумножителями на противоположных сторонах баков с водой, затем через несколько миллионных долей секунды следовало одновременное образование трех фотонов с энергией 3 Мэвкаждый (иногда четырех фотонов с энергией 2,25 Мэвкаждый). Никакое другое субатомное взаимодействие не приводило к такой последовательности событий. И если был зарегистрирован именно такой ход событий, разумно было заключить, что протон поглощает антинейтрино, следовательно, антинейтрино действительно существует.
Но тут в осторожных умах экспериментаторов возникла другая мысль. А что если такая последовательность событий вызвана не одним субатомным взаимодействием, а двумя?
Предположим, что каким-то образом возник позитрон, а через несколько миллионных долей секунды атом кадмия поглотил нейтрон, который существовал независимо от позитрона. В таком случае появление двух, а затем трех фотонов явилось бы результатом не одного взаимодействия (антинейтрино с протоном), а двух совершенно несвязанных взаимодействий. Какое же взаимодействие наблюдали Коуэн и Рейнес?
Экспериментаторы решили проблему, произведя свои измерения сначала с работающим реактором, а затем с выключенным. Если реактор выключить, на баки будет действовать шум, а бомбардировка их потоком антинейтрино прекратится. (На самом деле в окружающем пространстве всегда имеются антинейтрино, но их число намного меньше числа антинейтрино вблизи работающего реактора.) Следовательно, при выключенном реакторе продолжали бы регистрироваться двойные совпадения, а поглощение антинейтрино прекратилось бы.
Оказалось, что с выключенным реактором регистрировалось на 70 событий в день меньше, чем с включенным. Значит, в день поглощалось и регистрировалось 70 антинейтрино (по одному каждые двадцать минут). Результаты эксперимента можно было считать несомненным доказательством, и в 1956 году было сделано сообщение, что спустя целых двадцать пять лет после того, как Паули впервые предсказал существование антинейтрино, такая частица была наконец зарегистрирована. Об этом событии обычно говорят как о «регистрации нейтрино», хотя было зарегистрировано антинейтрино. Однако после того, как «изловили» антинейтрино, физики считают, что существование нейтрино не вызывает сомнения.
Глава 9. Нейтринная астрономия
Антинейтрино и Земля
Как только было доказано существование нейтрино, перед учеными встал вопрос о роли нейтрино во Вселенной. Другими словами, возникло новое направление в науке – нейтринная астрономия.
Мощным естественным источником нейтрино во Вселенной являются радиоактивные атомы. Радиоактивные превращения нестабильных изотопов, имеющих такой большой период полураспада, что они не распались за время существования Земли, почти всегда сопровождаются возникновением β-частиц или α-частиц. Но ни один из естественных радиоактивных атомов, находящихся в земной коре, не излучает позитроны. Это означает, что естественная радиоактивность порождает только антинейтрино, причем одно антинейтрино сопровождает каждую β-частицу.
Естественное образование β-частиц на Земле происходит благодаря распаду главным образом атомов трех типов: урана-238, тория-232 и калия-40. Уран-238, последовательно распадаясь, превращается в конечном счете в свинец-206, испуская в процессе распада восемь α-частиц и шесть β-частиц. При последовательном превращении тория-232 в свинец-208 излучается семь α-частиц и четыре β-частицы. При переходе калия-40 в кальций-40 возникает одна β-частица.
Расчеты, проведенные с учетом разности масс этих атомов, их периода полураспада и распространенности в земной коре, показали, что в каждом килограмме вещества земной коры образуются 7330 β-частиц в секунду (6200 – за счет урана-238, 800 – калия-40 и 330 – тория-232).
Вклад остальных радиоактивных атомов (включая очень редко встречающийся уран-235) так мал по сравнению с перечисленными, что им можно пренебречь. С каждой β-частицей излучается антинейтрино, следовательно, каждый килограмм земной коры непрерывно излучает 7330 антинейтрино, а вся земная кора излучает около 1,75·10 26антинейтрино в секунду.
Эти оценки относятся, конечно, только к земной коре. Уран, торий и калий очень распространены в поверхностных слоях Земли, но они имеются и в более глубоких слоях планеты, которые также участвуют в рождении антинейтрино.
Однако оценки содержания перечисленных элементов в глубоких слоях Земли очень грубые и вряд ли их нужно учитывать при расчетах.
Приблизительно половина всех антинейтрино излучается в направлении к центру Земли и, следовательно, проходит через Землю. Если предположить, что антинейтрино распределяются равномерно по объему Земли, окажется, что в любой части Земли объемом 40 см 3в течение секунды непременно находится одно антинейтрино. Средний объем тела человека равен 70 000 см 3,следовательно, каждую секунду через него проходит около 1750 антинейтрино.
Мы этого, естественно, не замечаем, так как антинейтрино не взаимодействует с атомами нашего тела. За семьдесят лет жизни человека имеется приблизительно только один шанс из миллиарда, что какой-нибудь протон его тела поглотит антинейтрино. Через Землю антинейтрино проходят с такой же легкостью, как и через наши тела, и количество поглощенных частиц ничтожно по сравнению с числом антинейтрино, проходящих через нее беспрепятственно.
Нейтрино и Солнце
Рассмотрим теперь термоядерные реакции, происходящие внутри звезд. В звездах, подобных нашему Солнцу, энергия образуется за счет превращения водорода в гелий. Детали превращения могут быть различны, но общим в реакции синтеза является превращение четырех ядер водорода (каждое с зарядом +1) в ядро гелия (с зарядом +2).
В процессе реакции, в соответствии с законом сохранения заряда, образуются два позитрона, каждый из которых несет заряд +1. Таким образом, заряд в начале и в конце реакции равен +4. Четыре ядра водорода в начале реакции имеют суммарное нулевое лептонное число, как ядро гелия в конце ее. Однако каждый позитрон имеет лептонное число -1, поэтому для компенсации суммарного лептонного числа позитронов одновременно с ними должны возникнуть два нейтрино, каждое из которых имеет лептонное число +1. Следовательно, при исчезновении двух атомов водорода на Солнце возникает одно нейтрино (но не антинейтрино).
Полное число нейтрино, образующихся на Солнце, зависит от полного числа сгоревших ядер водорода. В реакции синтеза гелия из водорода 0,71 % массы превращается в энергию, и, как я уже говорил, Солнце каждую секунду теряет 4 600 000 г своей массы. Если эта потеря массы составляет 0,71 % общей массы водорода, превращающегося в гелий каждую секунду, полная масса водорода, участвующего в реакции, равна 650 000 000 т.Но в 650 000 000 тводорода содержится 3,6·10 38протонов. Следовательно, каждую секунду на Солнце рождаются 1,8·10 38нейтрино. Таким образом, число нейтрино, образующихся на Солнце каждую секунду, почти в триллион раз больше числа антинейтрино, возникающих за одну секунду в земной коре, следовательно, наша Вселенная содержит частиц больше, чем соответствующих античастиц. Во Вселенной, состоящей из антиматерии, в процессе естественной радиоактивности возникали бы нейтрино, а при ядерном синтезе – антинейтрино. В такой Вселенной антинейтрино были бы более распространены, чем нейтрино.
Итак, энергия Солнца излучается в пространстве в основном в форме фотонов и нейтрино, а не одних фотонов, причем большая часть энергии уносится фотонами и только не более 5 % уносится нейтрино. Следует отметить, что фотоны и нейтрино уносят эту энергию по-разному. Фотоны, возникающие в чрезвычайно горячем центре Солнца, где процессы ядерного синтеза протекают при температуре около 15 000 000 °C, легко поглощаются окружающим веществом. Прежде чем снова поглотиться, они проходят расстояние порядка одного сантиметра, затем они излучаются, потом снова поглощаются и т. д. Поэтому свой путь через 600 000 кмсолнечного вещества от центра Солнца к поверхности фотоны проходят очень медленно. По этой причине солнечное вещество – превосходный теплоизолятор и поверхность Солнца имеет температуру только 6000 °C. Конечно, по земным стандартам там довольно жарко, но нужно принять во внимание, что поверхность с температурой 6000 °C находится на расстоянии лишь немногим более 600 000 кмот вещества с температурой 15 000000 °C!
Нейтрино, однажды возникнув, уносится со скоростью света, практически не поглощаясь веществом Солнца (за исключением чрезвычайно незначительного числа случаев). Независимо от того, в каком направлении от центра Солнца вылетает нейтрино, оно будет на его поверхности через три секунды. Затем оно вылетит в межпланетное пространство и достигнет Земли за восемь минут (если оно вылетело в нужном направлении). Оно свободно пролетит через Землю самое большее за 1/25 секи продолжит свое бесконечное путешествие по Вселенной.
Конечно, нейтрино Солнца разлетаются по различным направлениям и все, за исключением ничтожной части их, пролетают мимо Земли, которая представляет собой очень маленькую мишень на таком большом расстоянии от Солнца. Тем не менее, Земля получает от Солнца 8·10 28нейтрино в 1 сек.Это приблизительно в 450 раз больше числа антинейтрино, испускаемых радиоактивными элементами земной коры, а каждый квадратный сантиметр площади поперечного сечения Земли получает 6·10 10нейтрино каждую секунду.
Солнечная активность является источником большей части получаемых нами нейтрино. Помимо того, на Землю попадают нейтрино от других звезд, но последние настолько далеки от нас, что их нейтрино имеют очень маленькую плотность в околоземном пространстве, поэтому очень немногие из них достигают Земли. (Другими словами, Земля представляет собой значительно меньшую мишень для нейтрино, летящих с альфа Центавра чем для нейтрино Солнца.)