Текст книги "Нейтрино - призрачная частица атома"
Автор книги: Айзек Азимов
Жанр:
Физика
сообщить о нарушении
Текущая страница: 3 (всего у книги 13 страниц)
Энергия Солнца
Момент количества движения приводит в затруднение, когда мы пытаемся объяснить далекое прошлое Солнечной системы, но в настоящее время нет никаких доказательств, что момент количества движения Солнечной системы не сохраняется. Однако, когда открыли закон сохранения энергии, он опирался на еще более шаткий фундамент. На Земле справедливость закона была, в самом деле, очевидной, но Солнце являлось постоянным убедительным свидетельством против него.
Рассмотрим Солнце.
Самая очевидная характеристика этого тела – количество излучаемого света и тепла. Несмотря на то, что Солнце находится на расстоянии 150 000 000 кмот Земли, оно освещает и согревает всю ее постоянно в течении всей истории. Один квадратный сантиметр поверхности Земли каждую минуту получает от полуденного Солнца 1,97 калэнергии в виде света и тепла. Эта величина, т. е. 1,97 кал/(см 2мин),называется солнечной постоянной.
Площадь поперечного сечения Земли в плоскости, перпендикулярной идущей от Солнца радиации, равна приблизительно 1 280 000 000 000 000 000, или 1,2 ·10 18 см 2 [5]
[Закрыть]. Следовательно, полное излучение, попадающее каждую минуту на Землю, составляет приблизительно 2,51 ·10 18 кал.Но даже это число никоим образом не выражает всю радиацию Солнца. Солнце излучает энергию во всех направлениях, и только очень малая часть ее попадает на крошечную Землю. Вообразите огромную полую сферу с радиусом 150 000 000 кми с Солнцем в центре. Солнце освещало бы и нагревало каждую часть сферы, как Землю, а поверхность огромной сферы в два миллиарда раз превосходила бы поперечное сечение Земли. Это означает, что Солнце излучает в два миллиарда раз больше энергии, чем получает Земля. Полная энергия, излучаемая Солнцем равна 5,6 ·10 27 кал/мин.Сколько же энергии излучило Солнце за всю историю своего существования, если каждую минуту оно излучает в среднем 5,6 ·10 27 кал!
Тогда возникает критический вопрос: откуда берется вся эта энергия? Если закон сохранения энергии верен и для Солнца, невероятно огромные запасы энергии, извергаемые Солнцем в пространство, не могут возникать из ничего. Энергия только переходит из одной формы в другую, следовательно, солнечная радиация должна возникать за счет другой формы энергии. Но какой именно?
На первый взгляд кажется, что такой формой является химическая энергия. Горящий уголь, например, как и Солнце, выделяет свет и тепло, когда углерод угля и кислород воздуха, соединяясь, образуют двуокись углерода, Тогда, может быть, Солнце – огромный горящий кусок угля, и излучаемая им энергия получается за счет химической энергии?
Такое предположение легко опровергнуть. Химики знают совершенно точно, сколько энергии получается при сгорании данного количества угля. Предположим, что вся огромная масса Солнца (которая в 333 500 раз больше массы Земли) состоит из угля и кислорода и излучает каждую минуту 5,6 ·10 27 кал.Солнце тогда было бы действительно горящим углем, освещающим и обогревающим Солнечную систему. Какое время горел бы этот уголь, прежде чем на Солнце осталась только двуокись углерода? Ответ звучит довольно легкомысленно – в течение полутора тысяч лет!
Это очень маленький период времени. Он может охватить лишь часть истории цивилизованного человечества (о целых эрах до нее и говорить нечего). Так как Солнце сияло с такой же силой во времена расцвета Римской империи, с какой оно светит и сейчас, без дальнейших исследований мы утверждаем, что оно не может быть горящим углем, иначе к настоящему времени оно погасло бы. Действительно, пока неизвестна химическая реакция которая снабдила бы Солнце необходимой энергией даже на короткий период существования цивилизованного человечества.
Рассмотрим некоторые альтернативы химической энергии. Одной из них является кинетическая энергия.
На Земле проявление такой энергии случается каждый раз, когда в верхние слои атмосферы влетает метеорит. Его кинетическая энергия в результате сопротивления воздуха превращается в тепло. Даже крошечный метеорит размером с булавочную головку раскаляется до такой степени, что сияет на расстоянии в несколько километров. Метеорит, весящий 1 ги движущийся с обычной для метеоритов скоростью (скажем, 30 км/сек),имеет кинетическую энергию более чем 5 ·10 12 эрг,или около 120 000 кал.Такой же метеорит, падающий на Солнце, разгонялся бы гораздо большей гравитационной силой Солнца до гораздо большей скорости, чем на Земле, поэтому он передавал бы Солнцу значительно большую энергию. Подсчитано, что один грамм вещества, падающего на Солнце с большого расстояния, возместил бы 44 000 000 кал,потерянных Солнцем. Следовательно, если учесть всю энергию, излучаемую Солнцем, о для полной ее компенсации на него ежеминутно должно падать 1,2 ·10 20 гметеоритного вещества, т. е. более чем сто триллионов тонн вещества!
Расчет хорошо выглядел на бумаге, но астрономы отнеслись к этой ситуации с глубочайшим подозрением Во-первых, нет никаких доказательств, что Солнечная система настолько богата метеоритным материалом, чтобы каждую минуту снабжать Солнце сотней триллионов тонн вещества на протяжении многих исторических эр.
Во-вторых, если бы метеоритное вещество накапливалось на Солнце с такой скоростью, его масса увеличилась бы на один процент за 300 000 лет. Такое увеличение сильно повлияло бы на гравитационное притяжение Солнца, зависящее от его массы. Если бы даже масса Солнца возрастала столь медленно, Земля постепенно приближалась бы к нему и наш год все время укорачивался бы. Каждый год становился бы фактически на две секунды короче предыдущего, и астрономы немедленно зафиксировали бы этот факт. Но подобных изменений в длине года не наблюдали. Поэтому предположение о том, что метеориты служат источником солнечной радиации, отвергли.
К более приемлемой альтернативе пришел в 1853 году Гельмгольц – один из создателей закона сохранения энергии. Зачем рассматривать метеориты, падающие на Солнце, если может падать вещество самого Солнца? Поверхность Солнца отстоит от его центра на 696 000 км.предположим, что поверхность медленно опускается, причем кинетическая энергия этого падения может превратиться в излучение. Естественно, если бы с небольшого расстояния упал маленький кусочек солнечной поверхности, выделилось бы очень мало энергии. Однако если бы упала вся солнечная поверхность, т. е. если бы Солнце сжалось, энергия излучения была бы огромной. Гельмгольц показал, что скорость сжатия Солнца 0,014 см/миндостаточна для объяснения его радиации. Предположение было весьма заманчивым, ибо оно не требовало изменения солнечной массы и, следовательно, его гравитационного притяжения. Более того, изменение его диаметра в результате сжатия было бы небольшим.
За все шесть тысяч лет существования человеческой цивилизации диаметр Солнца уменьшился бы только на 900 км,т. е. весьма незначительно по сравнению с диаметром Солнца 1 400 000 км.За 250 лет, прошедшие со времени изобретения телескопа до работ Гельмгольца, диаметр Солнца сократился бы только на 37 км.Естественно, астрономы не заметили бы такого уменьшения.
Проблема солнечной радиации казалась решенной, если бы не одно серьезное упущение: Солнце излучало энергию не только в период существования человеческой цивилизации, но и в течение всего времени до того, как человек вообще появился на Земле. Во времена Гельмгольца никто точно не знал, как долго длился этот промежуток времени. Сам Гельмгольц чувствовал, что в исследуемом вопросе не все продумано до конца.
Если бы солнечное вещество падало внутрь с большого расстояния, скажем, с земной орбиты, выделялось бы достаточно энергии, чтобы Солнце излучало ее с той же скоростью, что и сейчас, в течение 18 000 000 лет. Однако это означало бы, что возраст Земли не больше 18 000 000 лет, ибо она вряд ли существовала в своем теперешнем виде, когда вещество Солнца простиралось до областей, через которые теперь движется Земля. Геологи, изучавшие медленные изменения земной коры, казалось, неопровержимо доказали, что Земля существует не десятки, а сотни миллионов лет, возможно, даже миллиарды лет, причем все это время Солнце сияло с той же силой, c какой оно светит сейчас. В 1859 году английским натуралистом Чарльзом Робертом Дарвином была создана «теория эволюции путем естественного отбора». Если эволюция действительно происходила, а, по мнению биологов, она должна была происходить, то Земля существует по крайней мере сотни миллионов лет, все это время так же, как сегодня!
Следовательно, в течение второй половины XIX века применение закона сохранения энергии по отношению к Солнцу казалось спорным. Была предложена правдоподобная теория, которую астрономы не прочь были бы принять, но против которой энергично возражали геологи и биологи. Таким образом, было три альтернативы:
1. Закон сохранения энергии выполняется не везде во Вселенной, в частности не выполняется на Солнце.
2. Закон сохранения выполняется на Солнце, а геологи и биологи каким-то образом неправильно интерпретируют факты, которые они собрали, и Земля существует всего несколько миллионов лет.
3. Закон сохранения справедлив и для Солнца, но существует еще неизвестный науке источник энергии, который позволяет Солнцу излучать энергию с постоянной интенсивностью в течение миллиардов лет. Таким образом, физическая теория примиряется с точкой зрения геологов и биологов [6]
[Закрыть].
В течение пятидесяти лет, после того как Гельмгольц предложил свою теорию, правильного пути для выбора одной из этих трех гипотез не было найдено. Вопрос был решен благодаря открытиям в области предельно малых, а не предельно больших тел. Они принадлежат к микромиру, к рассмотрению которого мы теперь переходим.
Глава 3. Строение атома
Радиоактивность
Блестящая серия физических открытий в последнее десятилетие XIX века поистине явилась началом научной революции. Прологом к ней послужило открытие, сделанное в 1896 году французским физиком Антуаном Анри Беккерелем, который обнаружил, что соединения, содержащие атомы тяжелого металла урана, постоянно испускают какие-то неизвестные прежде лучи. Излучение имело такую проникающую способность, что засвечивало фотопленку, закрытую черной бумагой или даже металлической фольгой. Стали говорить, что урановые соединения радиоактивны,а само явление было названо радиоактивностью.
В следующее десятилетие ученые обнаружили, что излучение урана бывает трех видов. Лучи были названы по первым трем буквам греческого алфавита: α-лучи, β-лучи и γ-лучи.
Оказалось, что α-лучи состоят из частиц, масса которых примерно в 60 раз меньше массы атомов урана, из которых они вылетают, и почти равна массе легкого атома газа гелия. Действительно, доказано, что α-частицы имеют очень близкое отношение к атомам гелия. β-Лучи тоже состоят из частиц, но гораздо менее тяжелых, чем атомы. Их масса составляет только 1/1837 массы атома самого легкого вещества – водорода. Было обнаружено, что β-частицы очень похожи на другие легкие частицы, которые обнаружили в электрическом токе, проходящем через вакуум. Последние из-за своего происхождения были названы электронами.
Следовательно, β-частицу можно рассматривать как электрон, вылетающий из радиоактивного атома. γ-Лучи не являются частицами в прямом смысле этого слова. Они представляют излучение, обладающее, подобно свету, волновыми свойствами, с той только разницей, что γ-лучи имеют гораздо более короткие длины волн, чем свет.
Однако такое описание γ-лучей не является полным. Волновая природа γ-излучения удовлетворяла физиков XIX века, но в начале XX века на световые волны смотрели уже с новой точки зрения.
В 1900 году немецкий физик Макс Планк после изучения закономерностей излучения нагретым телом световых волн различной длины обнаружил, что объяснить все явления радиации можно только в том случае, если энергия излучается маленькими порциями, которые он назвал квантами.
Тело может излучать один квант света или два, но оно никогда не излучает полтора или два и одну треть кванта. Энергия излучается не непрерывно, а дискретно, отдельными порциями, или квантами. Однако кванты так малы, что в обычных условиях их нельзя различить, и энергия кажется непрерывным потоком. Подобно этому, песчаный берег издали представляется сплошной широкой полосой и только на близком расстоянии в песке становятся заметными отдельные песчинки. Более глубокой аналогией является пример алюминиевого бруска, который даже под лучшим микроскопом кажется сплошным, но который, как мы теперь знаем, состоит из отдельных мельчайших атомов.
Но не все кванты так малы. Величина квантов излучения зависит от длины волны. Чем короче длина волны, тем больше кванты. Длина волны обычного света равна примерно 1/20 000 см.Эта очень маленькая величина достаточно велика, чтобы квант видимого света был очень малым. Длины волн γ-лучей почти в 5000 раз меньше длин волн видимого света, следовательно, кванты γ-лучей по крайней мере в 5000 раз больше квантов обычного света.
В некоторых случаях кванты ведут себя как частицы поэтому они были названы фотонами(от греческого phos (photos) – свет). Естественно, чем больше кванты, тем ярче выражены корпускулярные свойства излучения. Обычный свет, обладая малыми квантами, слабо проявляет корпускулярные свойства, поэтому в XIX веке его принимали за чисто волновое явление. γ-Лучи, обладая большими квантами, проявляют корпускулярные свойства, которые нельзя игнорировать. Поэтому фотон γ-лучей относят к частицам, образующим субатомный мир.
Атомное ядро
Открытие α– и β-частиц заставило физиков изменить свои основные представления об атомах. В течение всего XIX века они считали атомы самыми мелкими частицами вещества. Предполагалось, что каждый отдельный элемент состоит из определенных атомов, отличающихся друг от друга только массой.
Масса отдельного атома исключительно мала. Чтобы получить один грамм массы, надо взять около трех миллиардов триллионов самых тяжелых из известных атомов. Чтобы не иметь дело с такими маленькими числами, химики предпочли приравнять массу атома кислорода произвольному числу 16 и относительно него измерять массу всех других атомов, или атомный вес.Число 16 было выбрано так, чтобы ни один атом, даже самый легкий, не имел по «кислородной шкале» атомный вес меньше единицы [7]
[Закрыть]. По этой шкале атом водорода имеет атомный вес 1, атом гелия – 4, атом серы – 32, атом урана – 238 и т. д. [8]
[Закрыть].
Однако с открытием радиоактивности стало очевидным, что атом, каким бы ни были его свойства, не может быть просто очень маленьким бильярдным шариком, как его представляли химики XIX века. Он должен иметь структуру, должен состоять из еще меньших, субатомных частиц.
Масса β-частицы, как я уже говорил, в 1837 раз меньше массы самого легкого атома, тогда как весьма тяжелая а-частица гораздо меньше атома. Исчерпывающие эксперименты показали, что диаметр обычного атома порядка одной стомиллионной сантиметра. Диаметр α-частицы намного меньше. Потребовалось бы около 50 тысяч частиц, уложенных одна к одной, чтобы они могли заполнить диаметр атома.
Решительный шаг в понимании внутреннего строения атома сделал английский физик, уроженец Новой Зеландии, Эрнест Резерфорд. Он обстрелял тонкие металлические листки α-частицами и обнаружил, что они проходят через металл так, как будто на их пути ничего нет. Он сделал вывод, что атомы в основном «пусты». Но иногда α-частица как будто сталкивалась с чем-то твердым и отклонялась в сторону. К 1908 году Резерфорд пришел к заключению, что в состав каждого атома входит маленькое атомное ядро,расположенное в центре атома и занимающее не более одной триллионной его объема. Однако несмотря на ничтожно малые размеры, на атомное ядро приходится 99,95 % всей массы атома. Остальная часть атома занята электронами, имеющими такую малую массу, что для летящей α-частицы, масса которой более чем в 7000 раз превосходит массу одного электрона, она кажется пустой [9]
[Закрыть].
Все электроны, насколько нам известно, одинаковы. Тем или иным путем электроны можно выбить из атома. Каждый атом любого элемента содержит одно определенное число электронов.
При химических реакциях происходит передача одного или нескольких электронов от одного атома к другому. То, что обычно называют химической энергией, лучше было бы назвать «электронной энергией». Отдельный атом может иметь на один или несколько электронов больше или меньше, чем ему положено. В некоторых случаях атом вовсе не имеет электронов, так что остается только голое ядро. Например, атом гелия обычно имеет два электрона. Если оба электрона удалить, останется голое ядро гелия будет идентично α-частице.
Несмотря на то что атомное ядро гораздо меньше атома, за исключением одного случая (атом водорода) оно не является бесструктурным. Все атомные ядра состоят из двух или более субатомных частиц, или нуклонов. Известно два типа таких частиц. Рассмотрим сначала эти две разновидности вместе, без различий.
Масса каждой из разновидностей нуклонов в атомных единицах немногим больше единицы. Примем массовое числонуклона равным единице, тогда масса данного атомного ядра в атомных единицах с несущественной на данном этапе погрешностью будет равна числу содержащихся в нем нуклонов. Более того, массу ядра можно принять равной массе атома, которому оно принадлежит. Поскольку масса электрона равна 0,00054 массы нуклона, его вклад в массу атома пренебрежимо мал.
Ядра атомов некоторых элементов обладают характерным числом нуклонов. Например, все имеющиеся в природе атомы алюминия содержат в своих ядрах 27 нуклонов, следовательно, они имеют массовое число 27. Такие атомы принято обозначать «алюминий-27». Однако было обнаружено, что атомы большинства элементов отличаются числом нуклонов. Большинство ядер атомов водорода содержат один нуклон, но всегда есть очень небольшое число атомов с ядрами из двух нуклонов. Следовательно, существуют водород-1 и водород-2. Аналогично в природе существуют гелий-3 и гелий-4 (α-частица есть голое ядро атома гелия-4), уран-235 и уран-238. Атомы олова встречаются в десяти различных видах: олово-112, -114, -115, -116, -117, -118, -119, -120, -122, и -124. Правда, такое множество разновидностей одного элемента является совершенно исключительным. Разновидности одного и того же элемента обычно называют изотопами.Водород, гелий и уран имеют по два изотопа каждый, олово – десять, алюминий – только один. Обычно химики обозначают элементы их химическими символами, состоящими, как правило, из одной или двух начальных букв названия элемента. Так, водород обозначается Н, гелий – Не, уран – U, алюминий – Аl. Олово – один из немногих элементов, известных еще в древности, сохранило свое латинское название stannum, от которого происходит его химический символ Sn. Массовое число каждого изотопа пишется справа вверху химического символа. Так, водород-1 и водород-2 обычно записываются как Н 1и Н 2. Аналогично можно записать He 3и Не 4, U 235и U 238, Al 27, Sn 112, Sn 114и все остальные.
Ядерная энергия
Представление об атоме, возникшее в начале XIX столетия, позволило по-новому ответить на вопрос об источнике солнечной энергии. Почти тотчас же внимание физиков было направлено на третью альтернативу, упомянутую ранее. Атомы элемента урана (а также другого тяжелого металла – тория) постоянно излучают α-частицы с колоссальной скоростью – в среднем около 20 000 км/сек. Следовательно, α-частица имеет кинетическую энергию примерно 1,3 ·10 -5 эрг.Поскольку 1 эрг– маленькая величина, возникает искушение пренебречь ее миллионными долями. Однако для энергии, излучаемой одним атомом, величина эта огромна. Чтобы лучше понять сказанное, введем новую единицу энергии, значительно меньшую, чем эрг.
При исследованиях атомных частиц физики обычно разгоняют их до огромных скоростей, подвергая такие частицы действию электрического поля. Сила электрического поля, заставляющая атомную частицу двигаться быстрее и, следовательно, увеличивающая ее кинетическую энергию, измеряется в вольтах.(Эта единица названа по имени итальянского физика Алессандро Вольты, впервые сконструировавшего в 1800 году электрическую батарею.)
Электрон, находясь под действием электрического потенциала в один вольт, получает определенное количество энергии. Такая величина энергии называется электронвольтоми сокращенно обозначается эв.Тысяча электронвольт обозначается кэв,миллион электронвольт – Мэв,миллиард – Бэв(иногда миллиард электронвольт называют гигаэлектронвольтом и обозначают Гэв):
Один злектронвольт равен 1,602 ·10 -12 эрг.Эта величина немногим больше одной триллионной эрга и удобна для выражения изменения энергии атомов и субатомных частиц [10]
[Закрыть].
Предположим, например, что углерод соединяется с кислородом и образует двуокись углерода. Каждый грамм углерода, соединяясь таким образом, выделяет 7807 кал.Один атом углерода, соединяясь с двумя атомами кислорода при образовании молекулы двуокиси углерода, освобождает немногим более 4 эв.
Это типичная величина энергии, освобождаемая одним атомом в процессе химических реакций. Сравним ее с величиной энергии α-частицы, вылетающей из атома урана. Крошечная величина в 1,3 ·10 -5 эрг,выраженная в электронвольтах, огромна – 8 Мэв.Один атом, испускающий при радиоактивном распаде субатомную частицу, выделяет в два миллиона раз больше энергии, чем такой же атом во время обычной химической реакции. Почему?
Ha этот вопрос можно дать разумный ответ на основе модели строения атома, созданной в XIX веке. Обычные химические реакции связаны с изменением расположения электронов в атоме, а при изменении положения этих легких частиц затрачивается энергия в несколько электронвольт. С другой стороны, радиоактивные превращения, такие, как излучение α-частиц, происходят в результате изменения расположения нуклонов в ядрах. Нуклоны гораздо тяжелее электронов и находятся в невообразимой тесноте. Энергии, удерживающие их, в миллионы раз больше тех, которые удерживают электроны. Когда при перераспределении нуклонов выделяется энергия, она излучается соответственно большими порциями. В этом случае в отличие от обычных химических реакций говорят о ядерных реакцияхи в отличие от обычной химической энергии – о ядерной энергии.Радиоактивность– одно из первых обнаруженных проявлений ядерной энергии.
Тогда, может быть, именно ядерная энергия, о которой не имели понятия во времена Гельмгольца, служит постоянным неисчерпаемым источником солнечной радиации? Спектроскопия достаточно убедительно доказала, что в действительности Солнце состоит в основном из водорода. Что из этого следует?
За короткое время физики подробно изучили ядерные реакции, протекающие на Солнце: насколько они вероятны, какая энергия излучается и т. д. Уже в 1938 году немецкий физик Ганс Альбрехт Бете, работавший в США, вывел цепочку ядерных реакций, которые могут протекать в условиях, существующих внутри Солнца. В результате таких реакций четыре атома водорода превращаются в один атом гелия, при этом выделяется энергия, примерно равная 27,6 Мэв.Если подобные реакции действительно происходят на Солнце, как долго излучало бы оно энергию, если с самого начала состояло только из водорода, который превращался в гелий в количествах, достаточных, чтобы энергия излучалась с необходимой скоростью? Оказывается, около сотни миллиардов лет. Следовательно, ядерная энергия полностью решает вопрос об энергетическом балансе Солнца. Солнцу незачем сжиматься. А геологам и биологам не стоит больше сомневаться относительно возраста Земли.
В настоящее время по максимальным оценкам возраст Земли равен пяти миллиардам лет. Но Солнце излучало энергию с теперешней интенсивностью все это время без заметного изменения своего внешнего вида и без существенных изменений запасов водородного топлива. Фактически так может продолжаться еще десятки миллиардов лет.
Чтобы поставить на этом точку, добавлю, что человечество вскоре научилось само получать ядерную энергию и в конце концов создало водородную бомбу, в которой используются ядерные реакции, аналогичные тем, которые происходят на Солнце.