Текст книги "Нейтрино - призрачная частица атома"
Автор книги: Айзек Азимов
Жанр:
Физика
сообщить о нарушении
Текущая страница: 11 (всего у книги 13 страниц)
Сильные и слабые взаимодействия
Открытие ядерного поля не разрешило сразу все нерешенные проблемы. Возникло недоумение по поводу времени взаимодействия мезона. Пролетая мимо ядра практически со скоростью света, π-мезон находится все же достаточно близко от него и в течение не более 10 -23 секиспытывает влияние очень короткодействующего ядерного поля. За этот ультракороткий промежуток времени π-мезон тем не менее имеет возможность взаимодействовать с ядром.
Разумно предположить, что все мезонные взаимодействия должны протекать одинаково быстро. В частности, следовало бы ожидать, что π-мезоны и μ-мезоны в свободном состоянии распадутся за время не более 10 -23 сек.Однако изолированный π-мезон распадается на более легкие частицы в течение приблизительно 2,55·10 -8 сек.А изолированный μ-мезон живет еще дольше, распадаясь на более легкие частицы за 2,212 ·10 -6 сек.
Интервалы времени в десяти– и стомиллионные доли секунды кажутся нам предельно короткими, но в субатомных масштабах времени они чрезвычайно велики. Предположим, теория утверждает, что некая частица распадается за одну секунду, хотя обнаружено, что некоторые частицы живут сто миллионов, а другие десять миллиардов лет. Мы были бы удивлены этими огромными временами жизни, не так ли? А ведь время 10 -23 сек,в течение которого, согласно теории, должен жить π-мезон, и 2,55·10 -8 сек,которые он живет в действительности, находятся в таком же отношении друг к другу, как одна секунда и сто миллионов лет.
Необходимо было предположить, что не одно ядерное поле ответственно за все мезонные взаимодействия, а два, одно из которых сильнее другого. Одно поле приводит к сильным взаимодействиям,как, например, взаимодействие π-мезона с ядром, а другое является причиной слабых взаимодействийв ряде распадов π-мезонов и μ-мезонов. Распад нейтрона разумно отнести к слабым взаимодействиям.
Если π-мезон является обменной частицей для сильных взаимодействий, должна, вероятно, существовать обменная частица и для слабых взаимодействий. Ферми разработал теорию слабых взаимодействий, для которой, по-видимому, необходима такая обменная частица. Иногда ее называют w-частицей(от английского слова weak – слабый). Согласно теории, w-частица, по-видимому, имеет большую массу в свободном состоянии. Она намного тяжелее протона, но время жизни ее только 10 -17 сек,что составляет приблизительно одну миллиардную времени жизни π-мезона. Поэтому ее не так-то легко зарегистрировать.
В настоящее время физики различают четыре типа полей, ответственных за все протекающие во Вселенной процессы. Это два ядерных поля: электромагнитное и гравитационное. Ядерное поле сильных взаимодействий – наиболее мощное из всех полей, оно в сотни раз сильнее электромагнитного. Поле слабых взаимодействий в сто миллиардов раз слабее электромагнитного но во много триллионов раз сильнее гравитационного поля. Насколько известно, гравитация остается пока наиболее слабой силой в природе [19]
[Закрыть].
Тяжелый электрон
В 50-х годах μ-мезон становился все более и более загадочной частицей. В отличие от π-мезона, нужного для устойчивости ядер, он не играет никакой существенной роли, которую физики могли бы понять до конца. Более того, он постепенно теряет свою индивидуальность и становится все более и более похожим на разновидность электрона.
Это может показаться странным, так как наиболее отличительные свойства μ-мезона и электрона совершенно различны. Во-первых, μ-мезон в 207 раз тяжелее электрона, во-вторых, в то время как электрон – стабильная частица, μ-мезон нестабилен, он распадается за 2,212 ·10 -6 сек.
И все же ряд свойств электрона и μ-мезона совпадают:
1) заряд электрона равен -1, а его античастицы, позитрона, + 1. В этом отношении μ-мезон похож на электрон. У него есть две разновидности: отрицательный μ-мезон,который, подобно электрону, имеет заряд -1 и является частицей, и положительный μ-мезон,который, подобно позитрону, имеет заряд +1 и является античастицей. Отрицательный μ-мезон изображается символом μ -, а положительный μ-мезон, являющийся античастицей, символом 'μ +;
2) в природе не существует «нейтрального электрона», т. е. нет незаряженной частицы с массой электрона. Точно так же нет и «нейтрального μ-мезона»;
3) спины электрона и позитрона равны +1/2 или -1/2. Такие же значения имеют спины отрицательного и положительного μ-мезонов.
4) электрон и позитрон никогда не участвуют в сильных взаимодействиях, зато принимают участие в слабых, как и положительный и отрицательный μ-мезоны;
5) наконец, магнитные свойства электрона и позитрона фактически совпадают с магнитными свойствами отрицательного и положительного μ-мезонов.
Важно ли различие в массе и стабильности μ-мезона и электрона, если они во многом так похожи?
Что касается различия в стабильности, им можно вообще пренебречь. Я уже говорил, что в субатомных масштабах время жизни 0,000002212 секчрезвычайно велико. Это время находится в таком же отношении ко времени, характерному для сильных взаимодействий, как десять миллиардов лет к одной секунде. Событие, продолжающееся десять миллиардов лет, практически «вечно» по сравнению с событиями, длящимися одну секунду. Аналогично в субатомных масштабах времени μ-мезон существует практически «вечно», и разница между его временем жизни и действительно бесконечным временем жизни электрона и позитрона незначительна.
А вот различие масс μ-мезона и электрона остается загадочным. Тяжелые частицы участвуют как в слабых, так и в сильных взаимодействиях, в то время как легкие частицы, очевидно, участвуют только в слабых взаимодействиях. Граница проходит через π-мезон; π-мезон– самая легкая из известных тяжелых частиц, участвующая в сильных взаимодействиях.
Однако μ-мезон, масса которого составляет примерно 3/4 массы π-мезона, не участвует в сильных взаимодействиях. Он участвует только в слабых взаимодействиях. Почему же, несмотря на свою массу, он не способен участвовать в сильных взаимодействиях? Увы, до сих пор на этот вопрос нет ответа. Почему отрицательный (μ-мезон в сущности так похож на электрон, а положительный μ-мезон – на позитрон? И если μ-мезоны действительно просто «тяжелые электроны», то почему их масса именно в 207 раз больше массы электрона – не больше и не меньше? До сих пор физики не получили ответа ни на один из этих вопросов.
Поскольку нам приходится рассматривать μ-мезоны как более тяжелые электроны и позитроны, то они должны считаться лептонами и подчиняться закону сохранения лептонного числа. Отрицательному μ-мезону, подобно электрону, приписали лептонное число +1, а положительному μ-мезону, подобно позитрону, -1. Физики установили, что при таком выборе во всех субатомных процессах с участием μ-мезонов закон сохранения лептонного числа выполняется. А поскольку μ-мезон является лептоном, чтобы не впадать в заблуждение, его назвали мюоном.Конечно, существуют отрицательные и положительные мюоны.
Что касается π-мезона, он оправдывает свое название. Прежде всего он и не лептон, и не барион. Если ему приписать нулевые лептонное и барионное числа, то во всех субатомных процессах с участием π-мезона законы сохранения лептонного и барионного чисел будут выполняться. Тем не менее, по аналогии с мюоном π-мезон стали все чаще и чаще называть пионом.Пион существует в двух зарядовых состояниях: положительный пион(π +), являющийся частицей, и отрицательный пион('π -), представляющий собой античастицу. В отличие от электрона и мюона пион может существовать и в виде незаряженной частицы – нейтрального пиона(π 0), которая немного легче заряженного пиона – ее масса в 264 раза больше массы электрона, а живет она значительно меньшее время, распадаясь в течение 1,9·10 -16 сек.Особенно необычно то, что нейтральный пион, подобно фотону, является своей собственной античастицей.
Если мюон только более тяжелая разновидность электрона, он должен дублировать его функции в атоме, что наблюдается в действительности. Электрон, находящийся во внешних областях атома, можно представить как частицу, вращающуюся вокруг атомного ядра по определенным орбитам, или как волну, имеющую определенные энергетические состояния. При определенных условиях отрицательные мюоны на короткое время занимают место электронов в атомах. (А положительные мюоны, вероятно, могут занять место вращающихся позитронов в атомах антивещества.) Атом, в котором отрицательный мюон замещает электрон, называется мезоатомом.
Конечно, разница масс мюона и электрона приводит к некоторым изменениям. Момент количества движения частицы, вращающейся вокруг ядра, кроме всего прочего зависит от массы частицы и ее расстояния от ядра.
Так как мюон в 207 раз тяжелее электрона, расстояние его от ядра должно быть меньше, чтобы при замене электрона мюоном момент количества движения не менялся.
В очень тяжелых атомах, внутренние электроны которых расположены близко к ядру, отрицательный мезон может так близко вращаться вокруг ядра, что почти вся его орбита будет находиться внутри ядра. Это обстоятельство еще раз показывает, насколько слабо он взаимодействует с протонами и нейтронами. (И снова мюон напоминает электрон, который тоже слабо взаимодействует с нуклонами. В противном случае ядро поглотило бы электроны и вещество в обычном его виде не существовало бы.)
Если мюон в мезоатоме представить в виде волны, имеющей определенные энергетические состояния, из-за большой массы энергия этих уровней соответственно выше, чем у электрона, а расстояние между соседними уровнями соответственно больше. Фотоны, излучаемые при переходе мюона в мезоатоме с одного энергетического уровня на другой, тоже имеют соответственно большую энергию, так что излучение мезоатомов находится в области рентгеновских лучей, в то время как обычные электронные атомы излучают видимую и ультрафиолетовую части спектра.
Конечно, мезоатомы так же нестабильны, как и мюоны, ибо когда мюон распадается в течение примерно одной миллионной доли секунды, атомное ядро заменяет его обычным электроном.
Глава 12. Мюонное нейтрино
Распад пиона
Если мюон действительно просто тяжелый электрон, при взаимодействии частиц он должен в точности копировать поведение электрона Например, отрицательный пион распадается, образуя отрицательный мюон, а положительный пион – положительный мюон, причем образование этих мюонов походит на рождение электронов. А поскольку электрон (или позитрон) рождается вместе с антинейтрино (или нейтрино), не будут ли возникать эти частицы и при образовании мюонов? Оказывается, нейтрино и антинейтрино действительно появляются при распаде мюонов, и мы можем записать:
'π -→ μ -+ 'ν
π +→'μ ++ ν.
В обоих случаях суммарное лептонное число продуктов распада равно нулю. Закон сохранения лептонного числа требует, чтобы лептонное число частиц перед распадом также было равно нулю. До распада существовали только отрицательный и положительный пионы, которым по этим соображениям следует приписать нулевые лептонные числа. По-видимому, из взаимодействия следует, что «закон сохранения мезонного числа» не существует, так как при распаде пиона мюон исчезает бесследно. Но физики и не стремятся приспособить свои теории к закону сохранения мезонов. В этом смысле их вполне устраивает естественное положение вещей.
Однако возникает законный вопрос: почему пион распадается только на мюон, если мюон является просто тяжелым электроном? Почему при распаде не образуется электрон? Оказывается, такой распад иногда имеет место.
В 1958 году было обнаружено, что один пион из 7000 распадается на электрон, а не на мюон:
'π -→ e -+ 'ν,
π +→'e ++ ν.
Почему мюоны и электроны образуются не в одинаковом количестве? Прежде всего, из-за разницы в массах. Мюон во много раз тяжелее электрона, поэтому почти вся энергия, освобождающаяся при распаде пиона, идет на образование массы, и только незначительная ее часть превращается в кинетическую энергию. В результате возникший мюон имеет скорость порядка 40 000 км/сек.При образовании электрона только очень незначительная часть энергии распада превращается в массу и электрон вылетает со скоростью более 290 000 км/сек,что очень близко к скорости света.
При создании теории слабых взаимодействий Ферми показал, что вероятность рождения мюона, а не электрона при распаде пиона зависит, в частности, от скорости образующейся частицы. Чем ближе скорость частицы к скорости света, тем меньше вероятность ее рождения. Именно поэтому медленный мюон образуется чаще, чем быстрый электрон.
Если не учитывать разности масс, можно сказать, что для любого известного взаимодействия частиц с участием электронов (или позитронов) имеются аналогичные взаимодействия, в которых участвуют отрицательные (или положительные) мюоны.
А одинаковы ли нейтрино и антинейтрино, образующиеся вместе с электронами и мюонами?
Вначале, когда сходство между электронами и мюонами не принимали во внимание и мюон считали особой частицей, не похожей на электрон, не было оснований думать, что легкие нейтральные частицы, образующиеся при рождении мюона, должны быть обязательно нейтрино. Было известно, что мюон намного тяжелее электрона, и поэтому казалось разумным предположить, что легкая нейтральная частица, возникающая вместе с ним, тяжелее невесомого нейтрино, но, несомненно, легче нейтрона. Поэтому некоторое время частицу с промежуточной массой физики называли «нейтретто».Подозревали даже, что она тяжелее электрона.
При более внимательном изучении «нейтретто» было обнаружено, что величину ее массы следует уменьшать и уменьшать. Все больше начинало казаться, что эта частица, подобно нейтрино, не имеет массы. Поэтому, когда было установлено сходство мюона и электрона, ничего не стоило предположить, что рождение мюона и электрона сопровождается нейтрино, одинаковыми в обоих случаях.
Сохранение электронного и мюонного чисел
Однако, если нейтрино, сопровождающее возникновение электрона, идентично нейтрино, сопровождающему рождение мюона, появляется новый вопрос в связи с распадом мюона. При распаде отрицательного мюона образуется электрон, а при распаде положительного – позитрон. Кроме того, в первом случае должно было бы возникнуть антинейтрино, а во втором – нейтрино:
μ -→ e -+ 'ν, ' μ +→'e ++ ν.
Можно заметить, что с лептонным числом творится что-то неладное. Отрицательный мюон имеет лептонное число +1, а лептонные числа электрона и антинейтрино + 1 и -1 соответственно, т. е. их суммарная величина равна нулю. С другой стороны, положительный пион имеет лептонное число -1, а позитрон и нейтрино – лептонные числа -1 и +1 соответственно, следовательно, их суммарное значение тоже равно нулю.
Нарушается ли закон сохранения лептонного числа? Или следует мюону приписать нулевое лептонное число? Ни одна из этих возможностей неприемлема для физиков, ибо вызвала бы больше вопросов, чем решила. Проще всего выйти из положения, если предположить, что при распаде мюона возникает еще третья частица.
Допустим, при распаде отрицательного мюона рождается не только электрон и антинейтрино, но еще и нейтрино, а при распаде положительного мюона – позитрон, нейтрино и антинейтрино, т. е.
μ -→ e -+ 'ν + ν,
'μ +→'e ++ ν + 'ν.
Таким образом, если вначале был отрицательный мюон с лептонным числом +1, после распада будут три частицы с лептонными числами +1, -1 и +1 и их сумма равна +1. Если вначале был положительный мюон с лептонным числом -1, после распада возникнут три частицы с лептонными числами -1, +1 и -1, и их сумма равна -1. Так, не лишая мюона принадлежности к лептонам, мы одновременно спасли закон сохранения лептонного числа.
Но не все еще ясно. Присутствие нейтрино и антинейтрино среди продуктов распада мюона приводит к новой проблеме.
Обычно частица и античастица при достаточном сближении, аннигилируют, излучая фотоны соответствующей энергии. Возможно, нейтрино и антинейтрино аннигилируют с меньшей вероятностью, чем обычные частицы и античастицы, но такая аннигиляция должна происходить, даже если это редкое явление. Тогда время от времени отрицательный мюон распадался бы на электрон и фотоны, а положительный мюон – на позитрон и фотоны, а фотоны легко было бы зарегистрировать. Однако их нет. Почему?
Одна теория, предложенная для объяснения отсутствия фотонов, заставляла отказаться от существования w-частицы. Если w-частица не существует, распад мюонов на электроны и фотоны должен был происходить так редко, что его нельзя было бы обнаружить. Однако w-частица часто используется в теории, и физики начали искать другое объяснение.
Объяснение появилось в 1957 году и сводилось к предположению, что нейтрино и антинейтрино, возникающие при распаде мюона, на самом деле не являются настоящими частицей и античастицей. Иными словами, электрон при распаде образует один сорт нейтрино, которое можно назвать электронным нейтриноν e(ему соответствует электронное антинейтрино 'ν e), а мюон образует нейтрино другого сорта – мюонное нейтриноν μ , (которому соответствует мюонное антинейтрино 'ν μ ).
Рассмотрим теперь распад мюона в новом свете. Отрицательный мюон распадается на электрон и электронное антинейтрино. Следовательно, третья частица, образующаяся при распаде отрицательного мюона, должна быть мюонным нейтрино. Поэтому электронное антинейтрино и мюонное нейтрино не аннигилируют, так как они не являются комбинацией частица – античастица. По тем же соображениям положительный мюон распадается на позитрон, электронное нейтрино [20]
[Закрыть]и мюонное антинейтрино. Запишем распады мюонов в следующем виде:
μ -→ e -+ 'ν e+ ν μ,
'μ +→'e ++ ν e+ 'ν μ.
Нетрудно заметить, что при такой записи лептонное число сохраняется, а кроме того, возникает возможность сформулировать два более узких закона сохранения. Разделим все лептоны на электронное и мюонное семейства.Семейство электронов включает электрон, позитрон, электронное нейтрино и электронное антинейтрино. Электрон и электронное нейтрино имеют электронное число +1 каждый, а позитрон и электронное антинейтрино – соответственно -1 каждый. К семейству мюонов относят ся отрицательный мюон, положительный мюон, мюонное нейтрино и мюонное антинейтрино. Отрицательный мюон и мюонное нейтрино должны иметь мюонное число+1, а положительный мюон и мюонное антинейтрино – мюонное число -1. (Фотон, оставшийся лептон, не принадлежит ни к одной из этих групп, и его электронное и мюонное числа равны нулю. Точно так же будет обстоять дело с мезонами и барионами. Более того, частицы из семейства электронов будут иметь нулевые мюонные числа, и наоборот.)
Уравнения, описывающие распад мезона и образование двух разных нейтрино, иллюстрируют закон сохранения электронного числа и закон сохранения мюонного числа,которые утверждают соответственно, что суммарное значение электронного числа и суммарное значение мюонного числа замкнутой системы остаются постоянными.
Рассмотрим сначала распад отрицательного мюона, имеющего мюонное число +1 и нулевое электронное число. При распаде образуются три частицы: электрон, электронное антинейтрино и мюонное нейтрино, мюонные числа которых равны 0, 0 и +1 соответственно, а электронные числа равны +1, -1 и 0 соответственно. Таким образом, мюонное и электронное числа сохраняются. Аналогично можно показать, что мюонное и электронное числа сохраняются и в случае распада положительного мюона.
Эти законы справедливы для некоторых рассмотренных ранее взаимодействий с участием электронов и мюонов если при этом учесть различие двух типов нейтрино. Распад нейтрона происходит при участии электронного антинейтрино:
n→p ++ e -+ 'ν e.
Нетрудно видеть, что электронное и мюонное числа равны нулю в начале и в конце распада.
Отрицательный пион распадается на отрицательный мюон и антинейтрино мюонного типа или на электрон и антинейтрино электронного типа:
'π -→ μ -+ 'ν μ ,
'π -→ e -+ 'ν e.
Мюонное и электронное числа пиона равны нулю. В первом распаде пиона отрицательный мюон и антинейтрино мюонного типа имеют мюонные числа +1 и -1, т. е. их сумма равна нулю. Во втором – электрон и антинейтрино электронного типа имеют электронные числа +1 и -1 соответственно, т. е. их сумма также равна нулю. Те же самые соображения применимы и к распаду положительного пиона.
Физики установили, что в действительности при всех взаимодействиях частиц с участием мюонов или электронов или и тех и других вместе мюонное и электронные числа сохраняются. Конечно, их сумма (лептонное число) также сохраняется. Поскольку более важно сохранение этих чисел в отдельности, а не сохранение их суммы, законом сохранения лептонного числа перестали пользоваться, хотя он никогда не нарушался, и вместо него физики говорят о законах сохранения электронного и мюонного чисел.