355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Айзек Азимов » Краткая история химии. Развитие идей и представлений в химии » Текст книги (страница 15)
Краткая история химии. Развитие идей и представлений в химии
  • Текст добавлен: 4 октября 2016, 02:43

Текст книги "Краткая история химии. Развитие идей и представлений в химии"


Автор книги: Айзек Азимов


Жанр:

   

Химия


сообщить о нарушении

Текущая страница: 15 (всего у книги 17 страниц)

Электронные оболочки

Когда два атома сталкиваются и вступают в реакцию, они или соединяются вместе, обобществляя свои электроны, или же вновь расходятся после перераспределения электронов. Именно это обобществление или перераспределение электронов и вызывает изменение свойств веществ, наблюдаемое при проведении химических реакций.

Кропотливое и тщательное изучение рентгеновских лучей показало, что и обобществление, и перераспределение электронов подчиняется какому-то определенному порядку, и в результате была выдвинута следующая гипотеза. Окружающие ядро атома электроны подразделяются на определенные группы и образуют так называемые электронные оболочки. Ближайшая к ядру атома оболочка получила название К-оболочка, а последующие оболочки были названы соответственно L-оболочка, M-оболочка, N-оболочка и т. д. Согласно этой гипотезе, на ближайшей к ядру оболочке могут располагаться только два электрона, на следующей L-оболочке – восемь, на M-оболочке – восемнадцать и т. д., т. е. чем дальше оболочка удалена от ядра, тем больше электронов на ней может располагаться. Например, три электрона атома лития, одиннадцать электронов атома натрия и девятнадцать электронов атома калия распределяются по электронным оболочкам в следующем порядке: Li 2, 1; Na 2, 8, 1; K 2, 8, 8, 1.

У каждого атома щелочных металлов электроны распределяются таким образом, что внешнюю оболочку занимает только один электрон. Поскольку при столкновении атомов в контакт вступают именно внешние электронные оболочки, то следует ожидать, что число электронов на внешней оболочке и определяет химическую активность элемента. Элементы с аналогичными внешними электронными оболочками имеют сходные свойства, как, например, вышеупомянутые щелочные металлы.

Рассуждая таким образом, можно сказать, что щелочноземельные элементы (магний, кальций, стронций и барий) похожи друг на друга также по этой причине: у каждого из них на внешней оболочке по два электрона. На внешних оболочках атомов галогенов (фтора, хлора, брома и йода) по семь электронов, а на внешних оболочках инертных газов (неона, аргона, криптона и ксенона) – по восемь.

Составляя периодическую таблицу, Менделеев, разумеется, сам того не зная, расположил элементы в соответствии со строением электронных оболочек их атомов.

В более тяжелых атомах, в которых число электронов все растет и растет, увеличивается число электронов на внутренних оболочках, но на внешней оболочке число электронов остается постоянным. Так, например, порядковые номера редкоземельных элементов лежат в пределах от 57 до 71 включительно. И хотя по мере продвижения по периодической таблице мы наблюдаем увеличение числа электронов на внешней оболочке, все редкоземельные элементы имеют по три электрона на внешней оболочке. Это тождество внешних оболочек объясняет, почему элементы этой группы так неожиданно оказались похожи друг на друга по свойствам.

Когда Менделеев составлял периодическую таблицу, он исходил из валентности элементов, поскольку о распределении в них электронов в то время ему еще ничего не было известно. Теперь вполне разумно было предположить, что валентность элемента определяется его электронной структурой.

Немецкий химик Рихард Абегг (1869—1910) в 1904 г. указал, что электронная структура инертных газов должна быть особенно устойчивой. Атомы инертных газов не проявляют тенденции к уменьшению или увеличению числа электронов на внешних электронных оболочках и поэтому не участвуют в химических реакциях. Можно было сделать вывод, что электронные оболочки инертных газов наиболее устойчивы, а другие атомы могут отдавать или принимать электроны, пока их электронная структура не станет такой же, как у ближайшего инертного газа.

Одиннадцать электронов натрия располагаются в порядке 2, 8, 1, а семнадцать электронов хлора – в порядке 2, 8, 7. Если натрий отдаст, а хлор примет один электрон, то первый приобретет элект ронную структуру неона (2, 8), а второй – электронную структуру аргона (2, 8, 8). Атом натрия, отдав отрицательно заряженный электрон, превращается в положительно заряженный ион натрия. Атом хлора, получив электрон, превращается в отрицательно заряженный ион хлора. Противоположно заряженные ионы под действием электрического притяжения стремятся соединиться. Именно это и предполагал Берцелиус столетие назад (см. гл. 7).

Приведенные рассуждения объясняют, почему валентность натрия должна быть равна 1. Натрий не может отдать больше одного электрона без нарушения устойчивой электронной структуры 2, 8. Атом хлора по той же причине не может принять больше одного электрона. В то же время кальций (электронная структура 2, 8, 8, 2) стремится отдать два электрона, а кислород (электронная структура 2, 6) стремится принять два электрона. У обоих этих элементов валентность равна 2.

Между прочим, в результате такого перехода электронов и происходит перенос заряда, и поэтому-то химические реакции могут служить источником электрического тока, как это показал Вольта более столетия назад (см. гл. 5).

В свете новых представлений о строении атома эквивалентная масса равна атомной массе элемента, деленной на его валентность (см. гл. 7), или, иными словами, деленном на число отдаваемых или принимаемых электронов.

Однако Абегг рассматривал только полный переход электронов от одного атома к другому, приводящий к образованию разноименно заряженных атомов, которые затем удерживаются вместе под действием электростатического притяжения, другими словами, Абегг рассматривал электровалентность [120]. Два американских химика Джильберт Ньютон Льюис (1875—1946) и Ирвинг Ленгмюр (1881—1957) в период после 1916 г. независимо друг от друга расширили это понятие. Они, в частности, объяснили строение молекулы хлора. В молекуле хлора два атома хлора прочно связаны друг с другом. Никаких причин для перехода электрона от одного атома к другому, несомненно, не существует, и атомы хлора не могут удерживаться вместе под действием обычного электростатического притяжения. Теории межатомного притяжения Берцелиуса и Абегга не объясняют, как образуется такая молекула.

Льюис и Ленгмюр предположили, что в данном случае может происходить обобществление электронов: каждый атом «представляет в совместное пользование по одному электрону». Эти электроны остаются на внешних электронных оболочках обоих атомов. Следовательно, распределение электронов в молекуле хлора можно изобразить следующим образом: 2, 8, 6 1 1, 6, 8, 2 ( 1 1– пара совместно используемых электронов, входящих в электронные оболочки каждого из атомов) В результате атом хлора, входящий в молекулу хлора, характеризуется более стабильным распределением электронов (2, 8, 8), чем у отдельного атома хлора (2, 8, 7). Именно по этой причине молекула хлора намного менее реакционноспособна, чем отдельные атомы хлора, которые быстро объединяются в двухатомную молекулу.

Для того чтобы обобществленные электроны оставались на внешних электронных оболочках атомов, эти атомы должны оставаться в контакте друг с другом. Чтобы оторвать один такой атом от другого, необходима значительная энергия. Каждый атом, который образует химическое соединение в результате обобществления пары электронов, обладает валентностью 1. Этот тип валентности получил наименование ковалентность.

Теория Льюиса – Ленгмюра позволяет объяснить, как образуются связи между атомами углерода или между атомами углерода и атомами водорода в органических соединениях. Большинство органических молекул можно легко представить электронными формулами, в которых прежние штрихи формул Кекуле (см. гл. 7) – это обобществленные пары электронов.

Действительно, английскому химику Нэвилу Винсенту Седжвику (1873—1955) в 20-х годах XX в. удалось распространить понятие ковалентности на неорганические соединения. В частности, он использовал его для координационных соединений Вернера (см. гл. 7), к которым было трудно применить обычные представления Кекуле.

Все подобные химические изменения затрагивают только электроны; протоны центрального ядра во всех случаях (кроме одного) надежно защищены. Исключение составляет лишь водород, ядро которого состоит из одного протона. Если атом водорода ионизуется в результате удаления единственного его электрона, то протон остается незащищенным.

В 1923 г. датский химик Иоганнес Николаус Бренстед (1879—1947) предложил новое определение кислот и оснований (см. гл. 5). Кислота, по определению Бренстеда,– это соединение, стремящееся отдать протон (или ион водорода), тогда как основание – это соединение, стремящееся присоединить протон. Эта новая точка зрения не только обобщила известные факты, удовлетворительно трактовавшиеся на основе старых представлений, но и позволила значительно расширить понятие кислот и оснований и использовать его в новых областях.

Физическая органическая химия

Начиная со времен Лавуазье химики могли предсказывать, в каком направлении пойдут те или иные быстрые ионные реакции относительно небольших молекул, и могли модифицировать эти реакции с целью их практического использования. Изучать сложные молекулы было гораздо труднее. Медленные реакции органических соединений также гораздо труднее поддавались анализу. Часто реакции могли идти несколькими путями, и направить реакцию по нужному пути химику позволяли его мастерство экспериментатора и интуиция, а не глубокое понимание процесса.

С появлением электронной модели атома химики-органики смогли по-новому взглянуть на область своих исследований. В конце 20-х годов XX в. английский химик Кристофер Ингольд (1893—1970) и ряд других химиков попытались подойти к органическим реакциям с позиций теории строения атома, объясняя взаимодействие молекул переходом электронов. В органической химии начали интенсивно использоваться методы физической химии. Важной дисциплиной стала физическая органическая химия.

Однако попытки истолковать органические реакции только как результат перемещения электронов к особому успеху не привели.

В течение первой четверти XX в., с момента открытия электрона, считалось доказанным, что электрон представляет собой очень маленький жесткий шарик. Однако в 1923 г. французский физик Луи Виктор де Бройль (род. в 1892 г.) представил теоретическое обоснование того, что электроны (а также и все другие частицы) обладают волновыми свойствами. К концу 20-х годов XX в. эта гипотеза была подтверждена экспериментально.

Полинг (первым предположивший, что молекулы белков и нуклеиновых кислот имеют форму спирали, см. гл. 10) в начале 30-х Годов разработал методы, позволившие при рассмотрении органических реакций учитывать волновую природу электронов.

Он предположил, что обобществление пары электронов (по Льюису и Ленгмюру) можно трактовать как взаимодействие волн или перекрывание электронных облаков. Химической связи, изображаемой в структурной теории Кекуле чертой, в новых представлениях соответствует область максимального перекрывания электронных облаков. При этом оказалось, что перекрывание электронных облаков иногда происходит не только в единственном направлении, изображаемом валентной связью в структурной формуле. Иначе говоря, истинную структуру молекулы нельзя представить даже приближенно никакой структурной формулой в отдельности. Ее можно, однако, рассматривать как промежуточную между несколькими гипотетическими структурами, как «резонансный гибрид» этих структур. Важно отметить, что энергия такой реальной молекулы ниже, чем можно было бы ожидать на основании любой отдельной резонансной «классической» структуры. Про такие молекулы говорят, что они «стабилизированы резонансом», хотя резонанс в данном случае, конечно, не реальное физическое явление, а удобная теоретическая концепция для объяснения устойчивости и свойств некоторых молекул.

Теория резонанса [121]оказалась особенно полезной для понимания строения бензола, еще со времен Кекуле (см. гл. 7) приводившего химиков в замешательство. Формулу бензола обычно изображали в виде шестиугольника с чередующимися одинарными и двойными связями. Однако бензол почти полностью лишен свойств, характерных для соединений с двойными связями. [122]

Но для бензола можно написать вторую, совершенно равноценную формулу Кекуле, в которой простые и двойные связи поменяются местами по сравнению с первой формулой. Реальная молекула бензола описывается как резонансный гибрид двух структур Кекуле; электроны, ответственные за образование двойных связей, делокализованы, «размазаны» по кольцу, так что все связи между атомами углерода в бензоле равноценны и являются промежуточными между классическими одинарными и двойными связями. Именно в этом состоит причина повышенной стабильности и особенностей химического поведения бензола.

Кроме строения бензола представления о волновых свойствах электронов помогли объяснить и другие вопросы. Поскольку четыре электрона, находящиеся на внешней оболочке углеродного атома, энергетически не вполне эквивалентны, можно было бы допустить, что и связи, образующиеся между углеродным и соседними с ним атомами, несколько различаются в зависимости от того, какие из электронов участвуют в образовании той или иной связи.

Однако оказалось, что четыре электрона, подобно волнам, взаимодействуют друг с другом и образуют четыре «средние» связи, которые полностью эквивалентны и направлены к вершинам тетраэдра, как в тетраэдрическом атоме Вант-Гоффа – Ле Беля.

Одновременно резонанс помог объяснить строение группы необычных соединений, с которыми химики впервые столкнулись в начале XX в. В 1900 г. американский химик Мозес Гомберг (1866—1947) пытался получить гексафенилэтан – соединение, в молекуле которого два атома углерода соединены с шестью бензольными кольцами (по три на каждый атом углерода) [123].

Вместо этого соединения Гомберг получил окрашенный раствор какого-то весьма реакционноспособного соединения. По ряду причин Гомберг считал, что он получил трифенилметил– «полумолекулу», состоящую из углеродного атома и трех бензольных колец, в которой четвертая связь атома углерода ненасыщенна.

Это соединение напоминало один из тех радикалов, представление о которых было введено в XIX в. для объяснения строения органических соединений (см. гл. 6). Однако, в отличие от радикалов старой теории, обнаруженная Гомбергом молекула существовала в изолированном виде, а не как фрагмент другого соединения, поэтому она была названа свободным радикалом.

С развитием электронных представлений о химической связи стало ясно, что в свободных радикалах, например в трифенилметиле, ненасыщенной связи (в терминах теории Кекуле) в рамках новых представлений соответствует неспаренный электрон. Обычно такие молекулы с неспаренным электроном исключительно реакционноспособны и быстро превращаются в другие вещества.

Однако если молекула плоская и симметричная (как молекула трифенилметила), то неспаренный электрон может «размазаться» по всей молекуле, что приведет к стабилизации радикала.

Когда к изучению органических реакций подошли с позиций теории электронного строения, стало очевидно, что реакции часто включают стадию образования свободных радикалов. Такие свободные радикалы, как правило, не стабилизированные за счет резонанса существуют только непродолжительное время и образуются всегда с трудом. Именно из-за сложности образования промежуточных свободных радикалов большинство органических реакций протекают так медленно.

Во второй четверти XX в. химики-органики стали все глубже проникать в суть органических реакций, и изучив механизм реакций, постигнув само существо процесса, смогли синтезировать такие молекулы, сложность которых поражала химиков более ранних поколений.

Однако представления теории резонанса применимы не только в органической химии. Основываясь на старых представлениях, нельзя, в частности, четко объяснить строение молекул бороводородов. У атома бора слишком мало валентных электронов, чтобы образовалось требуемое число связей. Если же принять, что электроны соответствующим образом «размазаны», то можно предложить приемлемую структуру молекул.

Хотя с момента открытия инертных газов считалось, что они ни в какие реакции не вступают, в 1932 г. Полинг высказал предположение, что атомы этих газов должны образовывать связи.

Первоначально это предположение Полинга прошло незамеченным, но в 1962 г. в результате реакции инертного газа ксенона с фтором был получен фторид ксенона. Вскоре вслед за ним был получен ряд других соединений ксенона с фтором и кислородом, а также соединения радона и криптона. [124]

Период полураспада

Изучение строения атома привело к новому пониманию проблемы, но одновременно перед учеными встал ряд новых вопросов.

В 1900 г. Крукс (см. гл. 12) обнаружил, что свежеприготовленные соединения чистого урана обладают только очень незначительной радиоактивностью и что с течением времени радиоактивность этих соединений усиливается. К 1902 г. Резерфорд и его сотрудник английский химик Фредерик Содди (1877—1956) [125]высказали предположение, что с испусканием альфа-частицы природа атома урана меняется и что образовавшийся новый атом дает более сильное излучение, чем сам уран (таким образом, здесь учитывалось наблюдение Крукса). Этот второй атом в свою очередь также расщепляется, образуя еще один атом. Действительно, атом урана порождает целую серию радиоактивных элементов – радиоактивный ряд, включающий радий и полоний (см. разд. «Порядковый номер») и заканчивающийся свинцом, который не является радиоактивным. Именно по этой причине радий, полоний и другие редкие радиоактивные элементы можно найти в урановых минералах. Второй радиоактивный ряд также начинается с урана, тогда как третий радиоактивный ряд начинается с тория.

Уместно спросить, почему радиоактивные элементы, постоянно распадаясь, все же продолжают существовать? В 1904 г. этот вопрос разрешил Резерфорд. Изучая скорость радиоактивного распада, он показал, что после определенного периода, различного для разных элементов, распадается половина данного количества того или иного радиоактивного элемента. Этот период, характерный для каждого отдельного типа радиоактивного вещества, Резерфорд назвал периодом полураспада(рис. 22).

Рис. 22. Период полураспада радона определяют, измеряя через равные промежутки времени количество оставшегося вещества. Полученная зависимость представляет собой «затухающую» экспоненциальную кривую у=е -ах.

Период полураспада радия составляет, например, немногим менее 1600 лет. На протяжении геологических эпох любое количество радия в земной коре, конечно же, давно бы исчезло, если бы оно постоянно не пополнялось в результате распада урана. То же самое можно сказать и о других продуктах распада урана, в том числе и о таких, период полураспада которых измеряется долями секунды.

Период полураспада самого урана составляет 4 500 000 000 лет. Это громадный период времени, и за всю историю Земли распасться могла лишь часть первоначальных запасов урана. Торий распадается еще медленнее: его период полураспада составляет 14 000 000 000 лет.

Такие огромные промежутки времени можно определить только путем подсчета числа альфа-частиц, испускаемых данной массой урана (или тория). Резерфорд подсчитывал альфа-частицы, регистрируя небольшие вспышки, возникающие при соударении альфа-частиц с экраном из сульфида цинка (т. е. при помощи так называемого сцинтилляционного счетчика).

Появление каждой новой альфа-частицы означало, что распался еще один атом урана, так что Резерфорд мог определить, сколько атомов распадается в секунду. Исходя из используемой им массы урана, Резерфорд определил общее число атомов урана. Располагая такими данными, было уже нетрудно рассчитать время, необходимое для распада половины имеющегося количества урана. Как выяснилось, речь идет о миллиардах лет.

Распад урана – настолько постоянный и характерный процесс, что его можно использовать для определения возраста Земли. В 1907 г. американский химик Бертрам Борден Болтвуд (1870—1927) предположил, что при такого рода определениях можно руководствоваться содержанием свинца в урановых минералах. Если предположить, что весь свинец в минералах появился в результате распада урана, то легко вычислить, сколько на это потребовалось времени. С помощью этого метода удалось определить, что возраст твердой земной коры исчисляется по крайней мере четырьмя миллиардами лет.

Тем временем Содди продолжал описывать изменения атома, вызываемые отдачей им субатомных частиц. Если атом теряет альфа-частицу (заряд +2), общий заряд его ядра уменьшается на два и элемент перемещается в периодической таблице на две клетки влево.

Если атом теряет бета-частицу (электрон с зарядом -1), то ядро приобретает дополнительный положительный заряд [126]и элемент перемещается в периодической таблице на одну клетку вправо. Если атом испускает гамма-лучи (незаряженные), то запас энергии при этом меняется, но состав частиц не затрагивается, так что он остается тем же самым элементом.

Руководствуясь этими правилами, химики смогли обстоятельно изучить многие радиоактивные ряды.


    Ваша оценка произведения:

Популярные книги за неделю