355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Айзек Азимов » Краткая история химии. Развитие идей и представлений в химии » Текст книги (страница 12)
Краткая история химии. Развитие идей и представлений в химии
  • Текст добавлен: 4 октября 2016, 02:43

Текст книги "Краткая история химии. Развитие идей и представлений в химии"


Автор книги: Айзек Азимов


Жанр:

   

Химия


сообщить о нарушении

Текущая страница: 12 (всего у книги 17 страниц)

Белки

Почти все органические соединения, перечисленные в предыдущем разделе, состоят из молекул, количество атомов в которых чаще всего не превышает пятидесяти; эти атомы с трудом распадаются в условиях умеренной химической обработки. Однако существуют органические соединения с поистине гигантскими молекулами, построенными из тысяч и даже миллионов атомов. Эти молекулы состоят из сравнительно небольших «строительных блоков» [91]. Такие гигантские молекулы легко разложить на образующие их блоки, которые можно исследовать. Так, например, поступил Левин, изучая нуклеотиды (см. предыдущий раздел). Предпринимались также попытки изучать эти гигантские молекулы как таковые, не разрушая их предварительно. Первые шаги в этом направлении предпринял шотландский химик Томас Грэхем (1805—1869). Заинтересовавшись диффузией– движением частиц среды, приводящим к переносу вещества и выравниванию концентраций, он начал изучать диффузию газов через мельчайшие поры или тонкие трубки. В 1829 г. ему удалось показать, что скорость диффузии газа обратно пропорциональна корню квадратному из его плотности ( закон Грэхема).

Далее Грэхем перешел к изучению диффузии растворенных веществ. Он обнаружил, что растворы веществ, подобных соли, сахару или сульфату меди, проходят через разделяющую перегородку из пергаментной бумаги (имеющей, как он предполагал, микроскопические поры). В то же время растворы таких соединений, как гуммиарабик, животный клей и желатина, пройти через разделяющую перегородку не могут – очевидно, молекулы соединений последней группы для этого слишком велики.

Соединения, способные проходить через поры пергамента (и, как выяснилось, легко кристаллизующиеся), Грэхем назвал кристаллоидами. Соединения другой группы, не способные, подобно животному клею (по-гречески κόλλα). проходить через поры пергамента, он назвал коллоидами. Наука о гигантских молекулах стала впоследствии важным разделом коллоидной химии, которой, таким образом, Грэхем положил начало [92].

Предположим, что с одной стороны разделяющей перегородки находится чистая вода, а с другой – коллоидный раствор. Молекулы воды могут свободно проникать через перегородку в оба отсека. В первый момент в отсек с коллоидным раствором будет попадать большее число молекул воды, чем покидать его, поскольку выравнивание концентраций по обе стороны перегородки – самопроизвольный энергетически выгодный процесс. Суммарный поток молекул воды в отсек с коллоидным раствором будет продолжаться до тех пор, пока возникающая разность давлений жидкости с обеих сторон перегородки не достигнет определенной величины. Величина этого давления, приводящего к вынужденному равновесию, называется осмотическим давлением раствора.

В 1877 г. немецкий ботаник Вильгельм Пфеффер (1845—1920) показал, как можно измерить осмотическое давление и как, исходя из полученных результатов, можно определить молекулярную массу больших молекул, образующих коллоидные растворы. Это был первый удачный метод оценки размера таких молекул.

В 1923 г. шведский химик Теодор Сведберг (1884—1971) сконструировал центрифугуи разработал седиментационный метод определения молекулярной массы макромолекул, главным образом белков.

Ассистент Сведберга Арне Вильгельм Каурин Тиселиус (1902—1971), также швед, в 1923 г. разработал более совершенный метод разделения гигантских молекул, основанный на характере распределения электрического заряда по поверхности молекулы. Этот способ – электрофорез– оказался особенно важным при разделении и очистке белков.

С помощью физических методов химики могли получить представление об общей структуре гигантских молекул, однако они стремились установить детальное строение этих соединений. Особый интерес вызывали у них белки.

В то время как гигантские молекулы таких веществ, как крахмал или клетчатка древесины, построены из одного многократно повторяемого блока, молекула белка строится из двадцати различных, но тесно связанных блоков – различных аминокислот (см. гл. 6). Именно по этой причине молекулы белков так разнообразны, но это же создает большие трудности при попытке их характеризовать.

Эмиль Фишер, который ранее установил детальное строение молекул сахаров (см. гл. 7), в начале нашего века обратил внимание на молекулу белка [93]. Он показал, что аминогруппа одной аминокислоты связана с остатком молекулы другой кислоты пептидной связью. В 1907 г. Фишер получил соединение, объединяющее восемнадцать аминокислот, и показал, что оно обладает рядом свойств, характерных для белков.

Однако определить порядок аминокислот в полипептидной цепимолекулы природного белка удалось лишь полстолетия спустя, после того как был разработан еще один метод анализа.

Открыл этот метод русский ботаник Михаил Семенович Цвет (1872—1919). Исследуя пигменты растений, Цвет пропустил раствор смеси очень мало различающихся по цвету пигментов через трубку, заполненную адсорбентом – порошкообразным карбонатом кальция, и промыл затем адсорбент чистым растворителем. Отдельные компоненты смеси при этом разделились и образовали цветные полосы. Цвет опубликовал статью с описанием открытого им метода разделения, который он назвал хроматографией(«цветописью») [94].

Статья русского ученого осталась незамеченной, но в 20-е годы Вильштеттер (см. разд. «Лекарственные средства») и его ученик, немецкий химик (австриец по происхождению) Рихард Кун (1900—1967), вновь открыли этот способ разделения. В 1944 г. английские химики Арчер Джон Портер Мартин (род. в 1910 г.) и Ричард Лоуренс Миллингтон Синг (род. в 1914 г.) предложили новый вариант этого метода: они заменили трубку с адсорбентом на фильтровальную бумагу. Анализируемая смесь распределялась по фильтровальной бумаге, и компоненты смеси при этом разделялись. Этот способ был назван бумажной хроматографией.

В конце 40-х – начале 50-х годов нашего века химикам удалось обстоятельно проанализировать с помощью метода бумажной хроматографии смеси аминокислот, полученные при расщеплении ряда белков. В результате удалось установить общее число остатков каждой аминокислоты, содержащихся в молекуле белка, однако порядок расположения аминокислот в полипептидной цепи при этом определить, естественно, было нельзя. Английский химик Фредерик Сенгер (род. в 1918 г.) изучал инсулин – белковый гормон, состоящий примерно из пятидесяти аминокислот, распределенных между двумя взаимосвязанными полипептидными цепями. Сенгер расщепил молекулу на несколько более коротких цепей и проанализировал каждую из них методом бумажной хроматографии. Восемь лет продолжалась кропотливая работа по «складыванию мозаики», но к 1953 г. был установлен точный порядок расположения аминокислот в молекуле инсулина. Позднее таким же способом было установлено детальное строение даже больших молекул белка [95].

Следующий шаг состоял в том, чтобы подкрепить этот труд реальным синтезом заданной молекулы белка. В 1954 г. американец Винсент Дю-Виньо (1901—1978) положил начало такому синтезу. Он получил окситоцин– пептид, состоящий всего лишь из восьми аминокислотных остатков. Однако с более сложными молекулами дело пошло быстрее, и вскоре были синтезированы цепи, содержащие несколько десятков аминокислот. К 1963 г. в лабораторных условиях были получены полипептидные цепи инсулина.

Однако, зная только порядок расположения аминокислот, нельзя еще представить себе совершенно отчетливо все уровни организации белковой молекулы. Даже при осторожном нагревании белки нередко необратимо утрачивают свойства, присущие им в природном состоянии, иными словами, происходит денатурациябелков. Причем обычно денатурация не сопровождается расщеплением полипептидной цепи; чтобы расщепить цепь, нужны более жесткие условия. Следовательно, цепи образуют какую-то определенную структуру под действием слабых «вторичных связей». В образовании таких вторичных связей обычно участвует атом водорода, находящийся между атомами азота и кислорода. Такая водородная связьв двадцать раз слабее обычной валентной связи.

В начале 50-х годов американский химик Лайнус Полинг (род. в 1901 г.) предположил, что полипептидная цепь свернута в спираль (подобна «винтовой лестнице») и удерживается в этом положении водородными связями. Эта идея оказалась особенно плодотворной применительно к относительно простым фибриллярным белкам, из которых состоят покровные и соединительные ткани.

Более того, спирали образуют даже более сложные по структуре глобулярные белки. Английские химики Макс Фердинанд Перутц (уроженец Австрии) (род. в 1914 г.) и Джон Коудери Кендрю (род. в 1917 г.) обнаружили это при детальном исследовании строения гемоглобина и миоглобина (белков крови и мышц соответственно, способных обратимо присоединять кислород). В своей работе они использовали новый метод анализа – метод дифракции рентгеновских лучей: пучок рентгеновских лучей, проходящий через кристаллы, рассеивается атомами, образующими кристаллы. Рассеивание в заданном направлении и при заданном угле наиболее эффективно в том случае, когда атомы располагаются последовательно. Определяя величину отклонения, можно выявить расположение атомов внутри молекулы. Исследовать таким образом большие молекулы сложной структуры, подобные белковой молекуле,– задача весьма трудоемкая, и тем не менее к 1960 г. таким образом удалось уточнить последние детали строения молекулы миоглобина (состоящей из двенадцати тысяч атомов).

Полинг считал, что предложенную им спиральную модель молекулы можно распространить и на нуклеиновые кислоты. В начале 50-х годов английский физик Морис Хью Фредерик Уилкинс (род. в 1916 г.) изучал нуклеиновые кислоты методом дифракции рентгеновских лучей, и результаты его работы можно было использовать для проверки справедливости предположения Полинга. Английский физик Фрэнсис Гарри Комптон Крик (род. в 1916 г.) и американский химик Джеймс Дьюи Уотсон (род. в 1928 г.) установили, что удовлетворительно объяснить результаты дифракционных исследований можно, лишь несколько усложнив модель молекулы. Каждая молекула нуклеиновой кислоты должна представлять собой двойную спираль, образованную навитыми вокруг общей оси цепями. Эта модель Уотсона – Крика, предложенная ими впервые в 1953 г., сыграла важную роль в развитии генетики [96] [97].

Взрывчатые вещества

Не избежали молекулы-гиганты и преобразующей руки химика. Произошло это вначале случайно. В 1845 г. швейцарский химик Христиан Фридрих Шенбайн (1799—1868), уже прославивший себя открытием озона(аллотропной модификации кислорода), проводил опыты в своей домашней лаборатории. Разлив смесь азотной и серной кислот, он вытер эту смесь хлопчатобумажным фартуком и повесил его сушиться над печкой. Как только фартук высох, раздался несильный взрыв и фартука не стало. Сам того не зная, Шенбайн превратил целлюлозу фартука в нитроцеллюлозу [98]. Нитрогруппы (перешедшие из азотной кислоты) послужили внутренним источником кислорода, и при нагревании целлюлоза сразу же полностью окислилась.

Шенбайн понял важность сделанного им открытия. Обычный черный порох при взрыве дает много дыма, покрывает сажей артиллеристов, загрязняет пушки и стрелковое оружие, а на основе нитроцеллюлозы (нитроклетчатки) можно было получить «бездымный порох».

Однако наладить производство нитроклетчатки для военных целей долгое время не удавалось: фабрики, как правило, взрывались. Только в 1891 г. Дьюару (см. гл. 9) и английскому химику Фредерику Аугустусу Абелю (1872—1902) удалось получить безопасную смесь. Поскольку эту смесь можно было прессовать в длинные шнуры, ее назвали кордитом.

В состав кордита кроме нитроклетчатки входит также нитроглицерин, который был получен в 1847 г. итальянским химиком Асканио Собреро (1812—1888). Это мощное бризантное взрывчатое вещество отличается очень высокой чувствительностью, и использовать его как таковое в военных целях оказалось невозможным. Однако, невзирая на чрезвычайную опасность работы с большими количествами этого соединения, его стали применять при прокладке дорог в горах.

Производством нитроглицерина занялось семейство шведского изобретателя Альфреда Бернарда Нобеля (1833—1896). Когда в результате взрыва погиб брат Нобеля, он сосредоточил свои усилия на «усмирении» этого взрывчатого вещества. В 1866 г. Нобель обнаружил, что кизельгур может впитывать значительные количества нитроглицерина. Пропитанный нитроглицерином кизельгур можно было формовать в брикеты. Такие брикеты были совершенно безопасны в обращении, хотя пропитывающий кизельгур нитроглицерин сохранял свою разрушительную силу. Нобель назвал полученную им смесь динамитом.

Получение новых и более мощных по сравнению с черным порохом (изобретенным более пяти столетий назад) взрывчатых веществ в конце XIX в. положило начало гонке вооружений. Его применение для военных целей, как и разработка отравляющих газов во время первой мировой войны, отчетливо продемонстрировало, что задачи науки можно извратить и заставить ее служить целям разрушения. Еще более наглядный урок преподало изобретение самолета и в конечном счете ядерного оружия (см. гл. 14). Наука, которая до конца XIX в. казалась средством создания на земле утопии, стала служить уничтожению.

Полимеры

Однако существует много направлений, позволяющих использовать молекулы-гиганты в мирных целях. Так, если полностью нитрованная целлюлоза – это взрывчатое вещество и может применяться только как таковое, то частично нитрованная целлюлоза ( пироксилин) более безопасна в обращении, и ее можно применять не только в военных целях.

Американский изобретатель Джон Уэсли Хайятт (1837—1920), пытаясь завоевать приз, установленный за создание заменителя слоновой кости для биллиардных шаров, прежде всего обратил внимание именно на частично нитрованную целлюлозу. Он растворил ее в смеси спирта и эфира, добавил камфору, чтобы новое вещество легче было обрабатывать. К 1869 г. Хайятт получил то, что он назвал целлулоидом, и завоевал приз [99]. Целлулоид был первой синтетической пластмассой– материалом, который можно отливать в формы [100].

Однако, как выяснилось, частично нитрованную целлюлозу можно не только формовать в шары, но и вытягивать в волокна и пленки. Французский химик Луи Мари Гиляр Берниго, граф Шар-донне (1839—1924), получил такие волокна, продавливая раствор нитроцеллюлозы через тончайшие отверстия. Растворитель при этом почти сразу же испарялся.

Из полученных волокон можно было ткать материал, который своим блеском напоминал шелк. В 1884 г. Шардонне запатентовал полученный им искусственный шелк. Шардонне назвал эту ткань рейон– излучающая свет, так как ткань блестела и казалось, что она излучает свет.

Появлением пластмассовых пленок мы обязаны американскому изобретателю Джорджу Истмену (1854—1932). Истмен увлекался фотографией. Пытаясь упростить процесс проявления, он начал смешивать эмульсию соединений серебра с желатиной, чтобы сделать эту эмульсию сухой. Полученную таким образом смесь можно было хранить, а следовательно, и готовить впрок. В 1884 г. Истмен заменил стеклянные пластинки на целлулоидные.

Целлулоид невзрывоопасен, но он легко воспламеняется, что может быть причиной пожара, поэтому Истмен начал поиски менее горючих материалов. Когда в целлюлозу вместо нитрогрупп ввели ацетильные группы, полученный продукт остался столь же пластичным, как и нитроцеллюлоза, но он уже не был легко воспламеняющимся. С 1924 г. ацетилцеллюлозные пленки начали использовать в производстве кинофильмов, так как развивающаяся кинопромышленность особенно остро нуждалась в заменителе целлулоида.

Изучая высокомолекулярные природные соединения, химики рассчитывали не только получить их синтетические аналоги, но и открыть новые типы соединений. Одним из методов синтеза молекул-гигантов является полимеризация мономеров(мономер – вещество, молекулы которого способны реагировать между собой или с молекулами других веществ с образованием полимера).

Способ объединения мономеров в гигантскую молекулу можно пояснить хотя бы на примере этилена С 2Н 4. Напишем структурные формулы двух молекул этилена:

Представим себе, что атом водорода переместился из одной молекулы в другую, в результате в этой молекуле вместо двойной связи появилась свободная одинарная связь. Свободная связь появилась и у первой молекулы, из которой ушел водород. Поэтому эти две молекулы могут соединиться друг с другом.

Такая молекула содержит уже четыре углеродных атома и одну двойную связь, как и молекула исходного этилена. Следовательно, при взаимодействии этой молекулы с еще одной молекулой этилена также может произойти перемещение атома водорода и разрыв двойной связи. Образующаяся в результате молекула будет содержать шесть атомов углерода и одну двойную связь. Таким способом можно получить последовательно молекулу с восемью, десятью и более атомами углерода. Фактически так можно получать молекулы почти любой заданной длины.

Американский химик Лео Хендрик Бакеланд (1863—1944) искал заменитель шеллака – воскоподобного вещества, выделяемого некоторыми видами тропических насекомых. Для этой цели ему необходим был раствор клейкого дегтеобразного вещества. Бакеланд начал с того, что провел полимеризацию фенола и формальдегида и получил полимер, для которого не смог подобрать растворитель. Этот факт привел его к мысли, что такой твердый, практически нерастворимый и, как выяснилось, не проводящий электричество полимер может оказаться ценным материалом. Так, например, из него можно отливать детали, которые легко будет обрабатывать на станках. В 1909 г. Бакеланд сообщил о полученном им материале, который он назвал бакелит. Эта фенолформальдегидная смола была первой синтетической пластмассой [101], которая по ряду свойств осталась непревзойденной.

Нашли применение и синтетические волокна. Это направление возглавил американский химик Уоллес Хьюм Карозерс (1896—1937). Вместе с американским химиком Джулиусом Артуром Ньюлендом (1878—1936) он исследовал родственные каучуку [102] эластомеры. Результатом его работ было получение в 1932 г. неопрена– одного из синтетических каучуков [103].

Продолжая изучение полимеров, Карозерс попытался полимеризовать смесь диаминов и дикарбоновых кислот и получил волокнистый полимер. Длинные молекулы этого полимера содержат комбинации атомов, подобные пептидным связям (см. разд. «Белки») в белке шелка. Вытягивая эти волокна, получают то, что мы сегодня называем найлоном. Карозерс завершил эту работу буквально накануне преждевременной смерти. Разразившаяся вторая мировая война заставила химиков на время забыть об открытии Карозерса. Однако после окончания войны найлон начал вытеснять шелк и вскоре пришел ему на смену (в частности, в производстве чулочного трикотажа).

Первые синтетические полимеры были получены, как правило, случайно, методом проб и ошибок, поскольку и о строении молекул-гигантов, и о механизме полимеризации было в ту пору мало что известно. Первым за изучение строения полимеров взялся немецкий химик Герман Штаудингер (1881—1965) и сделал в этой области немало. Штаудингеру удалось раскрыть общий принцип построения многих высокомолекулярных природных и искусственных веществ и наметить пути их исследования и синтеза. Благодаря работам Штаудингера выяснилось, что присоединение мономеров друг к другу может происходить беспорядочно и приводить к образованию разветвленных цепей, прочность которых значительно ниже.

Начались интенсивные поиски способов получения линейных неразветвленных полимеров. И в 1953 г. немецкий химик Карл Циглер (1898—1973) открыл свой знаменитый титан-алюминиевый катализатор, на котором был получен полиэтилен с регулярной структурой.

Итальянский химик Джулио Натта (1903—1979) модифицировал катализатор Циглера и разработал метод получения нового класса синтетических высокомолекулярных соединений – стерео-регулярных полимеров [104]. Был разработан метод получения полимеров с заданными свойствами.

Одним из главных источников основных органических соединений, необходимых для производства новых синтетических продуктов, является нефть. Эта жидкость известна с античных времен, но чтобы использовать ее в больших количествах, необходимо было открыть способ выкачивания нефти из обширных подземных месторождений. Американский изобретатель Эдвин Лаурентин Дрейк (1819—1880) первым в 1859 г. начал бурить нефтяные скважины. Столетие спустя нефть стала основным источником органических соединений, источником тепла и энергии.

Еще более важным источником органических продуктов является каменный уголь, хотя в век двигателей внутреннего сгорания мы обычно забываем о нем. Русский химик Владимир Николаевич Ипатьев (1867—1952) на рубеже веков начал исследовать сложные углеводороды, содержащиеся в нефти и каменноугольном дегте, и, в частности, изучать их реакции, идущие при высоких температурах. Немецкий химик Фридрих Карл Рудольф Бергиус (1884—1949), используя данные Ипатьева, разработал в 1912 г. практические способы обработки каменного угля и нефти водородом с целью получения бензина.

Однако мировые запасы ископаемого топлива(каменный уголь плюс нефть) ограничены и невосполнимы. Все прогнозы говорят о том, что наступит день, когда запасы ископаемого топлива будут исчерпаны, и что этот день не за горами, особенно если учесть, что численность населения земли быстро увеличивается, а, следовательно, увеличивается и потребность в энергии [105].


    Ваша оценка произведения:

Популярные книги за неделю