Текст книги "Камень, ножницы, теорема. Фон Нейман. Теория игр."
Автор книги: авторов Коллектив
Жанры:
Научпоп
,сообщить о нарушении
Текущая страница: 3 (всего у книги 8 страниц)
(2, 4) (5, 10) (14, 28).
Разница состоит только в том, что теперь функция определена через множество, элементы которого представляют собой пары. Итак, функция может быть представлена как множество парных элементов, а множество может быть выражено с помощью функции принадлежности. Идея о том, что множество основано на понятии принадлежности, относится к аксиоматике Цермело – Френкеля. Фон Нейман же (ему было всего 22 года, когда он разработал свою аксиоматику теории множеств) взял в качестве ключевого понятия функцию. Это формальное отличие имеет важное следствие: количество аксиом Цермело – Френкеля не определено изначально, теоретически оно может быть бесконечным, в то время как, следуя подходу фон Неймана, требуется всего 18 аксиом, к тому же первую можно включить во вторую как частный случай.
Еще одним достоинством метода фон Неймана было то, что модель множества основывалась не на принадлежности, а на классах функций, которые делились на множества и собственно классы. Последние настолько велики, что не могут содержаться в других классах. Множества же удовлетворяют ограничивающим условиям и могут входить в другие классы. Таким образом, внутри забора оставались только овцы, а все волки оказывались снаружи, поскольку то, что приводило к противоречиям, было рассмотрением не классов самих по себе, а возможности их вхождения самих в себя. Аксиоматика Цермело – Френкеля, дополненная фон Нейманом, используется и сегодня.
КВАНТОВАЯ МЕХАНИКА
С самого зарождения физика была экспериментальной наукой.
Физическая теория часто рождается в результате опыта и подтверждается другим опытом. В промежутке строятся рабочие гипотезы, даются определения терминам и выводятся формулы – в этом случае физика активно сотрудничает с математикой. Создание формул крайне важно, так как в числе прочего в них заложен большой потенциал предвидения и обобщения, что является следствием абстрактного характера математики.
Если у нас есть сосуд с жидкостью, характеристики которой нам известны, и у сосуда есть слив, то мы можем измерить время, за которое вся жидкость вытечет. Имея в распоряжении подходящую физическую теорию, построенную на законах вытекания жидкости из сосуда (что обязательно подразумевает и существование определенных математических формул), мы сможем предположить, сколько времени будет затрачено для этого в сосудах разной формы с разными жидкостями разного объема.
Гораздо легче лететь на самолете или даже управлять им, чем понять, почему он движется.
Джон фон Нейман
Тесная связь математики и физики существовала не всегда. Как правило, эти науки шли разными путями, хотя в итоге всегда стремились друг к другу. Рано или поздно физика должна была прибегнуть к помощи математики, чтобы оформиться как точная наука. Появление в начале XX века новых теорий, таких как теория относительности и квантовая механика, требовало развития и новой математики, приспособленной к новым парадигмам. Так теоретическая или, как ее еще называют, математическая физика стала выходить на первый план, и благоприятные условия для этого создал Давид Гильберт в Гёттингенском университете.
ДВЕ ВОЛНОВЫЕ ТЕОРИИ
В какой-то момент ньютонова физика уже не могла объяснить накопившиеся экспериментальные данные. Главные сложности возникли с двумя явлениями. Первым было излучение черного тела, которому никак не удавалось найти удовлетворительного объяснения. Второе касалось электрона, вращавшегося по орбите вокруг ядра: теоретически он должен был постепенно терять энергию и упасть на ядро, но этого не происходило. Помимо этого, по результатам некоторых экспериментов природа частиц оказывалась двойственной – они вели себя как волны и корпускулы одновременно. То же самое получалось и в некоторых экспериментах с фотонами. Например, при фотоэффекте они вели себя как частицы, а в эксперименте с двойной щелью проявляли волновую природу. Тогда появились две теории, объясняющие эти явления. Первая принадлежит Вернеру Гейзенбергу (1901-1976), вторая – Эрвину Шрё– дингеру (1887-1961). Механика Гейзенберга была матричной, механика Шрёдингера – волновой, и, разумеется, для них требовались разные математические инструменты. По схеме Шрёдингера волновое уравнение, описывающее частицу, было дифференциальным, а его решение для электрона атома водорода совпадало с результатом, полученным опытным путем.
Все эти исследования проходили в Гёттингенском университете в 1925-1926 годах. Необходимо было как можно скорее найти математический инструмент, пригодный для использования в рамках обеих теорий. Как это часто происходило в истории науки, именно математический, сугубо абстрактный подход, не имевший ничего общего с конкретной физической реальностью, стал прекрасной основой для двух разных теорий. Их объединила теория функциональных полей Давида Гильберта. Однако это объединение в более широком смысле могло произойти только при наличии абстрактной системы аксиом, способной совместить оба подхода.
АКСИОМАТИЗАЦИЯ ФИЗИКИ
Можно ли аксиоматизировать физику? Этот вопрос стоит на шестом месте в знаменитом списке 23 задач Гильберта, представленном на Международном математическом конгрессе в Париже. В оригинальном тексте доклада ученый писал:
«...[изучение основ] физических наук, в том числе математики, имеет важное значение; в первую очередь речь идет о теории вероятностей и механике».
Аксиоматику теории вероятностей впервые установил советский математик Андрей Николаевич Колмогоров в 1933 году.
В области физики многие ученые, среди которых был и фон Нейман, достигли больших успехов, но они сомневались в возможности найти окончательное решение: результаты опытов были невероятно сложными и могли разрушить устойчивость системы аксиом. Таким образом, этот вопрос из списка 23 задач до сих пор остается открытым.
АКСИОМАТИКА ФОН НЕЙМАНА
Фон Нейман аксиоматизировал квантовую механику таким образом, что параметры, определяющие положение частицы, могли быть установлены при помощи пяти аксиом, сформулированных для гильбертова пространства. Математические формулировки были достаточно абстрактны, чтобы оставаться полностью отделенными от экспериментальной физики. Эти результаты были изложены в различных статьях в журнале Mathematische Annalen («Математические анналы») в 1929– 1930 годах.
Фон Нейман занимался еще одной проблемой, которая не давала покоя физикам и решение которой стало бы большим прогрессом в теории меры. В большинстве физических опытов всегда проводится некое измерение, и – каким бы точным ни был используемый инструмент – ошибка неизбежна. Поэтому важно знать, насколько велика эта ошибка, хотя бы приблизительно. В классической физике теория ошибок была достаточно развита и позволяла установить, насколько результаты эксперимента заслуживают доверия.
Но в рамках квантовой физики появилось новое понятие ошибки, для которого были неприменимы прежние теории.
ДАВИД ГИЛЬБЕРТ
Немецкий математик Давид Гильберт родился 23 января 1862 года в Кёнигсберге (сегодня Калининград, Россия), столице Восточной Пруссии. Его отца, государственного чиновника, направили в этот город на работу в качестве судьи. Обстановка, в которой рос Гильберт, была чрезвычайно благоприятной для интеллектуального развития мальчика, преимущественно благодаря его матери, невероятно образованной женщине, любившей философию, астрономию и математику. В 18 лет, окончив школу, Гильберт начал изучать математику в Кёнигсбергском университете. Среди его прекрасных учителей были такие ученые, как Генрих Вебер и Фердинанд фон Линдеман. В этот период Гильберт впервые занялся теорией инвариантов и познакомился с математиком Германом Минковским (1864-1909), дружбу с которым сохранил на протяжении всей жизни. В 1892 году Гильберт получил место экстраординарного профессора в университете Кёнигсберга. Эта должность не только была престижной, но и давала ему финансовое положение, необходимое для создания семьи. В том же году Гильберт женился на Кете Ерош. Одним из поворотных моментов в его карьере было предложение Феликса Клейна (пошедшего наперекор мнению большинства преподавателей) стать ординарным профессором Гёттингенского университета в 1895 году. В конце весны 1920 года состояние Г ильберта, страдавшего анемией, серьезно ухудшилось. В то время анемия была сложной болезнью, от которой не существовало эффективных лекарств.
Несмотря на тяжелые физические и душевные испытания, ученый нашел силы для того, чтобы полностью посвятить себя изучению основ математики. К счастью, в 1927 году появился новый препарат от анемии, и Гильберт принимал его в числе первых пациентов, что, возможно, спасло ему жизнь.
Последние десять лет ученый провел в изоляции из-за политики нацистской Германии. Гильберт умер 14 февраля 1943 года в Гёттингене. На похороны пришли всего несколько человек. Среди них были его жена, к тому времени полуслепая, и физик Арнольд Зоммерфельд (1868-1951), которому с трудом удалось приехать из Мюнхена.
Портрет Давида Гильберта в последние годы жизни.
Точные измерения здесь получить невозможно, самое большее – можно надеяться на статистические результаты. Объект измерения (например, атом или электрон) в квантовой физике имеет микроскопический размер, и на него оказывает воздействие сам инструмент измерения.
Представим, что мы хотим с помощью линейки определить положение коробка спичек, лежащего на столе, по отношению к его краям, и каждый раз ненамеренно сдвигаем его. Нечто похожее происходит в квантовой физике. Система аксиом, созданная фон Нейманом, позволяла описать процесс наблюдения и наблюдаемый объект как логические элементы, которые можно рассмотреть в ее рамках. Ему в голову пришла блестящая идея: принять, что наблюдение происходит не в течение определенного промежутка времени, а в одно мгновение, то есть имеет вневременной характер. Эти результаты фон Нейман изложил в одной из своих самых известных книг – Mathematische Grundlangen der Quantenmechanik («Математические основы квантовой механики»), опубликованной в Берлине в 1932 году. В 1936 году он совместно с американским математиком Гарретом Биркгофом (1911-1996) дополнил работу подробным исследованием квантовой механики с точки зрения логики.
Фон Нейман понимал, что логика, описывающая явления квантовой физики, значительно отличается от той, к которой все привыкли. В логике высказываний существует конъюнкция, обозначаемая символом ^, она соответствует сочинительному союзу «и». Два высказывания A и В, соединенные конъюнкцией, записываются как А ^ В. Например, высказыванием А может быть «Луиджи 34 года», а В – «Луиджи брюнет», так что А ^ В читалось бы как «Луиджи 34 года, и он брюнет». Это утверждение будет верным, только если верны оба высказывания. Для конъюнкции соблюдается коммутативный закон, то есть порядок высказываний не влияет на их истинность или ложность. Сказать «Луиджи 34 года, и он брюнет» – то же самое, что «Луиджи брюнет, и ему 34 года». Но в квантовой физике все иначе.
Свет – это электромагнитная поперечная волна с двумя перпендикулярными плоскостями колебаний. Когда мы ставим поляризационный фильтр (такой, как в поляризационных очках) на пути луча света, то препятствуем прохождению одного из двух планов колебаний. Если же мы поставим два перпендикулярных поляризационных фильтра, свет не сможет пройти сквозь них.
Теперь возьмем третий фильтр, поляризованный по диагонали. Опытным путем было установлено, что если поставить его между двумя предыдущими, то свет сможет пройти. Разумеется, если мы поставим его после второго, свет не пройдет, так как ему помешают первые два. Назовем второй фильтр А, а третий – В и поставим за фильтрами экран. Условимся, что когда на экран падает свет, это означает «истина», когда экран остается темным – «ложь». В таком случае В^А было бы «истиной», так как при таком расположении фильтров экран загорается. Напротив, А л В было бы «ложь», так как свет не смог бы пройти. Таким образом, А ^ В ≠ В ^ А.
Все свои открытия в области логики, описывающей явления квантовой механики, Нейман изложил во втором издании «Математических оснований квантовой механики», опубликованном в 1936 году.
КРУШЕНИЕ ОСНОВ
Описанная выше логическая система предполагает некую механичность – в том смысле, что все операции с высказываниями следуют определенным правилам. Проще говоря, хоть это и не совсем правильно, важно следить за тем, что ты делаешь, но можно не думать о том, что ты делаешь. Можно создавать геометрические теоремы исключительно по правилам логики, не думая ни о прямых и плоскостях, ни о том, как они пересекаются и расходятся в пространстве. Мы могли бы «включить тумблер» и автоматически создать все возможные геометрические теоремы. Это сделало бы математику не только точной, но и совершенной наукой – наукой наук.
На протяжении 2000 лет аксиоматический метод в геометрии давал довольно хорошие результаты. Полагалось, что этот же метод можно применить и к другим областям науки. В конце XIX века арифметика уже обладала собственной системой аксиом, из которых можно было бы вывести целый ряд предложений, возводимых в ранг теорем. Этим и занимался Давид Гильберт, когда Гёдель сформулировал свою теорему, значительно ускорившую весь процесс.
В 1930 году Гёдель защитил докторскую диссертацию, написанную под руководством Ханса Хана (1879-1934). Она называлась «Полнота аксиом логического функционального исчисления» и была посвящена теме, тесно связанной с формалистской программой Гильберта. В начале сентября того же года Гёдель принял участие в конгрессе «Эпистемология точных наук», на котором также выступали Рудольф Карнап, Аренд Гейтинг, Джон фон Нейман и Фридрих Вайсман. Гёдель четко заявил о своих сомнениях в выполнимости программы Гильберта и изложил некоторые свои результаты, демонстрирующие неполноту арифметики. Немногим позже, в 1931 году, когда ему было всего 25 лет, Гёдель опубликовал знаменитую теорему о неполноте, которая подрывала сами основы математики. Несмотря на то что в теореме говорилось о сугубо специализированных вещах, она очень быстро получила широкий международный резонанс. Благодаря этому в 1933 году ученый получил звание приват-доцента Венского университета.
ТЕОРЕМЫ ГЁДЕЛЯ
Теория состоит из совокупности аксиом и правил логического вывода, которые позволяют установить ряд теорем исходя из этих аксиом. Теория считается противоречивой, когда в ее рамках можно доказать и некое утверждение, и противоположное ему. Если теория не противоречива, то говорят, что она последовательна. С другой стороны, в рамках теории должна быть возможность доказать любое утверждение, если оно истинное. В этом случае теория считается полной.
Первая теорема Гёделя гласит, что в любой системе аксиом, к которой можно отнести арифметику целых чисел, существуют верные предложения, которые невозможно доказать в рамках этой системы. То есть если арифметическая теория непротиворечива, то она неполная. Это равноценно утверждению, что совершенной системы аксиом, включающей арифметику натуральных чисел, не существует, так как она либо противоречивая, либо неполная.
Фон Нейман, принимавший участие в знаменитом конгрессе в Кёнигсберге, сразу же заинтересовался идеями Гёделя. Сам фон Нейман установил систему аксиом для теории множеств и считал, что тема закрыта. Но ученому пришлось признать, что его система была неполной: не потому, что в ней были недостатки, а потому что любая такая система является неполной по определению. Фон Нейман не только согласился с этим, но и за рекордно короткий срок, всего за месяц, подготовил для Гёделя следствие его теоремы, которое стало известно как вторая теорема Гёделя. Согласно ей если арифметическая теория непротиворечива, то в ее рамках нет ни одного доказательства, что она таковой является. Эта вторая теорема немного запутанная, и из нее следует, что если теория вмещает в себя арифметику натуральных чисел, она не может подтвердить сама себя, то есть утверждать «теория Т непротиворечива». Для этой теории было разработано несколько символов; чтобы выразить утверждение «теория Т непротиворечива», можно записать, например, С(Т). Согласно второй теореме Гёделя, если Т непротиворечива, то С(Т) нельзя доказать на основе Т.
КУРТ ГЁДЕЛЬ
Австрийско-американский математик, логик и философ Курт Гёдель (1906– 1978) был младшим из двух сыновей Рудольфа и Марианны Гёделей, немецких иммигрантов, работавших в текстильной промышленности. После окончания учебы в Королевской гимназии Брно Курт в 1924 году уехал учиться в Венский университет. Он поступал туда с четкой целью изучать физику, но под влиянием преподавателей Филиппа Фуртвенглера и Ханса Хана занялся математикой. Уже в то время Гёдель страдал ревматической лихорадкой, и эта болезнь наложила свой отпечаток на характер ученого: он испытывал маниакальное волнение за свое здоровье и главным образом за все, что касалось питания. В 1920-е годы, несмотря на глубокий экономический кризис, Венский университет был культурным и научным центром страны. В 1926 году Гёдель был приглашен на философский семинар в кружок Морица Шлика (1882-1936), который посещали такие физики и математики, как Рудольф Карнап (1891-1970), Ханс Хан (1879-1934), Фридрих Вайсман (1896-1959) и Отто Нейрат (1882-1945). Они впоследствии и составили знаменитый Венский кружок. Философ Карнап и математик Карл Менгер ввели Гёделя в математическую логику. В то время кружок пристально следил за работами Людвига Витгенштейна (1889-1951) о языке для описания языка (метаязыке), и этот подход Гёдель хотел применить к математике. Но ученый не полностью разделял научные воззрения в духе логического позитивизма, царившие в кружке. Он придерживался скорее обратной позиции – чистого платонизма. Гёдель считал, что истина существует независимо оттого, известна она нам или нет. В математике это означало, что теоремы не создаются, а открываются. Гёдель неоднократно подчеркивал, что к своим результатам он пришел, будучи вдохновленным этой платоновской метафизикой. В 1952 году Гарвардский университет наградил Гёделя степенью почетного доктора наук и назвал его «первооткрывателем самых важных математических истин этого столетия».
Курт Гёдель в период работы в Институте перспективных исследований в Принстоне (Нью– Джерси, США) в 1940-е годы.
Именно вторая теорема, которой сам Гёдель не придал большого значения и считал следствием первой, оказала наибольшее влияние на математическое научное сообщество. Ее всегда называли второй теоремой Іеделя, никогда не упоминая вклад фон Неймана.
Сегодня теории Гёделя обобщены и перенесены в самые разные области. Они применяются в информатике, особенно в случае невозможности решить проблему остановки. Эта проблема заключается в том, чтобы найти способ определить, может какой-либо компьютер с произвольным набором установленных программ остановиться после выполнения алгоритма или он зависнет. Еще одно следствие теоремы Гёделя для информатики относится к вирусам, так как доказывает, что «ни одна программа, которая не меняет операционную систему компьютера, не сможет определить все программы, которые ее меняют».
Гильберт довольно пессимистически отнесся к следствиям из теоремы Гёделя, так как очень надеялся на возможность установить такие основания математики, которые запустят самосозидательный процесс, и при помощи него, исходя из простых предложений, сформулированных в непротиворечивой логической системе, можно будет вывести сложные результаты. Гёдель не разделял этого пессимизма, так как не считал, что его теорема неполноты подразумевает ошибочность аксиоматического метода для развития теории математики. По его мнению, это был этап эволюции, на котором главную роль вновь начинала играть научная интуиция, как это и должно быть. Такой взгляд полностью соответствовал философии Гёделя, более близкой к платонизму, чем к логическому позитивизму «Разрушающее» значение его теорем заключалось в том, что механический, точный аспект математики уходил на второй план, выдвигая на первый воображение и интуицию, возвращая математике место духовных наук, которое принадлежало ей по праву, как музыке и философии.
ВЫВОДЫ
Программа Гильберта потерпела неудачу, но фон Нейман не разделял его пессимизма по поводу будущего математики. С практической точки зрения он считал аксиоматизацию множеств, освободившую математику от странных элементов, и последующую аксиоматизацию квантовой механики вполне успешными. Фон Нейман никогда не отказывался от идеи создания логических моделей и стремился как можно больше абстрагировать задачи даже в областях, далеких от математики, что он впоследствии применил в теории игр. Так что, хотя план и провалился, хотя аксиоматизация и не позволяла уничтожить все противоречия и странности, она, тем не менее, помогала их выявить и в какой-то мере контролировать.
Математика всегда давала свои плоды, и фон Нейман не видел причин для изменения ситуации. Несмотря на то что внутренняя правильность логической системы математики была поставлена под вопрос, в истории этой науки начиная с ее появления существовало великое множество доказательств ее эффективности. Фон Нейман утверждал, что в классической математике совершались полезные и одновременно изящные открытия, а ее основания были такими же твердыми и точными, как, например, существование электрона. Уж если, по его мнению, можно было принять правомочность такой науки, как физика, то не стоило сомневаться и в классической математике.
ГЛАВА З
Теория игр
Фон Нейман создал условия для возникновения новой математической теории, известной сегодня как теория игр. С этого момента игры перестали быть развлечением и превратились в сценарий, в котором двое или более человек могли развивать рациональные стратегии, чтобы повлиять на результат партии. Сценарии могли быть абсолютно разными, и для их реализации был необходим такой сложный и фундаментальный аспект, как принятие решений.
Игра – это деятельность, присущая не только человеку, но и большинству высших млекопитающих. Доказано, что игра сама по себе является неотъемлемой частью процессов обучения и развития многих важных качеств. Именно через игру животные учатся координировать свои движения, чтобы охотиться, нападать, защищаться, именно через игру человек развивает многие способности, используя различные элементы для симуляции реальности. Для игры важны три фактора: сценарий, случайность и заклад.
Сценарий игры – первый шаг к пониманию ее структуры, он позволяет создавать математические модели в очень простых ситуациях, таких как партия в шашки, или в очень сложных – например, в настоящем военном сражении.
В любой игре всегда в той или иной степени присутствует случай, который определяет уровень инициативы игроков при выборе стратегии. В играх, где случай почти не играет роли, например в шахматах, инициатива игроков имеет решающее значение. Напротив, в играх, целиком построенных на случае, например при подкидывании монеты, инициатива игроков ограничена закладом.
Заклад – это то, на что идет игра. Он может быть нематериальным – как, например, умения или честь игрока, а вот в игре в рулетку на кону может стоять даже жизнь. В любом случае во всех играх есть тот или иной заклад, даже когда никто ни на что не играет и когда нельзя определить, кто выиграл, а кто проиграл. Самая важная характеристика заклада состоит в том, что ему можно присвоить номер. В самом простом случае, когда речь идет о выигрыше или проигрыше, номера могут быть соответственно 1 и 0. Когда чему-то можно присвоить номер, значит, к нему можно применить математический подход.
Теория вероятностей и статистика появились как следствие систематического изучения игр, но, скорее, их предметом было предугадывание результата, а не сама природа игры. Уже в первых работах фон Неймана содержалась другая точка зрения, очень далекая от статистических подсчетов. В них игра проявила другую свою сущность: она предстала не как событие, зависящее главным образом от воли случая, а как конфликт интересов. В этом смысле исследования фон Неймана необходимо рассматривать как первые в своем роде. Именно из них позже появилась новая ветвь математики – теория игр.
Трудно сказать точно, когда и где фон Нейман впервые заинтересовался математическим аспектом теории игр, поскольку у нас нет об этом ни письменных, ни устных свидетельств. В конце 1926 года, еще будучи стипендиатом Гёттингенского университета, он поразил всех, собрав конференцию по теории игр в помещении Математического общества университета. После нее фон Нейман написал статью, которую направил в журнал Mathematische Annalen. Работа была опубликована год спустя под заголовком Zur Theorie der Gesellschaftsspiele («А* теории стратегических игр»). Потом его будто бы оставил интерес к этой теме, но мы можем и ошибаться в своем предположении, потому что 18 лет спустя вместе с экономистом Оскаром Моргенштерном фон Нейман опубликовал книгу о теории игр, которая сегодня считается одной из самых важных из всего его наследия.
В своей первой работе ученый провел математическую формализацию антагонистических ситуаций, в которых участвуют два игрока. Особенно его интересовали возможные стратегии, которые могут развивать игроки в играх с нулевой суммой, по определению фон Неймана.
ОСКАР МОРГЕНШТЕРН
Немецкий математик и экономист Оскар Моргенштерн родился 24 января 1902 года в Гёрлице. В некотором смысле можно сказать, что он имел аристократическое происхождение: его мать была незаконной дочерью императора Фридриха III. В 1925 году Моргенштерн получил диплом по политическим и экономическим наукам в Венском университете. Благодаря Рокфеллеровской стипендии он провел четыре года в Принстоне, где получил постдипломное образование.
В 1929 году Моргенштерн вернулся в Австрию и вступил в Mathematische Kolloquium – группу математиков, возглавляемую Карлом Менгером (1902-1985), который очень критически относился к знаменитому Венскому кружку. В 1938 году нацистское правительство отняло у Моргенштерна кафедру в Венском университете, ему пришлось эмигрировать в США, и позже он стал гражданином Америки. В 1970 году Моргенштерн получил кафедру экономики в Принстоне. Он проработал там до самой смерти, 26 июля 1977 года. Как и Менгер, Моргенштерн четко высказывался в пользу аксиоматизации экономической теории, отрицая направления, частично поддерживаемые Венским кружком, в которых предпочтение для теории экономического равновесия отдавалось математическим инструментам, с успехом применяемым в физике (например, исчисление бесконечно малых). Таким образом, еще до того как фон Нейман и Моргенштерн встретились в Принстоне, у них были одинаковые представления о том, какой подход следует применить к экономике, чтобы возвести ее в ранг науки.
ИГРОКИ
Теория игр очень многогранна и может применяться не только в игровых ситуациях. Ее суть состоит в том, чтобы определить стратегию и формализовать принятие решений. Существует пример, который, благодаря своей необыкновенной простоте, часто используется, чтобы объяснить, какие цели преследует теория игр: разрезание торта.
Предположим, два человека должны поделить торт. Обычно в этом примере речь идет о детях: считается, что дети очень любят сладкое и потому хотят получить самый большой кусок, и это позволяет лучше понять ситуацию. Детский индивидуализм – идеальное качество для нужных нам игроков. Дележ торта будет происходить так: ребенок А будет резать торт, а ребенок В – первым выбирать себе кусок. Таким образом, ребенок А должен всегда помнить о ребенке В и о том, что после того, как он разрежет весь торт, В заберет себе самый большой кусок. Это условие является основополагающим для выбора наилучшей стратегии, которая, разумеется, состоит в том, чтобы разрезать торт на две равные части. Любой другой вариант опасен. Если, например, А подумает, что В – очень хороший и воспитанный ребенок и потому возьмет себе кусок поменьше, то он начнет резать торт на неравные куски. Но это решение содержит много рисков и основывается на догадках или дополнительной информации, которая не имеет ничего общего с игрой.
Это объяснение может показаться слишком простым, но в нем содержатся все ключевые элементы, определяющие сценарий, выбранный для теории игр. Ситуация типа «я играю только для того, чтобы приятно провести время, меня не беспокоит проигрыш, и вообще я могу позволить выиграть своему противнику» может быть вполне оправданной во многих сценариях, но не в теории игр. В ней игроки рассматриваются прежде всего как рациональные люди, чья цель – выиграть, а для этого им нужно думать о себе.
Требование к рациональности игроков довольно глубокое. Оно предполагает идеальную ситуацию, так как никто не в состоянии держать в уме все возможные ходы и каждый раз принимать нужное решение, чтобы выиграть любой ценой. Игры с простой структурой, такие как «ним», позволяют дойти до такого уровня без особого труда, поскольку в них деревья принятия решений имеют мало ветвей, и если оба игрока абсолютно рациональны в нужном нам смысле, то либо они придут к ничьей, либо выиграет тот, кто сделал первый ход. Другие игры, например го или шахматы, тоже обладают этими характеристиками, но уровень их сложности гораздо выше, и не допустить погрешностей фактически невозможно.
ИГРА С ДВУМЯ ИГРОКАМИ И НУЛЕВОЙ СУММОЙ
Обобщая, можно сказать, что игра – это процесс, в котором участвуют два или больше игроков, действующих по строго определенным правилам. Участники могут принимать решения, формирующие особую стратегию, которая может повлиять на ход игры. Цель игры – получить некую выгоду, поэтому одним из ключевых ее понятий является платеж – более общее понятие по сравнению с закладом. Платеж может существовать в виде приза вне самой игры, который делится между несколькими игроками, или же представлять собой штраф. Например, в соревновании двух игроков один выигрывает (получает положительный платеж), а второй проигрывает (получает отрицательный платеж).
Опираясь на понятие платежа, можно провести первую классификацию игр и разделить их на две большие группы: игры с нулевой и ненулевой суммой. В игре первого типа игроки борются за один приз или платеж, а сумма всех выигрышей равна сумме всех проигрышей. Игры, в которых можно одновременно выбирать несколько призов, называются играми с ненулевой суммой.
Спектр игр с нулевой суммой очень широк. Именно к этой категории относятся такие игры, как шашки или шахматы: когда один игрок получает очко, другой его теряет. Можно сказать, что один получает положительное очко, а второй – отрицательное. Такой сценарий фон Нейман назвал игрой с нулевой суммой для двух игроков. Эта схема включает в себя большое количество соревновательных игр. В них игрок получает все или ничего, борьба идет до конца, то есть игра заканчивается, когда один игрок побеждает, а другой проигрывает. Другими словами, игроки не могут сотрудничать друг с другом.