Текст книги "Трехмерный мир. Евклид. Геометрия"
Автор книги: авторов Коллектив
Жанры:
Математика
,сообщить о нарушении
Текущая страница: 3 (всего у книги 7 страниц)
21. Кроме того, из трехсторонних фигур прямоугольный треугольник есть имеющий прямой угол, тупоугольный же – имеющий тупой угол, остроугольный – имейощий три острых угла.
22. Из четырехсторонних фигур квадрат есть та, которая и равносторонняя, и прямоугольная, прямоугольник же – разносторонняя и прямоугольная, ромб – равносторонняя, но не прямоугольная, ромбоид (параллелограмм) – имеющая противоположные стороны и углы, равные между собой, но не являющаяся ни равносторонней, ни прямоугольной.
23. Параллельные прямые – это прямые, которые, находясь в одной плоскости и будучи продолжены в обе стороны неограниченно, ни с одной стороны друг с другом не встречаются.
ДЕДУКТИВНЫЙ МЕТОД В «НАЧАЛАХ»
Мы увидели, что определения не подразумевают факт существования определяемого объекта,– его надо установить. Для этого необходимо решить задачу вида «существует ли такой предмет, как...». В сочинении Евклида для построения геометрических объектов используются только прямые и окружности, других инструментов не дается. Следовательно, единственные существующие точки – те, которые возникают в местах пересечения этих линий.
После того как объект построен и задача решена, нужно убедиться, что он именно такой, как нужно, то есть построение соответствует характеристикам, данным в определении. Необходимо сформулировать теорему. Теоремы «устанавливают существование как данное»; они говорят «вот объект» и констатируют, что между различными утверждениями есть логическая связь.
Для решения задач необходим анализ, то есть знание некоторых базовых сведений, которые позволяют построить объект. Например, если дана сторона АВ, нужно подумать, какие инструменты потребуются для построения равностороннего треугольника. Для этого можно представить его уже построенным и рассмотреть, что связывает все его части (см. построение пятиугольника в главе 4). В теоремах же главное – синтез от постулатов к требуемому результату. Первое предложение первой книги, несмотря на всю его простоту, позволяет нам проследить разницу между анализом и синтезом.
Книга I, предложение 1.
На данной ограниченной прямой можно построить равносторонний треугольник (см. рисунок).
Части теоремы
Protasis (утверждение)
Построить равносторонний треугольник на заданной прямой.
Ekthesis (изложение)
Дана прямая АВ.
Diorismos (ограничение)
Необходимо построить равносторонний треугольник на АВ.
Kataskeue (построение)
Проведем окружность АВ с центром А и радиусом АВ (постулат 3).
Проведем окружность ВА с центром В и радиусом ВА (постулат 3).
Проведем прямые СА и СВ из точки С, в которой пересекаются две окружности (постулат 1).
Apodeixis (доказательство)
Поскольку точка А – центр окружности АВ, СА равен АВ (определение 15). Аналогично, если В – центр окружности ВА, ВС равен ВА (определение 15). Но два объекта, равные одному и тому же объекту, равны между собой (общее понятие 1). Таким образом, СА также равен СВ. Следовательно, прямые АВ, СВ и СА равны.
Sumperasma (заключение)
Треугольник АВС равносторонний, и мы построили то, что требовалось. Ч. Т. Д. (что и требовалось доказать).
В этом предложении есть все необходимое (см. таблицу на следующей странице). Для построения используются постулаты 3 и 1. В доказательстве используется определение 15, общее понятие 1 и элементарная логика. Представив изначально равносторонний треугольник ЛВС, мы получаем множество отправных точек для построения и доказательства. Исходя из этого «идеального» образа можно провести синтетическое доказательство, поскольку в нем стороны равны и образуют треугольник. В другом случае, например с правильным пятиугольником, это будет гораздо сложнее.
Хотя у циркуля нет памяти, по первому постулату возможно «от данной точки отложить прямую, равную данной прямой» и таким образом добавлять равные отрезки, необходимые для построения правильных фигур. Также возможно разделить отрезок на меньшие части.
Проанализируем еще два доказательства, чтобы рассмотреть логико-дедуктивный метод «Начал».
Книга I, предложение 5.
В равнобедренных треугольниках углы у основания равны между собой (см. рисунок).
1. Дан равнобедренный треугольник ΔABG с равными сторонами АВ и AG (определение 20).
2. Продлим их на равные отрезки BZ и GH соответственно (общее понятие 2, предложение 2).
3. Соединим Z c G, а Н с В (постулат 1).
4. Треугольники ΔAGZ и ΔAВН равны (предложение 4, по критерию равенства треугольников сторона – угол – сторона), поскольку у них равны стороны ^4Z и АН (общее понятие 2) и AG и АВ соответственно, и общий угол между ними. Следовательно, углы 5. Треугольники ΔGBZ и ΔBGH равны (предложение 4), следовательно, углы Книга I, предложение 15. Если две прямые пересекаются, то образуют в вершине углы, равные между собой (см. рисунок). 1. Прямые АВ и CD пересекаются в точке Е (утверждение). 2. Необходимо доказать, что углы 3. Суммы пар углов <СЕВ <СЕА и <СЕА 4. Следовательно, суммы пар углов <СЕВ <СЕА и <СЕА 5. Если мы вычтем из обеих пар угол <СЕА, оставшиеся углы <СЕВ и Обратим внимание на то, что Евклид прибегает к определениям, уже доказанным предложениям, общим понятиям и постулатам. С их помощью, последовательно связывая рассуждения и построения, мы достигаем искомого результата исходя из заданных условий. Простота этих доказательств придает им большое изящество. Но иногда Евклид прибегает и к косвенному методу доведения до абсурда. Этот способ заключается в постулировании утверждения, обратного тому, которое требуется доказать, – здесь Евклид и читатель должны быть согласны друг с другом. Путем рассуждений мы приходим одновременно к некоему предложению и к его отрицанию, то есть к неприемлемому результату. Следовательно, исходное утверждение оказывается неверным, а обратное ему, которое и требовалось доказать, истинно. Здесь кроется логический принцип, который Евклид нигде не объясняет отдельно: из двух обратных друг другу утверждений – когда одно является отрицанием другого – одно обязательно будет верным, а другое ложным. Хотя Евклид и никогда не описывал метод доведения до абсурда, он часто прибегал к нему. Этот метод доказательства по своему существу можно считать аристотелевским; его с трудом можно вписать в анализ, скорее он лежит в области синтеза. Фрагмент папируса с рисунком, иллюстрирующим предложение 5 книги II Евклида, найденный при раскопках Оксиринха (Пемжде), древнего города в 160 км от Каира. Изложение в рисунках первого предложения книги I. Оливье Бирн(1810– 1890). АРИСТОТЕЛЬ И ИРРАЦИОНАЛЬНОСТЬ √2 Для доказательства того, что не существует ни одного числа, которое в квадрате было бы равно двум, философ использовал метод доведения до абсурда. Нет причин для существования числа, квадрат которого был бы равен 2. На современном языке это означает, что квадратный корень из числа 2 – иррациональное число. Аристотель сначала принимает истинным противоположный постулат о том, что это число рациональное, и приходит к заключению: в таком случае «четное число одновременно есть также и нечетное», а это невозможно. Запишем его рассуждения в современном виде. Предположим (дополнительная гипотеза), что 2 = m²/n² где m и n – два числа разной четности. Следовательно, 2n² = m². Тогда, если m – четное число (то есть m = 2m'), то n – нечетное. Следовательно, 2n² = 4m'². То есть n² = 2m'², и n – четное. Теперь рассмотрим еще один пример, который показывает, что, используя метод доведения до абсурда, Евклид прибегал к идеальным математическим объектам. Как мы уже сказали, при доказательстве необходимо установить, что построенные математические объекты правильны. Тем не менее метод доведения до абсурда предполагает, что в начале допускается существование неких математических объектов, как если бы они были реальными. Потом доказывается, что эта предпосылка ошибочна, то есть требуется построение объектов, которые не могут быть построены. Эту проблему можно решить, приняв тот факт, что процесс построения происходит только в идеальной области фигур. Например, представим себе круг и прямую: они пересекаются или в двух точках, или в одной (в случае с касательной), или вообще не пересекаются. Если они пересекаются в двух точках, то эти точки существуют в идеальной геометрии, или, иначе говоря, в геометрической методологии. Например: РИС. 1 Книга I, предложение 6. Если у треугольника два угла равны, то и противоположные им стороны равны. Евклид рассматривает фигуру на рисунке 1 (треугольник АВС с равными углами СВА и АСВ, у которого при этом противоположные стороны АВ и АС неравны; например, одна, АВ, длиннее АС). Но такого треугольника не существует. Это иллюстрация дополнительного постулата, который оказывается ложным. Рисунок 2 проясняет ход рассуждений Евклида. Мы и включаем его в эту главу, поскольку на его примере видны трудности использования ошибочных фигур. Они используются, чтобы облегчить понимание доказательства, но этой цели труднее достичь, когда фигуры заведомо невозможны. РИС. 2 В таких доказательствах нет простоты, характерной для анализа, но в них видна глубина знаний геометрии и логико-дедуктивного метода, присущего синтезу. Необходимо упомянуть, что эта доказательная техника пришлась по нраву не всем древнегреческим геометрам, поэтому в различных комментариях к «Началам» встречаются и другие доказательства, приведенные, чтобы избежать ее. Яркий тому пример – Герои Александрийский. Так или иначе, структура «Начал» была достаточно солидной, чтобы затмить все предшествующие им трактаты. Возможно, именно в разработке этой структуры и заключается главное наследие Евклида. Теперь мы перейдем к изучению содержания: рассмотрим книгу I и метод танграма, роль бесконечности, значение и происхождение постулата о параллельных, природу и значение иррациональных величин, а также метод исчерпывания, построение Платоновых тел и, наконец, величайший вклад в науку Пифагора – арифметику. ГЛАВА 3 Книга I и геометрия Вселенной При изучении первой книги «Начал» мы сталкиваемся с фундаментальными вопросами евклидовой геометрии. Некоторые из них сугубо технического толка, а другие, более интересные, затрагивают отношение геометрии к проблеме бесконечности или соотнесение абстрактных геометрических фигур с окружающей действительностью. Благодаря вопросу, вытекающему из знаменитого постулата о параллельных прямых, мы проделаем путешествие во времени сквозь два тысячелетия, вплоть до неевклидовой геометрии, совершившей революцию в науке XIX века. Первая книга – единственная из всех томов «Начал», которая содержит и общие понятия, и постулаты. В первых трех, как мы уже сказали, упоминаются приемлемые инструменты для построения геометрических объектов, и, следовательно, они имеют большое значение для решения задач. Оставшиеся два важны для определения природы евклидовой геометрии. Книга I ставит и другие вопросы: движение, искривление, бесконечность, метод танграма (о нем мы поговорим в главе 4) и так далее. Рассмотрим, каким образом четвертый постулат «Начал» связан с движением в геометрии. Согласно ему все прямые углы равны между собой. В определении 10 из книги I читаем: Когда прямая, восставленная на другой прямой, образует рядом углы, равные между собой, то каждый из равных углов есть прямой. Если оба угла равны, они являются прямыми (рисунок 1). Возникает вопрос: равна ли эта пара углов другой паре, то есть равны ли все прямые углы, а не только парные? Четвертый постулат дает положительный ответ. В конкретном случае прямых углов Евклид предполагает некую однородность плоскости. Таким образом, этот постулат включает в себя движение фигур, что предусматривает также общее понятие 5, но мы не можем прибегать к общему понятию для решения чисто геометрической задачи. В евклидовой геометрии нет ни одного постулата, в котором говорилось бы, что две наложенные друг на друга фигуры равны. Другими словами, общее понятие 5 должно быть постулатом, как мы уже говорили в главе 2. Несмотря на это Евклид не смог избежать понятия движения, хотя использовал его в редких случаях, например в пространственной геометрии, когда создавал конус и шар путем вращения прямоугольного треугольника вокруг одного из его катетов и круга вокруг его диаметра. Он также использовал это понятие в предложениях 4 и 8 первой книги для установления признаков равенства треугольников по стороне, углу и стороне и по трем сторонам. Однако в критерии равенства по углу, стороне и углу удается избежать движения. Рассмотрим первый случай. Книга I, предложение 4. Если два треугольника имеют по две стороны, равные между собой, и по равному углу, содержащемуся между равными прямыми, то они будут иметь и равные основания, и один треугольник будет равен другому. РИС. 1 Согласно определению 10, пары углов α, β; γ, δ и ε, ζ равны. То есть α = β, γ = δ, ε = ζ. Следовательно, и α, и β, и γ, и δ, и ε, и ζ являются прямыми углами. Его доказательство полностью основывается на наложении двух треугольников и на общем понятии 5 и выглядит так: наложим треугольники АВС и А'В'С' один на другой (движение) так, чтобы угол АВС совпал с углом А'В'С'. Очевидно, что стороны АВ и ВС накладываются на стороны А'В' и В'С. Но через точки А [=А'] и С [=С] проходит только одна прямая (общее понятие 7). Следовательно, треугольники полностью совпадают и, согласно общему понятию 4, они были равны и до их перемещения. Таким образом, треугольники АВС и А'В'С равны. Здесь необходимо уточнить, что непоследовательное использование движения не является ошибкой Евклида. Единственный способ быть последовательными в этом случае – принять это предложение как постулат, что сделал много веков спустя немецкий математик Давид Гильберт (1862-1943) в своей строгой аксиоматизации геометрии. РИС. 2 ПРЯМАЯ, КОТОРОЙ НИКОГДА НЕ БЫЛО Несмотря на определения 2, 3 и 4 из книги I, Евклид ни разу не объяснил, что такое прямая, каковы ее свойства и каким критериям она должна отвечать. Тем не менее он ясно определил, что прямые конечны и их концами являются точки. В действительности Евклид занимался отрезками прямых. Но когда он говорит о равной длине диаметра в определении круга, то использует понятие расстояния. Для прямых его применил позже Архимед в первой аксиоме своего сочинения «О шаре и цилиндре»: «Прямая – кратчайшее расстояние между двумя точками». Как мы увидели на примере предложения 4, Евклид использовал постулаты, не устанавливая их. В доказательстве предложения 1 книги I, проанализированном в главе 2, содержится утверждение, которое мы сейчас подробно рассмотрим: Проведем прямые СА и СВ из точки пересечения двух окружностей С. Что может служить гарантией существования точки С по Евклиду? Ничего, кроме рисунка, иллюстрирующего доказательство. Но это неприемлемо, так как рисунок может считаться правильным, только если точка С существует (вспомним изображения невозможных треугольников, использующиеся в доказательствах методом доведения до абсурда). ИСКРИВЛЕНИЕ ФИГУР Вопрос искривления возникает в «Началах» неявно. Перед тем как перейти к постулату о параллельных прямых, Евклид устанавливает очень интересный результат: Книга I, предложение 17. Во всяком треугольнике сумма двух любых углов меньше двух прямых углов. Чтобы правильно понять эту задачу, мы должны внимательно следовать за рассуждениями Евклида. Он хочет доказать, что сумма углов 1. Он делит сторону AG пополам и получает точку Е (Книга I, предложение 10). 2. Соединяет В и Е (постулат 1) и удваивает этот отрезок (постулат 2 и книга I, предложение 2). Получается точка Z. 3. Соединяет ее с точкой G (постулат 1). Евклид получает два равных треугольника (книга I, предложение 4), так как стороны ZE и EG треугольника ZEG равны сторонам BE и ЕА треугольника БЕЛ соответственно, по построению, а углы Евклид получил такой результат, поскольку точка Z располагается внутри угла В постулате 5 Евклид утверждает, что при некоторых условиях две прямые пересекаются: «Существует точка, принадлежащая им обеим». А в случае с окружностями он принимает это за такой очевидный факт, что не считает нужным говорить об этом. Здесь мы опять сталкиваемся со скрытым постулатом. Равносторонний треугольник, построенный на отрезке АВ в первом предложении, существует, поскольку построение Евклида верно; но оно зависит от существования точки С. В реальности, в которой этой точки нет, не будет и треугольника. От этого зависят многие из первых доказательств Евклида. Возможность построения в «Началах» зависит от возможности построения точек. Ученый определяет необходимые и достаточные условия, при которых две прямые пересекаются, и правильно обозначает точки, появляющиеся таким образом. Но при этом он не говорит, при каких условиях пересекаются прямая и окружность, и следовательно, точки, получающиеся в местах их пересечения, как бы не существуют. Я прихожу все более к убеждению, что необходимость нашей геометрии не может быть доказана, по крайней мере человеческим рассудком и для человеческого рассудка. Карл Фридрих Гаусс Хотя он мог бы сделать это очень просто, достаточно было уточнить, например в случае с окружностями, следующее. Постулат о пересечении двух окружностей. Если расстояние между центрами двух окружностей меньше половины суммы их диаметров [то есть меньше суммы радиусов этих окружностей], то эти окружности пересекаются в двух точках. Аналогичным образом можно определить условие, позволяющее выявить существование двух точек, образованных в результате пересечения окружности и прямой: прямая и окружность пересекаются [в двух точках], если перпендикуляр, идущий от центра окружности к прямой, меньше ее радиуса. Но Евклид ничего не говорит по этому поводу. ПОСТУЛАТ О ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ Все ученые, занимающиеся «Началами», согласны в том, что их структура и, в частности, постулат 5 (мы будем кратко обозначать его П5) принадлежат самому Евклиду. Это знаменитый постулат о параллельных прямых, который в формулировке Евклида гласит, что «в определенных условиях две прямые неизбежно пересекутся». Евклид впервые применяет его только в предложении 29 первой книги. Та часть геометрии, которая не зависит от этого постулата, получила название абсолютной геометрии. Дословно в пятом постулате говорится следующее. Постулат 5 (П5). Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные эти две прямые неограниченно встретятся с той стороны, где углы, меньшие двух прямых. Обычно постулат о параллельных прямых изучается не в этой оригинальной формулировке, а в том виде, в котором его изложил шотландский математик Джон Плейфэр (1748– 1819), профессор математики, а впоследствии и философии в Эдинбургском университете. Постулат Плейфэра (ПП). В плоскости через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной. Это утверждение имеет точно такой же смысл, как и постулат Евклида, и подчеркивает, что для П5 необходимы два условия: с одной стороны, существование «прямой, параллельной данной прямой, проведенной через точку, не лежащую на последней», а с другой стороны, эта прямая должна быть единственной. Это существование Евклид дает в предложении 31: КРИВАЯ И ЕЕ АСИМПТОТА При помощи пятого постулата Евклид предотвращает асимптотичность «искривления» прямых, как в случае с гиперболой и ее асимптотой (эта предосторожность тем более необходима, поскольку, как мы уже увидели, Евклид не дает полного определения прямой, так что мы не знаем ее полных основных свойств). В случае с кривыми, например, то, что одна все больше приближается ко второй, не означает, что они обязательно пересекутся, как видно на рисунке: гипербола постепенно приближается к прямой – своей асимптоте,– но никогда не коснется ее. Книга I, предложение 31. Через точку Р> не лежащую на прямой АВУ всегда можно провести прямую линию, параллельную данной прямой. Проведем через точку Р линию PQ, перпендикулярную АВ (Q находится на прямой АВ или на ее продолжении, которое можно построить при помощи циркуля и линейки, согласно предложению 12). Таким же образом проведем через Р прямую PR, перпендикулярную PQ. Очевидно, что прямые PR и АВ параллельны, потому что в противном случае они бы пересеклись в некой точке, например R, и мы получили бы треугольник ΔQPR с двумя прямыми углами. Но это невозможно (поскольку противоречит предложению 16 книги I), следовательно, существование параллельной доказано. Теперь мы должны доказать, что эта прямая всего одна. Для этого необходимо прибегнуть к ложному (или идеальному) геометрическому объекту, который уже подразумевает правильность того, что мы хотим доказать. Получается, факт единственности такой параллельной не вытекает ни из какого другого постулата. Как мы увидим дальше, это привело к настоящему перевороту, поскольку вынуждало поставить под сомнение авторитет Евклида. ДОКАЗАТЕЛЬСТВО ЕДИНСТВЕННОСТИ ПАРАЛЛЕЛЬНОЙ Доказать единственность параллельной можно, приняв за истину евклидову геометрию. Через точку Р, не лежащую на прямой АВ, всегда можно провести единственную прямую, параллельную данной. Если бы существовали две прямые, параллельные АВ (вводится дополнительная фигура, воображаемая, поскольку основана на ложной предпосылке), это были бы первая (та, которая образует прямой угол с PQ в точке Р) и PR. Следовательно, угол НЕЕВКЛИДОВА ГЕОМЕТРИЯ Говоря о геометрии, невозможно не задаться вопросом: какова же истинная геометрия природы? Несомненно, одна из целей аксиоматизации состоит в том, чтобы уловить истину сущего. Но, возможно, на самом деле мы просто улавливаем истинность того, что представляем, то есть порождения человеческого разума, необязательно совпадающего с реальностью. Во времена Евклида были две «настоящие» геометрические науки: «геометрия небес», то есть сферическая геометрия, необходимая для понимания астрономических процессов, так занимавших древнегреческих мыслителей, и «геометрия внутреннего двора», которой занимался Архимед, когда, по легенде, римский солдат поразил его своим мечом. Первую сейчас называют эллиптической геометрией. Она проявляется на поверхности земного шара. В этой геометрии точки определяются так же, а прямые – нет. Если вслед за Архимедом принять за прямую кратчайшую линию, соединяющую две точки, то мы заметим, что в эллиптической геометрии эти прямые обязательно пересекутся. Представим себе ситуацию: два человека начинают идти по прямой по земному шару, достигая в итоге исходной точки. Оба опишут максимальную окружность (то есть ту, которая делит сферу на два равных полушария), а максимальные окружности сферы обязательно пересекаются (на рисунке 3 окружности r и r' пересекаются в точке Р). Следовательно, в этой геометрии через заданную точку невозможно провести ни одну прямую, параллельную данной. Вторая геометрия – внутреннего двора – работает в пределах ограниченного стенами пространства, в которой можно построить только то, что позволяет песок, покрывающий землю. В этой геометрии через точку Р, не лежащую на прямой r, можно провести бесконечное число параллельных прямых (см. рисунок 4). Так, мы можем провести через Р прямые r', r", r'". Только r" пересекает r внутри двора. Но есть и другие – все прямые, находящиеся внутри угла с вершиной Р и со сторонами, образованными прямыми, исходящими из Р и доходящими до прямой r. Точки пересечения находятся на стенах двора, а не на земле – там их не существует. Следовательно, прямые r и r' не пересекаются и являются параллельными. Прямые, не находящиеся внутри угла с вершиной P, как и его стороны, параллельны r. Графические построения в такой геометрии, сейчас называемой гиперболической, выглядят так, будто их сделали на седле (рисунок 5). На такой поверхности равносторонний треугольник принимает странный вид, а сумма его углов становится меньше 180°. Параллельные же прямые удаляются друг от друга до бесконечности (или, наоборот, сближаются). РИС.З РИС. 4 РИС. 5 Эту геометрию открыли в начале XIX века независимо друг от друга венгерский ученый Янош Бойяи (1802-1860) и русский математик Николай Лобачевский (1792-1856). Уже в 1823 году Лобачевский начал сомневаться в том, что евклидова геометрия единственно возможная, причем именно потому, что все попытки доказать единственность параллельной прямой, исходя из других постулатов Евклида, были напрасны. В 1829 году появилась статья Лобачевского «О началах геометрии», легшая в основу так называемой неевклидовой геометрии. В ней изложены принципы первой геометрии, построенной на гипотезе, противоречащей пятому постулату Евклида: через точку С, не лежащую на прямой АВ, можно провести более одной параллельной прямой, лежащей в плоскости АВС и не пересекающей АВ. На основе этого переформулированного постулата Лобачевский создал гармоничную и непротиворечивую геометрию. До сих пор не было дано никакого строгого доказательства его правоты. Николай Лобачевский о пятом постулате в 1823 году Тем не менее авторитет Евклида и «Начал» в математическом мире был так высок, что Лобачевский решил не придавать большого значения новой геометрии и в первые годы чуть ли не стыдясь называл ее «воображаемой». За 20 лет, между 1835 и 1855 годами, он по меньшей мере три раза пересматривал свою новую систему. Шотландский писатель и математик Эрик Белл в своей знаменитой книге «Творцы математики» (1937) писал: «В течение 2200 лет в некотором смысле верилось, что Евклид своей системой геометрии открыл абсолютную истину или необходимый способ человеческого познания. Созданное Лобачевским было настоятельным доказательством ошибочности этого верования. Смелость этого вызова и порожденный им успех вдохновили математиков и ученых вообще бросить вызов другим «аксиомам» или принятым «истинам» (например, «принципу» причинности), которые в течение столетий казались так же необходимыми для направления мышления, как постулат Евклида, до того как Лобачевский отбросил его. Сильный стимул от метода Лобачевского бросать вызов аксиомам, вероятно, все еще должен ощущаться. Это не преувеличение – называть Лобачевского Коперником геометрии, так как геометрия есть только часть более широкой области, которую он обновил. Может быть, даже было бы справедливо называть его Коперником всего мышления». Параллельно с Лобачевским (это слово здесь как нельзя более кстати) венгерский ученый Янош Бойяи пришел к тем же самым выводам. Его отец Фаркаш пытался доказать постулат о параллельных почти всю свою жизнь, но так ничего и не добился. Хотя открытие Яноша было сделано одновременно с Лобачевским, он обнародовал его только в 1832 году, опасаясь реакции, которую могла вызвать такая математическая «ересь». По этой причине первенство открытия неевклидовой геометрии приписывается исключительно русскому математику. Фаркаш в письме своему другу Карлу Фридриху Гауссу поинтересовался его мнением о трудах своего сына. На это Гаусс ответил со всей откровенностью, что не может похвалить Яноша, потому что это равносильно тому, чтобы похвалить себя самого, настолько совпадали их точки зрения по этому вопросу. Из этого письма понятно: Гаусс тоже пришел к выводу о том, что постулат о параллельных в том виде, в котором сформулировал его Евклид, не вытекает из остального содержания его труда, и разработал какие-то другие логичные геометрические системы. Решение Гаусса не публиковать свои открытия, несмотря на его авторитет в мире математики, позволяет понять, насколько рискованно было оспаривать учение великого Евклида. Гаусс был так осторожен, что даже отказался публично поддержать Бойяи и Лобачевского после издания их работ – как он говорил, из страха «стать посмешищем болванов». Еще одна великая неевклидова геометрия – эллиптическая – окончательно сформировалась благодаря одному знакомому Гаусса, немецкому математику Бернарду Риману (1826-1866). В своем докладе «О гипотезах, лежащих в основании геометрии» (одном из самых знаменитых в истории науки) он изложил невероятно изящную геометрическую систему, в которой рассматривались исключительно искривления различных пространств и вытекающие из этого свойства. Риман доказал, что пространство Евклида – и, соответственно, вся евклидова геометрия – является частным случаем пространства с кривизной, равной нулю. В таком пространстве сумма углов треугольника равна 180°. Но бывают и другие пространства: например, сферическое, с положительной кривизной, в котором сумма углов треугольника больше 180°, или гиперболическое, с отрицательной кривизной, где, как мы уже видели, сумма углов треугольника меньше 180°. Бога ради, прошу тебя, забудь об этом. Страшись этого так же, как чувственных страстей, потому что, как и они, оно может забрать все твое время, лишить тебя здоровья, душевного покоя и счастья. Фаркаш Бояйи в письме к сыну Яношу, узнав, что тот написал работу О ЕВКЛИДОВОМ ПОСТУЛАТЕ О ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ СОСТОЯТЕЛЬНОСТЬ ЕВКЛИДОВОЙ ГЕОМЕТРИИ Появление альтернативных геометрических учений привело к яростным философским спорам, которым можно подвести итог словами немецкого логика Готлоба Фреге из его посмертной статьи «О евклидовой геометрии»: