355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Когда фотон встречает электрон. Фейнман. Квантовая электродинамика » Текст книги (страница 8)
Когда фотон встречает электрон. Фейнман. Квантовая электродинамика
  • Текст добавлен: 17 апреля 2017, 07:30

Текст книги "Когда фотон встречает электрон. Фейнман. Квантовая электродинамика"


Автор книги: авторов Коллектив


Жанры:

   

Научпоп

,

сообщить о нарушении

Текущая страница: 8 (всего у книги 9 страниц)

Электрон, движущийся влево

Такова была ситуация весной 1956 года, когда Гелл-Ман и Фейнман начали сотрудничать. В то время Фейнман уже был ученым, известным среди своих коллег: его диаграммы стали атрибутом повседневной работы физиков, которые, когда приезжали в Калтех, почитали за честь зайти и поздороваться с ним. Все хотели побеседовать с Фейнманом и рассказать о своих проблемах в исследованиях, и он их слушал: эта черта, которая делала его неотразимым в глазах женщин, также располагала к нему его коллег.

В этом году Фейнман и Гелл-Ман приняли участие в самом важном для физики частиц событии – Рочестерской конференции, проходившей в одноименном городе. Умы присутствующих были заняты головоломкой тау– и тета-каонов. В ночь на пятницу молодой человек по имени Мартин Блок предложил Фейнману возможное объяснение явления: речь могла идти о двух процессах одной частицы, идущих с изменением четности при слабых взаимодействиях. У Фейнмана было плохое настроение, и он готов был признать собеседника идиотом из-за таких идей, но он быстро понял, что не может придумать никакого возражения по существу.

На следующий день, к концу последнего субботнего заседания, Фейнман поднялся и спросил, упомянув про авторство Блока: может ли слабое взаимодействие изменить четность? Протокол конгресса сообщает, что ответил один молодой физик-теоретик по имени Ян Чжэньнин. Он объяснил, что проводил исследования на эту тему, но еще не пришел к определенному выводу. Тем не менее Ян сказал, что у него нет никакого доказательства существования такого нарушения. После собрания Фейнман и Гелл-Ман изучили данный вопрос и сделали вывод: не существует веских аргументов, позволяющих утверждать, что слабое взаимодействие не может нарушать закон сохранения четности. Но если так, тогда все казалось возможным. Никакой уверенности у них не было. По возвращении в свой университет Ян и его коллега Ли Чжэндао снова вернулись ко всем имеющимся экспериментальным данным, но не достигли успеха в решении этой проблемы. Тогда они предложили опыт, целью которого было окончательно определить, сохраняет ли слабое взаимодействие четность. Эксперимент в общих чертах состоял в том, чтобы проверить, было ли больше электронов с левой стороны, чем с правой, во время β-распада. В июне 1956 года ученые опубликовали статью, в которой изложили такую возможность. Это было настоящим безумием, но они смогли убедить коллегу из Колумбийского университета By Цзяньсюн проверить их теоретические выкладки на практике. Они были настолько убедительны, что вынудили By сократить ее отпуск с мужем, который она проводила в Европе, ради этого эксперимента. By доказала, что при охлаждении радиоактивного кобальта до сверхнизких температур и при его нахождении в магнитном поле электроны, испускаемые при β-распаде, перемещаются, главным образом, влево. Немного позже Леон Ледерман, будущий Нобелевский лауреат по физике 1988 года, а также коллега By по Колумбийскому университету, решил проверить эти результаты и изменил ее инструментарий, чтобы провести опыт. Он получил подтверждение: электрон стремился влево.

Для существования науки нужны умы, которые не принимают того, что природа следует некоторым предвзятым условиям.

Ричард Фейнман. «Природа физики» (1965)

Открытие нарушения четности вызвало настоящий шок в сообществе физиков. Фейнман же, когда узнал новость, начал танцевать. В следующем, 1957 году, Ли и Ян получили Нобелевскую премию. Вопреки всем ожиданиям, члены Нобелевского комитета исключили By из списков кандидатов на эту премию.

Слабая теория

Во время Конференции в Рочестере в 1957 году Ли сообщил результаты одного очень интересного наблюдения: нейтрино по своей сути – левша. Все известные частицы могут иметь два направления спина (если представить спин как вращение, это означает, что они могут вращаться как по часовой стрелке, так и в обратную сторону), за исключением нейтрино. Этот феномен привлек внимание Фейнмана. Он вспомнил, что уравнение, аналогичное уравнению Дирака, которое он вывел с помощью интегралов по траекториям, можно было применить и к нейтрино. Единственной проблемой было то, что таким образом полученные результаты отличались от экспериментальных. Если рассмотреть все виды взаимодействия нейтронов, протонов, электронов и нейтрино, то мы увидим необходимость ввести пять типов операторов, названных по свойствам их преобразований: скалярный (S), векторный (V), аксиально-векторный (А), тензорный (Т) и псевдоскалярный (Р). Иначе их называют токами: тензорный ток (Т), векторный ток (V) и так далее. Ферми считал, что β-распад мог объясняться как векторный ток (V). И это было основное предположение до 1956 года, когда доказали, что слабое взаимодействие нарушает четность. Это изменяло ситуацию: две из данных величин должны были бы тогда сочетаться, и опыты, казалось, указывали на то, что речь должна идти о S и Т или V и Т. Однако уравнения Фейнмана без тени сомнения делали очевидным сочетание V и А. Опьяненный своим открытием, он хотел поделиться им с коллегами, но времени на его выступление выделено не было. Фейнман использовал весь свой талант и все свое обаяние, чтобы убедить одного из ученых отдать ему пять минут времени от своей презентации для изложения теории. По иронии судьбы этим коллегой оказался Кеннет Кейз: именно ему Фейнман публично объяснял ошибочность его работы. Фейнман сделал свое сообщение и по окончании конференции уехал в Бразилию, намереваясь провести там лето.

Фейнманом овладела мысль вывести универсальное уравнение для последнего из четырех взаимодействий природы, которое оставалось описать. Это был, по его словам, последний шанс изложить фундаментальный закон. Когда Гелл-Ман вернулся, то рассказал ему, что долго общался с Робертом Маршаком, физиком из Рочестерского университета, и его сотрудником, Джорджем Сударшаном, молодым индийцем. Они обсуждали вероятность того, что V-A была единственной возможностью для слабого взаимодействия. Этот разговор стал стимулом для Фейнмана; в конечном итоге его теория оказалась верна:

«Я одним прыжком вскочил с места и заявил: «Сейчас я понимаю все. Все ясно, и я вам объясню это завтра». Они считали, что я шутил, но вовсе нет. Я должен был освободить себя от тирании S и Т, так как у меня была теория для V и А».

Фейнман был убежден, что он был единственным в мире, кто понимал, как V-A производили универсальную формулу слабого взаимодействия. Он принялся писать статью с невероятной скоростью, желая представить миру новую теорию. Между тем Гелл-Ман понял, что Фейнман раскрывает его предположение. И, хотя Гелл-Ман уверял Маршака в том, что не будет писать статью на тему V-A, слово свое он нарушил. В результате директор департамента физики столкнулся с ситуацией, когда два самых блестящих его ученых писали две статьи на одну и ту же тему. Это было неприемлемо, и он попросил их объединить усилия. Вопреки всем ожиданиям, они согласились.

По мнению физика Лоуренса Краусса, статья, которая из этого вышла, «была хаосом стилей, но, без тени сомнения, важной работой». Она взяла лучшее от каждого: формализм Фейнмана при описании нейтрино и наблюдения Гелл-Мана относительно симметрий и величин, сохраненных в слабых токах. Бедный Сударшан: никто не знал, что отчасти и он приложил руку к созданию теории V-A. Два гения Калтеха охотно признавали свой разговор с Маршаком и Сударшаном; они также не отрицали, что взяли их идею. Но все-таки единственная статья, цитируемая впоследствии как классический эталон в данной области, принадлежала Гелл-Ману и Фейнману.

Однако речь шла не о полной теории. Полноценного сотрудничества в данном случае не получилось, можно было говорить лишь о браке по расчету, не продлившемся долго. Каждый из этих ученых следовал своим путем: Фейнман посвятил себя другим вопросам, очень удаленным от физики частиц, тогда как Гелл-Ман занимался работой, впоследствии ставшей его большим вкладом в науку и вознагражденной Нобелевской премией. В будущем Фейнман снова обратится к этой области физики, стремясь убедить своих коллег, что великое открытие Гелл-Мана – кварки – действительно существует.

Внутрь протона

Достаточно часто случается, что математика приходит на помощь другим наукам. В течение XIX века был создан и разработан раздел общей алгебры, посвященный классификации симметрий, собранных в группы: его называют теорией групп. Она определяет группу симметрий как совокупность всех изменений некоторой категории, результатом которых является неизменная величина. То, что с самого начала было лишь невероятно абстрактной теорией без какого-либо практического применения, в XX веке стало фундаментальным инструментом, необходимым для физики микромира.

В 1962 году Марри Гелл-Ман обнаружил (параллельно с Джорджем Цвейгом из Европейской организации по ядерным исследованиям в Женеве), что хаос частиц мог образоваться согласно совокупности критериев, которую он окрестил «восьмеричный путь» – термин, заимствованный им из буддийской философии. Его теория предсказывала существование новой частицы Ω (омега минус). Она была открыта в следующем году, сначала в Брукхейвенской национальной лаборатории, а затем в ЦЕРН. Гелл– Ман и одновременно с ним Юваль Неэман изучали сильное взаимодействие, благодаря которому протоны и нейтроны остаются вместе внутри атомного ядра. Они оба открыли симметрию, очень пригодившуюся при описании сильного взаимодействия: группу Ли, названную в честь норвежского математика Софуса Ли. А более конкретно – группу унитарной симметрии SU(3). Из этого открытия следовало существование более мелких частиц, входящих в состав протонов и нейтронов. Гелл-Ман дал им название кварки (рисунок 1). Согласно его теории, тяжелые частицы, такие как протоны, нейтроны или мезоны, состоят из этих мелких частиц, которые, что удивительно, имеют дробные электрические заряды, равные 1/3 или 2/3 от заряда электрона (он фундаментален сам по себе и не содержит никаких частиц). Другая неожиданность заключалась в том, что совокупность всех тяжелых частиц могла объясняться существованием трех семей, содержащих по два кварка каждая: up (верхний) и down (нижний), strange (странный) и charm (очарованный), top (истинный) и botton (прелестный). Вместе с тем эта классификация позволяла предсказать существование других частиц, подобных Ω , которые еще не были открыты и открытие которых могло доказать верность данной гипотезы.

РИС. 1

Внутренняя структура протона согласно модели кварков Гелл-Мана (и: верхний кварк; d: нижний кварк).

Тем не менее Гелл-Ман не был полностью убежден (или, по крайней мере, он не показывал этого на публике) в том факте, что его восьмеричный путь может быть чем-то большим, чем математическая хитрость для классификации частиц:


Хиггс, отец всей материи

Одна из величайших загадок физики частиц состоит в том, почему субатомные частицы имеют ту массу, которая у них есть. В 1960-х годах британский физик Питер Хиггс (родился в 1929 году) предлагает изящное решение данной проблемы. Во Вселенной существует поле, которое занимает все пространство, и когда частицы взаимодействуют с ним, они приобретают то, что кажется их массой. Для лучшего понимания физики обычно прибегают к следующей аналогии. Представим, что мы на голливудском приеме, и вдруг там появляется звезда первой величины. Те, кто находится около самой двери, подходят к ней, чтобы начать разговор, и собираются вокруг нее. По мере того как знаменитость перемещается по залу, стоящие вблизи приглашенные привлечены ею и подходят к ней; но когда звезда удаляется, они возвращаются к своим прерванным разговорам. Как следствие, на этом приеме молодой диве Голливуда труднее передвигаться по залу, чем если бы она была одна. К тому же ей тяжело снова начать передвижение после того, как она остановилась, чтобы ответить на вопросы. Все приглашенные ищут ее внимания. Этот эффект скопления людей вокруг кинозвезды соответствует механизму Хиггса.

Британский физик Питер Хиггс в 2009 году.


Углубление

Важно отметить, что описанное выше соответствует, ни больше, ни меньше, функционированию того, что мы называем «масса». Речь идет не о весе тела, а о мере его инерции, массе. Именно таким образом мы воспринимаем это поле Хиггса, которое заполняет Вселенную и в котором находятся все частицы: частица, которая в нем перемещается, создает легкое искажение (приглашенные окружают диву при ее появлении), что сообщает ей массу. Элементарной частицей этого поля является так называемый «бозон Хиггса». В женевском ЦЕРНе, как и в чикагской Фермилаб, физики искали эту частицу в течение нескольких десятилетий, вплоть до 4 июля 2012 года, когда ЦЕРН объявил об открытии новой частицы, «соответствующей бозону Хиггса».


«Забавно размышлять о манере поведения кварков, если речь идет о физических частицах с определенной массой». Одним из главных возражений было то, что ни одна частица с массой меньше массы электрона не была открыта до сих пор. Таким образом, дискуссия вокруг этой темы оставалась актуальной.

В 1968 году Фейнман возвращается к физике частиц. Опыты, проведенные в адронных коллайдерах (адроны – термин, употребляемый для обозначения всех частиц, состоящих из кварков), приводят его к формулированию новой теории, согласно которой каждый адрон состоит из других более мелких частиц, названных им партонами. Фейнман осознанно отказался от дискуссии о том, существуют кварки на самом деле или они являются математической абстракцией. Он заявлял, что врач запретил ему дискуссировать о метафизике.

В этом же году в линейном ускорителе Стэнфорда высокоэнергичными электронами облучали протоны. Этот опыт напоминал тот, при помощи которого Резерфорд в 1911 году определил структуру атома. Целью эксперимента, проводимого в Стэнфорде, было установить, что протон не является единым и неделимым, но из чего-то состоит. Фейнман ездил в Стэнфорд в августе и октябре, и ему удалось убедить своих коллег, что его теория о партонах делает изучение структуры протона более легким.

В действительности кварки Гелл-Мана и партоны Фейнмана были дорогами, которые вели в одно место, и эти составляющие материи позволяли разработать теорию сильного взаимодействия. Однако никто не отдавал себе в этом отчета, несмотря на то что опыты, подобные стэнфордским, давали основание так думать. Поэтому Фейнман вместе с двумя студентами в 1970 году пустился в авантюру, намереваясь проверить всю систему элементарных частиц, чтобы выяснить, могут ли предположительно существующие кварки лежать в ее основе. Убедившись в этом, он превратился, по своим же словам, в «кваркователя».

Гелл-Ман не упускал случая посмеяться над партонами, называя их put-ons (можно перевести как «фальшивки», «глупые шутки»). Он ненавидел само название данных частиц, связанное с английским словом part, то есть «часть». И если во время какого-либо семинара кто-то упоминал модель партонов Фейнмана, то Гелл-Ман тут же вскакивал и спрашивал, что это за модель. Он считал, что Фейнман крайне упростил его модель кварков. Гелл-Ман не видел, как Фейнман смог бы прийти к своим партонам способом, отличным от того, который использовал он сам: чтобы создать свои кварки, Гелл-Ман основывался на математическом понятии симметрии и на своей концепции мира. Фейнман же следовал своей собственной методологии, той, которую он использовал каждый раз, когда формулировал какую-либо теорию: в данном случае он смотрел, соответствовала ли предполагаемая структура адронов результатам производимых наблюдений.

Звездный час для модели кварков наступил в 1974 году. Был понедельник, 11 ноября: взволнованный Ричард Фейнман вел эмоциональную беседу со своим коллегой Харальдом Фричем в кулуарах департамента теоретической физики Калтеха. А в 800 километрах севернее, в линейном ускорителе Стэнфорда (SLAC), только что открыли частицу, вероятно являющуюся одним из кварков Гелл-Манна, – очарованный кварк.

Глава 6

Нанотехнология и общественная наука


Фейнман был не только блестящим физиком-теоретиком: он был провидцем. Именно он заложил основы нанотехнологии и посодействовал развитию этой увлекательной области. Находясь в составе комиссии, занимающейся расследованием катастрофы космического корабля « Челленджер», он вошел в число ученых– небожителей – самых востребованных и знаменитых. До его смерти оставалось всего два года...

В 1958 году Фейнман отправился в Женеву, чтобы присутствовать на конгрессе, посвященном слабому взаимодействию, а также для того чтобы встретиться с одной замужней дамой, супругой его коллеги из Калтеха. До этого, совсем недавно, он пережил разрыв отношений: другая женщина написала ему письмо, в котором говорилось, что все кончено и что он должен прислать ей 500 долларов. Видимо она пообщалась с некоторыми из его экс-возлюбленных (она указала несколько имен) и сообщила, что одна из них прислала ей анонимное письмо:

«Этот подлец Дик, этот бесчестный и гнусный Фейнман бывает с тобой на людях, но он никогда на тебе не женится. Скажи ему, что ты беременна. Ты выжмешь из него 300 или 500 долларов».

И в завершение бывшая подруга напоминала Фейнману, что принадлежавшая ему медаль Эйнштейна находится у нее.

Новой же возлюбленной Ричарда в Женеве не оказалось – она уехала и хотела увидеться с ним в Англии (мы не знаем, состоялась ли в итоге эта встреча). Стало быть, Фейнман проводил свое время в столице Швейцарии в одиночестве. Однажды, прогуливаясь по пляжу озера Леман, он разговорился с 24-летней британкой Гвинет Ховарт, дочерью ювелира из города Рипонден. Оставив скучную жизнь работника библиотеки в отдаленном районе графства Йоркшир, она решила посмотреть мир. Чтобы оплатить свои путешествия, девушка работала няней в тех городах, где она проживала. В это время в ее личной жизни присутствовало двое мужчин: профессиональный бегун на средние дистанции, который жил в Цюрихе, и оптик из Саарбрюккена, города на границе между Германией и Францией. Фейнман пригласил ее пойти этим вечером в ночной клуб. Должно быть, Гвинет ему очень понравилась, так как он предложил ей работать у него экономкой в Калифорнии. Девушка ответила ему, что подумает.

После конгресса Фейнман вернулся в Соединенные Штаты Америки, а Гвинет продолжила свое путешествие: она еще колебалась насчет поездки в Пасадену. В это время Фейнман предпринял необходимые шаги для того, чтобы ей позволили въехать на территорию Штатов. Один друг сказал ему, что он совершает безумие: как бы то ни было, но мужчина 40 лет, который пригласил женщину 24 лет жить с ним под одной крышей, мало за что может поручиться. Между тем вымогательница прислала Фейнману новое письмо, в котором сообщала, что она все рассказала своему мужу. Женщина чувствовала себя использованной и требовала у него еще большую сумму денег: «Ты, несомненно, очень умен в своей работе, но в своих личных отношениях ты идиот». Кроме того, она утверждала, что его медаль Эйнштейна «находится в надежном месте» так же, как и его томик «Рубаи» иранского поэта Омара Хаяма, с цветными иллюстрациями, старательно выполненными рукой Арлин.

Фейнман написал шантажистке, предлагая встретиться и утверждая, что, несмотря ни на что, он был бы не против жениться на ней. Это воскресило в ней прекрасные воспоминания, которые она хранила об их встречах, в частности об их ночах под звездами в национальном парке Джошуа-Три. Но и прекрасные картины прошлого не погасили ее гнев, и она отказалась от встречи.

Далее Фейнман получил официальное письмо от ее мужа, в котором тот требовал компенсации: «Вы воспользовались своим положением и своими деньгами, чтобы соблазнить молодую впечатлительную женщину и отдалить ее от мужа... Вы заранее строили постыдные планы относительно вашего отпуска... Мне кажется, что вы должны заплатить за удовлетворение ваших эгоистичных желаний». В конечном итоге он выставил ему счет в 1250 долларов, который Фейнман отказался оплатить. Он попытался успокоить взволнованного мужа. «Простите ее и сделайте ее счастливой»,– писал он ему. Супруг грозил физику судебным процессом, но адвокат Фейнмана посоветовал ему забыть эту историю, так как подобная жалоба никогда не дойдет до суда. Последние строчки, написанные разочарованной возлюбленной, содержали следующее:

«Я надеюсь, что ты будешь счастлив со своей служанкой. Теперь ты все время будешь рядом с ней... Но что я не могу объяснить для себя, так это то, почему ты так сильно боишься брака».

В конечном итоге она вернула ему медаль и книгу. Гвинет приехала в Пасадену летом 1959 года. Она увидела там мужчину, обладающего пятью парами одинаковых туфель, серией синих костюмов от французских дизайнеров и белыми рубашками, которые он всегда носил с расстегнутым воротничком. У него не было ни радио, ни телевизора. Первое время Фейнман скрывал от всех, за исключением узкого круга друзей, присутствие молодой британки у себя в доме. Понемногу они начали вместе появляться на публике, даже если приезжали и уходили по отдельности с приемов и других мероприятий. Меньше чем через год Фейнман понял, что любит Гвинет и хочет на ней жениться. Он отметил галочкой один день в календаре, чтобы сделать ей предложение, но по мере того как эта дата приближалась, Фейнман становился все более и более нервным. Накануне вечером он не дал Гвинет уснуть до полуночи и тогда попросил ее выйти за него замуж. Они отпраздновали свою свадьбу 24 сентября 1960 года в отеле Huntingdon de Pasadena. Через два года у них родился первенец, сын Карл. Затем они удочерили Мишель. Кутила уступил место отцу семейства.


Физика X

В течение более чем 20 лет Фейнман читал удивительный курс лекций, предназначенный для студентов-первокурсников Калтеха, но даже докторанты и профессора приходили послушать его. Этот курс был окрещен «Физика X». Множество физиков вспоминали о нем как о самом интенсивном интеллектуальном опыте в своем образовании. Этот курс был бесплатный, и не было необходимости записываться, чтобы присутствовать на нем. Достаточно было прийти в маленькую аудиторию на цокольном этаже факультета в пятницу в 17.00. Некоторые объясняли такой выбор времени тем, что Фейнман хотел видеть лишь студентов, реально заинтересованных в изучении физики. «Самое чарующее в этом курсе то, что не было никакой программы», – вспоминает МаркТюрнер, физик, который часто посещал Калтех в 1980-х годах. Фейнман просто приходил в аудиторию, брал мел и говорил: «Вопросы?» Любой вопрос был разрешен, и можно было в равной степени обсуждать как самые темные аспекты квантовой механики, так и физику флейты». По словам другого физика, Дэвида Адлера, который присутствовал на этом курсе в 1979 году: «Это была возможность для новых учащихся Калтеха задать вопросы Фейнману или просто слушать его байки». В частности, историю, согласно которой Фейнман, работая над проектом «Манхэттен», однажды ночью вскрыл сейф, чтобы доказать, что система безопасности, охраняющая его работу, оставляет желать лучшего. Однажды кто-то спросил у Фейнмана, как он умудряется помнить обо всех уравнениях, никогда не имея записей. Он с улыбкой ответил, что не знает их наизусть, но ему достаточно знать фундаментальные принципы, чтобы вывести из них необходимые уравнения. Таков был метод работы Фейнмана: он был основан на базовых принципах.


Учитель для учителей

В 1961 году Фейнман употребил всю свою творческую энергию на различные исследовательские цели. Роберт Бэчер, директор департамента, который убедил Гелл-Мана и Фейнмана сотрудничать в исследовании слабого взаимодействия, решил усовершенствовать лекции по общей физике, которые были скучны и приводили в уныние студентов, отдаляя их от волнующих открытий. Сэндс предположил, что лучше всего с этой миссией справится Фейнман. В результате между 1961 и 1963 годами Ричард Фейнман составил два сборника лекций по элементарной физике для студентов-первокурсников Калтеха. Понимая, что стали свидетелями исторического события, эти студенты решили записать его выступление на кинокамеру и сфотографировать все, что он написал на доске.

Курс Фейнмана стал настоящим событием. Даже профессора и дипломированные студенты посещали его в поисках нового и мотивирующего подхода к «вечной» физике, начиная с основных принципов, что было характерно для метода работы Фейнмана. Оглядываясь назад, можно сказать, что эти занятия не очень подходили для студентов первого курса, скорее они предназначались для тех, кто уже владел некоторыми знаниями. Мэтью Сэндс, участвовавший в сборе и публикации данных лекций в виде книги, написал в прологе: «Это был подарок со стороны того, кто стал замечательным учителем для учителей».

Фейнман не являлся типичным преподавателем. Каждый день он встречал студентов с улыбкой, готовый предложить им абсолютно разную манеру изучения физики: не важно, шла ли речь о классической или квантовой механике, об электромагнетизме, о термодинамике или гидромеханике... Его лекции всегда были настоящим спектаклем, «руководством для озадаченных», как ему нравилось их называть, и он не хотел, чтобы пробелы в знаниях у студентов влияли на их понимание предмета.

Он никогда не заканчивал свое выступление словами «мы вернемся к этому завтра». Он устраивал нечто похожее на театральную пьесу, с прологом, развитием и эпилогом. В любом случае, это было слишком для студентов, только недавно поступивших в институт. Понемногу они покидали аудиторию, которая тут же заполнялась профессорами и дипломированными студентами, желающими изучать физику с помощью свежего, стимулирующего работу мысли способа. Лекции Фейнмана были записаны, расшифрованы и изданы в трех томах. В отличие от большинства учебников, «Фейнмановские лекции по физике» переиздаются до сих пор, и огромное количество студентов покупают их и начинают читать: это уже становится частью определенного ритуала, открывающего карьеру физика.

Нобелевская премия

Факс от Вестерн Юнион, полученный 21 октября 1965 года в девять часов утра, уведомлял о внесении в список научного пантеона Фейнмана, Швингера и Томонаги: они получили Нобелевскую премию по физике за «их фундаментальную работу в квантовой электродинамике со значительными результатами для физики элементарных частиц». Опыт предыдущих нобелевских лауреатов говорил о том, что ученым следовало готовиться к глобальным переменам в их жизни. Такая перспектива совсем не нравилась Фейнману, который испытывал отвращение ко всему гламурному и пафосному. Он считал, что Нобелевский комитет должен был сначала наедине проинформировать будущих лауреатов, чтобы дать им возможность втихомолку отказаться от премии, не делая из этого события. Фейнман утверждал, что был не единственным, кто придерживался такого мнения: его кумир, Поль Дирак, разделял его точку зрения.

Нобелевская премия никак не изменила его личность: он продолжал интересоваться всеми аспектами физики и вел привычный образ жизни. Фейнман настолько не ценил полагающиеся ему почести и значительные посты, что поспорил на десять долларов с Виктором Вайскопфом, бывшим в то время директором ЦЕРНа, что в отличие от всех знаменитых ученых, он не будет занимать никакой руководящей должности ни в каком институте в течение следующих десяти лет. Не стоит и говорить о том, что Фейнман выиграл это пари.

Именно Фейнману мы обязаны великими открытиями, а я был словно пресс-секретарь при нем. И я был хорошо вознагражден за свою работу, потому что занял потрясающую должность в Институте [перспективных исследований в Принстоне], самую важную в моей жизни.

Мне не на что жаловаться.

Заявление Фримена Дайсона после того, как стало известно, что он не был включен в список нобелевских лауреатов 1965 года

Вручение Нобелевской пермии создателям КЭД не обошлось без небольшого скандала. Завещание Альфреда Нобеля уточняет, что премия может быть поделена максимум между тремя лауреатами. Таким образом, Фримен Дайсон оказался жертвой данного ограничительного условия. Некоторые усмотрели в этом глубокую несправедливость: Дайсон стал первым, кто опубликовал статьи, привлекшие внимание к формализму Фейнмана. Выступая в роли первопроходца, он помог всему миру понять КЭД. Тем не менее, если Дайсон и был раздосадован своим исключением из списка лауреатов Нобелевской премии, он никогда этого не показывал. Также можно добавить, что, по некоторым предположениям, имя Дайсона не вошло в список из-за того, что его вклад был принципиально математическим, а члены Нобелевского комитета математику не жалуют.

Любопытно, что в 1950-х годах Фейнман стал членом престижной Национальной академии наук (НАН). Он был избран тайным голосованием действующих академиков. Подобный статус рассматривался как один из самых почетных, который только мог получить американский ученый. Когда Фейнман получил Нобелевскую премию, он в течение пяти лет пытался покинуть НАН, так как, по его мнению, главной задачей академии было определить, кто достоин в нее войти, а кто – нет. «Мне психологически очень неприятно, что я должен судить «заслуги» других ученых». Мучаясь этой мыслью, он перестал упоминать членство в НАН среди своих отличий. Но такой долгожданный выход из Академии все не наступал: Фейнман должен был терпеть еще пять лет, пока его исключение не подтвердили официально. Он также отказался от почетных званий (таких как почетный доктор наук), присвоенных университетами Чикаго и Колумбия, и отклонил множество других предложений с резкостью, которая удивила даже его секретаря, Хелен Трак, ответственную за прием посетителей. Фейнман находил утомительным то, что простое решение покинуть Академию заставляет его «кормить» всю прессу. Когда он захотел аннулировать свою подписку на журнал Physics Today, то получил длинное письмо от редактора, просившего его детально обосновать мотивы своего поступка. Ответ Фейнмана был следующим:

«Уважаемый Господин,

Я – не другие «физики»; я это я. Я не читаю ваш журнал и даже не знаю, что в нем публикуют. Возможно, он и хорош, я не знаю. Просто перестаньте мне его отправлять. Прошу вас вычеркнуть мое имя из перечня подписчиков. Мне нечего сказать о том, нужен он физиками или нет, желают они его читать или не желают... Я не собираюсь заставлять вас сомневаться в своем журнале и не предлагаю его больше не публиковать. Я только прошу вас больше мне его не присылать. Надеюсь, это возможно?»

Его самоизоляция от академической политики была практически абсолютной. Только в редких случаях Фейнман принимал участие в решениях департамента о приеме на работу профессоров или о политике оплаты труда. Многие его коллеги усматривали в этом эгоизм. Он сам называл себя «активно безответственным».


    Ваша оценка произведения:

Популярные книги за неделю