Текст книги "Когда фотон встречает электрон. Фейнман. Квантовая электродинамика"
Автор книги: авторов Коллектив
сообщить о нарушении
Текущая страница: 4 (всего у книги 9 страниц)
В течение осени и зимы 1941-1942 годов Фейнман работал не покладая рук над своей теорией, используя своих старых «знакомых»: формализм Лагранжа и принцип наименьшего действия. Основной идеей данного подхода было то, что не следует обращать внимание на происходящее в определенный момент, а скорее, нужно сконцентрироваться на интервале времени. Напомним, что цель этого подхода состоит в том, чтобы выяснить, какой из всех путей, позволяющих частице перемещаться из одного пункта в другой, имеет наименьшее среднее значение действия. Расчеты Фейнмана показали, что с помощью этого принципа теория Уилера могла быть переформулированной, так как он позволял рассматривать путь частицы как одно целое: «Здесь мы имеем инструмент, который описывает характер траектории через все пространство-время». Но как это выразить на языке квантовой механики? Чтобы разобраться, будет полезно познакомиться с некоторыми тонкостями теории.
Если существует болезнь, симптом которой – вера в то, что логика может контролировать превратности судьбы, тогда Фейнман страдал этой болезнью, именно так же, как он страдал хроническим нарушением пищеварения.
Джеймс Глейк в биографии Ричарда Фейнмана
Волновая функция, описывающая поведение субатомной частицы (и которая находится при решении уравнения Шрё– дингера), доказывает, что все частицы ведут себя в каком-то смысле как волны в бассейне. Это означает, что они могут быть подвержены волновым феноменам, таким, как дифракция и интерференция. Особенностью волновой функции является
то, что она описывает не частицу как таковую, а вероятность найти эту частицу в указанном месте. Если волновая функция отличается от нуля в некоторых точках (при этом она может принимать как положительные, так и отрицательные значения), частица ведет себя так, как будто она находится во многих местах одновременно. Уравнения квантовой механики служат для нахождения изменения этой волновой функции во времени. Другими словами, они определяют трансформацию совокупности данных вероятностей (найти частицу в определенном месте) во времени. Однако существует важная и очень тонкая деталь, которая объясняет, почему кажется, что такие частицы ведут себя как волны: вероятность определяется не самой волновой функцией, но ее квадратом.
Квантовая механика дает совершенно абсурдное с точки зрения здравого смысла описание природы.
Ричард Фейнман
Допустим, мы желаем узнать вероятность того, что две частицы, А и В, находятся в одной коробке. Квантовая теория убеждает нас, что волновая функция системы соответствует сумме волновых функций каждой из этих частиц. Теперь предположим, что значение волновой функции А внутри коробки равняется ½, значение волновой функции В – ½. Если бы была только А, вероятность найти ее в коробке являлась бы значением волновой функции в квадрате, а именно (½)² = ¼. Если бы была только В, вероятность была бы (-½)² = ¼. А сейчас самое удивительное: так как мы имеем две частицы, вероятность найти одну из них равняется сумме значений их волновых функций в квадрате: {(½) + (-½)}². Результат – ноль! Можно ли представить настолько нелепую ситуацию? Если бы речь шла об одной частице, у нас был бы один шанс из четырех найти ее в коробке. Но с того момента, когда их две, нет никакого шанса найти одну или вторую. Фактически речь идет о явлении интерференции, с которой мы уже сталкивались в опыте с двумя щелями. Частицы способны иметь волновые свойства, они могут взаимодействовать и подавлять друг друга.
РИСУНОК 1: Путь от А к С проходит через В.
РИСУНОК 2: Путь от А к С проходит через все возможные пункты В: В1, В2, В3.
А теперь давайте применим это к траекториям, которые может выбрать частица. Представим, что мы хотим поехать от А до С через В (рисунок 1). Вероятность добраться этим маршрутом рассчитывается как произведение вероятности поехать из пункта А в пункт В и вероятности поехать из пункта В в пункт С: Р(АВС) = Р(АВ) х Р(ВС).
С другой стороны, вероятность доехать из пункта А в пункт С все равно каким путем (рисунок 2) равна сумме всех вероятностей Р(АВС) путей, проходящих через любой пункт В. Предположим, что существует лишь три способа приехать в пункт С(Вр В2, В3). Вероятность тогда равна Р(АС) = Р(АВ1С) + Р(АВ2С) + Р(АВ3С). Однако в квантовой механике все работает совсем по-другому, так как необходимо возвести волновую функцию в квадрат, чтобы рассчитать вероятности. В первом случае мы должны умножить волновые функции, соответствующие каждому этапу пути, а затем возвести в квадрат. Во втором случае, как для каждой частицы в коробке, нужно сложить волновые функции (которые иначе называют амплитудами вероятности) каждого пути, затем возвести результат в квадрат. В конце 1941 года Фейнман спросил себя, может ли он описать формализм квантовой механики как амплитуды вероятности, соответствующие определенным траекториям, вместо того чтобы описывать его исключительно этими амплитудами, как делалось до него.
Чтобы описать квантовую систему, физики искали «оператор Гамильтона» (математический объект, связанный с общей энергией системы). После его определения они могли переходить к расчетам. Данный метод не работал в мире временных задержек Уилера и Фейнмана. Успеха можно было добиться, только применив формализм Лагранжа и принцип наименьшего действия. Если бы у них это не получилось, то все их усилия были бы тщетны. Но как их применить? Ответ пришел во время пивного фестиваля в таверне «Нассау» в Принстоне. В этот день Фейнман, сидя рядом с Гербертом Йеле, бывшим студентом Шрёдингера, спросил его о том, знает ли он кого-то, кто уже применял принцип наименьшего действия в квантовой механике. Его лицо осветилось в тот момент, когда Йеле ответил, что Дирак, один из его кумиров, написал статью по этому поводу восемь лет назад.
Принцип наименьшего квантового действия
Упомянутая статья называлась «Лагранжиан в квантовой механике». Дирак высказывал мысль, что данный метод мог быть очень продуктивным и показывать неплохие результаты, так как он использовал принцип наименьшего действия, и лагранжиан мог быть простым способом ввести результаты теории относительности Эйнштейна.
Мы не нашли ничего ошибочного в теории квантовой электродинамики. Исходя из этого, я сказал бы, что речь идет о жемчужине научной мысли.
Ричард Фейнман «Свет и материя: странная история» (1954)
В своей статье Дирак подошел к проблеме так же, как и Фейнман, то есть рассчитывал вероятность, связанную с траекторией частицы. Но Дирак не углублялся в данную тему, а работал только над некоторыми деталями. Это Фейнмана не смущало, так как он знал уже достаточно, чтобы следовать намеченному Дираком пути. Его больше беспокоило следующее высказывание английского физика: «Мы должны ожидать, что существует квантовый аналог величины...» «Что это слово [аналог] делает в статье о физике?» —взорвался Фейнман. – Если два выражения аналогичны, не являются ли они тогда равными?» «Нет, – ответил ему Йеле, – несомненно, Дирак не хотел сказать, что они равны». Тогда Фейнман подошел к доске и начал делать расчеты. Дирак был прав, они не были равны. Тогда он подумал: «Может быть, если добавить константу...»
Он начал писать так быстро, что Йеле не мог угнаться за ним, прыгая от одного уравнения к другому, пока на доске не появилось что-то очень знакомое: уравнение Шрёдингера. Действительно существовала связь с формализмом Лагранжа! Как одержимый, Йеле начал переносить в тетрадь уравнения, написанные на доске. Слово «аналог», употребленное Дираком, означало «пропорциональный». Фейнман только что обнаружил нечто очень важное. Только один вопрос еще его мучил: как великий Дирак мог этого не учесть? Таким образом, когда он встретил его в 1946 году во время празднования 200-летия Принстона, между ними состоялся следующий диалог.
– Знали ли вы, что величины не аналогичны, а пропорциональны? – спросил Фейнман.
– В самом деле? – спросил Дирак.'
– Да.
– О! Как интересно!
Учитывая крайне молчаливый характер Дирака, это был очень долгий разговор...
Применяя лагранжиан, Фейнман воспроизвел результаты, полученные при решении уравнения Шрёдингера. Чтобы рассчитать амплитуду вероятности серии траекторий, нужно было просто назначить специальную величину (положительную или отрицательную) для каждого пути, пропорциональную общему действию этого пути (которое само является кратным постоянной Планка). Затем было достаточно суммировать все эти величины, связанные с амплитудами вероятности каждого пути, и возвести результат в квадрат. Таким образом, получаем вероятность того, что мы переместимся из пункта А в пункт С в определенное время. Фейнман держал в своих руках замечательный математический инструмент, позволявший исследовать очень сложные проблемы, такие, например, как его собственная теория полуопережающих и полузапаздывающих потенциалов.
В то время, когда он писал свою докторскую диссертацию, болезнь Арлин прогрессировала. Была заражена лимфатическая система. В 1941 году она продолжала визиты к врачам, чтобы лечить это «воспаление гланд», – ее семья назвала ей этот ложный диагноз, чтобы скрыть окончательный вердикт врачей: болезнь Ходжкина, вид злокачественной и смертельной лимфомы. Фейнман не желал обманывать Арлин. Влюбленные решили, что между ними никогда не будет лжи – даже лжи во благо. Как можно было попросить его солгать по такому важному вопросу?
Родители Арлин, врачи, ее родная сестра – все настаивали на том, что это жестоко – рассказать девушке во цвете лет о ее скорой смерти. Противостояние закончилось тем, что сопротивление Фейнмана было сломлено, и молодой человек решил пойти на компромисс. Он написал «прощальное письмо» и всегда носил его с собой, чтобы отдать его Арлин, если она узнает правду. Фейнман был уверен, что она никогда его не простит за такой обман.
Долго ждать не пришлось. Возвращаясь из больницы, Арлин услышала рыдания своей матери, которая рассказывала соседке об ужасной судьбе, ожидавшей ее дочь. Когда Ричард пришел ее навестить, Арлин очень настойчиво потребовала объяснений, и у него не было другого выхода, как признаться. Фейнман отдал ей письмо и попросил выйти за него замуж.
Но беда никогда не приходит одна. Когда Фейнман пришел поговорить с ректором о том, что его невеста умирает и что вскоре он женится на ней, то выяснил: в таком случае ему придется лишиться тех 200 долларов, которые он зарабатывал в год в качестве ассистента профессора. Фейнман начал обдумывать возможность прекратить исследования и пойти на работу. Он стоял перед этой дилеммой, когда из больницы ему сообщили, что обнаружили палочку Коха в лимфатических узлах Арлин.
Война разворачивается
После обращения Эйнштейна с письмом к президенту Рузвельту идея о создании атомной бомбы становится в Вашингтоне все более популярной, хотя для ее воплощения пока предпринято мало шагов. Тем не менее угрозу, которую представляет ось Берлин-Рим (военный союз Германии и Италии), воспринимают всерьез.
28 июня 1941 года Рузвельт подписывает исполнительный приказ 8807 о создании Бюро научных исследований и развития, предназначенного для координации любых научных исследований в военных целях. Шестью днями ранее немцы начинают операцию «Барбаросса» с целью завоевания Советского Союза. Япония осуществляет политическое давление на восточные страны, и с апреля ее высшее командование планирует захват природных ресурсов Южной Азии, контролируемых Англией и Нидерландами. В декабре Япония атакует американские базы на Перл-Харборе и Гуаме, а также Гонконг и Филиппины (которые в тот момент были автономией в составе США), затем захватывает Таиланд и Малайзию. Когда Соединенные Штаты Америки вступают в войну, четверть из более чем 7000 физиков, которых насчитывает страна, привлекается для военных разработок при Бюро научных исследований и развития. А Фейнман погружен в написание своей докторской диссертации.
Президент Соединенных Штатов Америки Франклин Делано Рузвельт подписывает декларацию об объявлении войны Германии, 11 декабря 1941 года.
Она страдала не болезнью Ходжкина, а редкой формой туберкулеза. Врачи и не думали проверять данное предположение, так как статус больной не соответствовал категории риска: Арлин не была ни слишком молодой, ни достаточно бедной, чтобы находиться под угрозой «белой чумы». Хотя не существовало эффективного лечения от туберкулеза, фатальный исход не был неизбежным, и со свадьбой больше не спешили. Когда Арлин объявила об этом Ричарду, он заметил легкое разочарование в голосе своей невесты.
В любви и на войне
Весной 1941 года грохот немецких пулеметов MG-34 раздавался во всем мире. Ученые, покинув нацистскую Европу, обосновались в американских университетах. Последние прибывшие, вроде Герберта Йеле, рассказывали жуткие истории о преследованиях и концентрационных лагерях. Активное участие исследовательских центров в военном машиностроении начало давать результаты. Например, нацистское фиаско в битве за Англию во многом было обязано новой системе обнаружения самолетов с помощью микроволнового излучения – радара. В это время почти никто не знал, что в особняке Блетчли-Парк, в 80 км от Лондона, математик Алан Тьюринг (1912-1954) заложил основу для создания первого компьютера, вошедшего в историю под названием «Колосс». Его задачей было расшифровать перехваченные сообщения немецкой армии и флота.
Однажды утром 1942 года Роберт Р. Уилсон вошел в рабочий кабинет Фейнмана. Этот физик-экспериментатор прибыл в Принстон для работы над методом разделения изотопов нужного физикам урана-235 и неиспользуемого урана-238. Он собирался сообщить Фейнману секретную информацию о своей работе: нужно было, чтобы ученый произвел теоретические расчеты, и получить его согласие можно было только в случае детального изложения проблемы.
Фейнман хотел закончить свою диссертацию. Это являлось одним из условий, которые он поставил перед собой до свадьбы. Ему казалось, что предложение Уилсона было больше связано с проблемой инженерии, чем физики, и вначале Фейнман хотел отклонить его. Однако шла война: поскольку у ученого не было уверенности, что в армии он будет заниматься своим делом, он предпочел не поступать на службу. Теперь ему предлагали возможность принять участие в чем-то большом и важном: поэтому он согласился отложить свою докторскую диссертацию и принялся за работу.
Я хочу жениться на Арлин, потому что я ее люблю, и для меня это означает, что я стремлюсь заботиться о ней. Это все, что я могу сказать: я хочу окружить ее заботой. [...] Однако у меня есть и другие жизненные цели и желания. Между прочим, я мечтаю внести свой ощутимый вклад в физику. На мой взгляд, это даже важнее, чем моя любовь к Арлин.
Фейнман о своем браке с Арлин Гринбаум
В то самое время Уилер переехал в Чикаго, чтобы работать с Энрико Ферми над созданием ядерного реактора, способного поддерживать управляемую цепную реакцию деления: это был первый шаг к пониманию неуправляемой реакции, ведущей к взрыву бомбы. Вигнер тоже проводил все больше и больше времени в Чикаго, и весной 1942 года оба профессора пришли к согласию, что их блистательный студент должен сначала закончить свою диссертацию, прежде чем запутается в методах разделения изотопов урана. Давление наставников имело ожидаемый эффект.
Фейнман очень хорошо знал, что он совершил: он заново изобрел квантовую механику, исходя из принципа наименьшего действия. Но он также знал, чего он не сделал, и этому он посвятил последнюю главу своей диссертации. Во-первых, его работа не содержала никакой ссылки на экспериментальную проверку, так как его формула была полностью не релятивистской. Создание квантовой электродинамики, исходя из формулы Лагранжа, требовало работы, которую он не выполнил.
Во-вторых, его больше интересовала физическая интерпретация этой новой формулы. Фейнман отлично знал: один из самых яростных споров, который вели физики в последние десятилетия, был посвящен тому, что называли «проблемой измерения». Общепринятой точкой зрения была копенгагенская интерпретация, в правоте которой Бор убедил большое количество физиков (за исключением Эйнштейна) и которая гласила, что мы живем в мире, где свойства микрообъектов не существуют, пока они не измерены: поэтому невозможно отделить исследуемый объект от наблюдателя.
Фейнман вел дискуссию по этому поводу с математиком Джоном фон Нейманом. Суть дискуссии заключалась в следующем. Известно, что наблюдение требует наличия двух вещей: лабораторного инструмента и электрона, или, если быть более точным, большой макроскопической системы, существующей по законам классической физики, и микрообъекта, подлежащего квантовой механике. Где находилась граница между этими двумя объектами? Фон Нейман утверждал, что каждый должен был решить по своему усмотрению, где выбрать место для этой границы. Фейнман находил данное предложение спорным и неприемлемым. Если квантовая механика была описанием реальности, то разделение должно было возникнуть естественным образом и ни в коем случае не могло зависеть от чьих-то желаний.
Математический инструмент, предложенный Фейнманом в 1948 году, который он назвал «интеграл по траекториям», позволял разделить систему на различные части: изолировать область системы, которую нужно измерить, от других областей, не представляющих интереса. Этот метод, недоступный для обыкновенных уравнений квантовой механики, казался математическим каламбуром, но не будем обманываться: именно с его помощью появились многие великие достижения XX века в теоретической физике.
Фейнман знал, что проблемой его формулы было время, так как она должна была «рассказать о состояниях системы, иногда очень удаленных от настоящего момента». Найти физическую интерпретацию для данной формулы означало провести титаническую работу. Ученого выводило из себя то, что он не мог этого сделать. Как бы там ни было, в июне он представил свою диссертацию «Принцип наименьшего действия в квантовой механике». А несколькими днями позднее Фейнман сообщил своей семье, что в следующем году он женится на Арлин.
Новость сильно обеспокоила Люсиль, его мать. Она думала, что болезнь Арлин будет только мешать карьере ее сына. Ее также тревожило и то, что лечение от туберкулеза было дорогостоящим и что уход за больным требовал полнейшей самоотдачи. Люсиль сомневалась, что Ричард располагает деньгами и необходимым временем, чтобы заботиться об Арлин. По ее словам, стремление Ричарда жениться проистекало из его желания доставить удовольствие любимому человеку, «немного похоже на то, как ты иногда ешь шпинат, чтобы сделать мне приятное». Одним словом, она посоветовала ему оставаться «женихом». На это Фейнман ответил, что его решение разделить жизнь со своей возлюбленной непоколебимо, но, тем не менее, у него есть и другие приоритеты. И Арлин, умная девушка, также это знала и поддерживала его.
Брак состоялся в мэрии Статен-Айленда, без друзей и членов семьи. Чтобы не заразиться, новоиспеченный супруг поцеловал свою жену в щеку. После церемонии он отвез Арлин в ее новое жилище, благотворительную больницу в Нью-Джерси. Сам ученый готовился отправиться в Нью-Мексико, в место под названием Лос-Аламос: он собирался принять участие в одном из самых важных научных проектов XX века – создании атомной бомбы.
Новое солнце в небе
В 5.30 утра 16 июля 1945 года на полигоне Аламогордо, расположенном на пустынной равнине Нью-Мексико под названием Джордана дель Муэрто, Джулиус Роберт Оппенгеймер отдал приказ привести в действие первую в истории атомную бомбу. Фейнман прибыл в Лос-Аламос с первой волной ученых в конце марта 1943 года и был распределен в теоретическую группу под руководством Ханса Бете, бесспорного «отца» ядерного деления.
Человек, который выяснил, почему звезды светят
В апреле 1938 года два светила современной физики, Георгий Гамов (1904– 1968) и Эдвард Теллер (1908-2003), организовали конгресс в Институте Карнеги в Вашингтоне, целью которого было ответить на вопрос: почему звезды светят?
Среди участников находился беженец из нацистской Германии, специалист по ядерной физике и преподаватель Корнелльского университета Ханс Бете (1906-2005). Всегда полный энергии, Бете имел врожденный талант к физике и математике: кажется, что он все свое время посвящал игре с цифрами и буквами. На конгрессе в Вашингтоне астрономы объяснили физикам все, что им было известно о внутреннем строении звезд. Несмотря на огромное количество информации, имевшейся поданной теме, никто из них не мог сказать, откуда в звездах берется энергия. Один из классических трудов по астрофизике «Внутреннее строение звезд», созданный Артуром Эддингтоном, хорошо описывает внутреннюю структуру звезд, не упоминая об их энергетическом источнике. И вот настала очередь физиков заняться этим вопросом.
В 1938 году немецкий физик Ханс Бете открыл механизм термоядерных реакций, объясняющий, как звезды производят свою энергию.
Определение Бете
Вернувшись в Корнелл, Бете принялся за проблему и решил ее так быстро, что Гамов подумал: уж не получил ли физик ответ еще до того, как поезд, в котором он возвращался, достиг нужной станции? Бете отправил свою статью по данному вопросу в журнал Physical Review, но один из его студентов сказал ему, что Академия наук Нью-Йорка назначила премию в 500 долларов за лучшую новую работу об энергетических процессах в звездах. Тогда Бете попросил журнал вернуть ему статью обратно, отправил ее на конкурс и, естественно, выиграл его. Кстати, у физика были веские причины участвовать в нем: его мать все еще находилась в Германии, и хотя нацисты разрешили ей выехать, они требовали 250 долларов за разрешение вывезти ее мебель. Поэтому Бете пустил половину своего вознаграждения от конкурса на эту цель. В 1967 году эта статья принесла ему Нобелевскую премию.
А тем временем Арлин решила лечь в клинику, расположенную в Альбукерке, в 160 километрах от Лос-Аламоса. Ричард приезжал навещать ее каждые две недели. Два года, прошедшие в этом регионе, много для него значили, так как именно здесь жизнь дала ему шанс, которым, пусть и неосознанно, он не преминул воспользоваться:
«Однажды случилось так, что Хансу Бете не с кем было поговорить. По этой причине он заговорил с самонадеянным и дерзким мальчишкой, которому была выделена небольшая комната для работы: он стоял в ней и размышлял вслух, излагая свою идею. «Вовсе нет! – говорю я ему. – Это не так. Произойдет это, это и это». А он мне отвечает: «Один момент»,– и начинает объяснять, почему то, что говорит он, не является вздором, а то, что говорю я, таковым является. И это продолжалось достаточно долго».
Такая же сцена имела место и во время первого семинара Фейнмана. Когда он начинал размышлять о физике, то полностью забывал, с кем разговаривает:
«В действительности именно по этой причине я оказался руководителем группы из четырех человек, подчиняясь непосредственно Бете».
Встреча с Бете – это лучшее, что могло случиться с Фейнманом. Уилер дал его крыльям раскрыться, используя свой энтузиазм и творческий подход, но теперь молодой человек нуждался в сдержанности и скрупулезности Бете. Их манера изучения физики отражала сущность их очень разных характеров. Бете начинал свои расчеты с самого начала и доводил их до конца, шаг за шагом, чего бы это ему ни стоило. Фейнман мог начать с середины или даже с конца, чтобы идти с одной стороны, затем с другой, перепрыгивая через промежуточные результаты... В здании теоретического отдела в Лос-Аламосе иногда слышали, как Фейнман начинал кричать в коридоре: «Нет, нет, нет. Это нонсенс!» Поднимая голову, его коллеги улыбались, и один из них говорил: «И понеслось, линкор против москита!» Они дали прозвище «линкор» Бете за его манеру решать задачи, двигаясь на полной скорости прямо вперед, к искомому. Фейнман же стал «москитом» по аналогии с прозвищем торпедных катеров, используемых флотом Соединенных Штатов Америки для атак на корабли больших размеров.
Чтобы начать блистать, Фейнману нужен был наставник уровня Бете. Самый главный урок, который последний дал ему, заключался в требовании, чтобы любой теоретический расчет содержал какие-то числа и величины, которые можно было бы сравнить с экспериментальными результатами. Этим принципом Фейнман будет руководствоваться до конца своей деятельности.
В итоге два года неистовой работы принесли огромные результаты. В письме 2 марта 1945 года Ричард рассказывал Арлин, как он лег спать в пять часов утра, а в девять часов тридцать минут был уже на ногах и прекрасно выспавшимся. Достижения Фейнмана были многочисленны и разнообразны: прежде всего, он разработал метод решения дифференциальных уравнений третьего порядка. Затем, вместе с Бете, он вывел формулу для оценки эффективности ядерного оружия. Он также работал над проблемой распространения быстрых нейтронов, вызывающих деление урана-235. Наконец, в течение последних месяцев перед первым испытанием ему поручили заниматься расчетами для сборки бомбы из плутония: если испытание «Тринити» было успешным, то во многом благодаря Фейнману, который руководил командой, занимавшейся окончательными расчетами при помощи электромеханических вычислительных машин, предоставленных IBM.
Если кто-то показывал ему физический парадокс, карточный фокус или что-то иное, он не спал до тех пор, пока не находил этому решение.
Комментарий Теда Уэлтона, друга Фейнмана, который тоже работал в Лос-Аламосе
Все в Лос-Аламосе были впечатлены способностями этого молодого физика. А тем временем, в 160 километрах отсюда, состояние Арлин ухудшалось.
Конференция в Лос-Аламосе в рамках проекта «Манхэттен». Первый ряд: Энрико Ферми (второй справа). Второй ряд: Роберт Оппенгеймер (третий справа) и, слева от него, Ричард Фейнман.
Роберт Оппенгеймер (его левая нога опирается на груду обломков) и генерал Лесли Гровс(справа от него) на нулевой отметке после испытания «Тринити».
Ричард пишет ей, чтобы извиниться, 6 июня 1945 года. Каждая строчка его письма свидетельствует о мучительном чувстве вины.
«Моя дорогая жена,
Я всегда слишком медлительный. Из-за меня ты часто чувствуешь себя несчастной, потому что я трачу слишком много времени на поиски ответов. Теперь я тебя понимаю. И я сделаю тебя счастливой... Наконец, я осознал, как ты страдала... Этот ужасный период в прошлом, ты поправишься. Пусть ты и не веришь, но я в этом точно убежден... Я сожалею, что бросил тебя, что не стал опорой, в которой ты так нуждалась. Отныне я тот мужчина, на которого ты можешь рассчитывать и которому ты можешь верить. Распоряжайся мной как хочешь. Я твой муж. Я люблю женщину с большой буквы, терпеливую женщину. Прости меня. Я твой муж. Я люблю тебя».
Это было последнее письмо, которое Арлин получила от своего мужа. Она умерла 16 июня в 21.20. На следующий день Фейнман был занят организацией похорон и вернулся в Лос-Аламос поздно ночью. В его комнате что-то праздновали, он сел на стул с изможденным видом. На следующий день коллеги спросили Фейнмана, что произошло, и он ответил: «Она умерла. Где программа расчетов?» Он не хотел ни соболезнований, ни слез. Среди своих бумаг Ричард нашел блокнот, в котором он записывал ход болезни своей жены. Взяв его в руки, он написал: «16 июня – смерть». Фейнман хотел снова взяться за работу, но Бете отправил его в долгий отпуск к семье, в Фар– Рокуэй.
Ричард несколько недель оставался у родителей, пока шифрованная телеграмма не заставила его вновь присоединиться к программе. Он вылетел из Нью-Йорка в Альбукерке и прибыл в пункт назначения 15 июля в полдень. Военная машина привезла Фейнмана к Бете. Времени было только на то, чтобы сесть в автобус, доставивший его в долину Джордана дель Муэрто, более известную с тех пор, как на ней появилась так называемая нулевая отметка.
Глава 3
Квантовая электродинамика: КЭД
В период после Второй мировой войны теоретическая физика переживает один из самых больших кризисов в своей истории. Теория, описывающая взаимодействие между фотонами и электронами, квантовая электродинамика (КЭД), порождает бесконечные величины в расчетах, и никто не знает, что с ними делать. Решение проблемы найдет Фейнман, и это принесет ему Нобелевскую премию.
Ричард Фейнман покинул Лос-Аламос в октябре 1945 года. Работа, которую он провел, принесла ему известность среди американских физиков. Двумя годами ранее Оппенгеймер написал директору департамента физики университета Беркли, рекомендуя ему предложить место Фейнману, так как это был «без всякого сомнения, самый блестящий физик, который у нас есть». Переговоры были сложными, и окончательное предложение поступило Фейнману летом 1945 года. «Никто никогда не отклонял приглашений с нашей стороны», – с гордостью заявил директор. Однако Ричард Фейнман его отклонил.
Фейнман был влюблен в стиль Бете и желал примкнуть к нему и к его исследовательской группе, которую тот создал в Корнелле. Оппенгеймер знал, что в скором времени он получит множество предложений о работе и, как всегда, оказался прав. Менее чем через год Фейнман получил большое количество приглашений, но он их все отклонил: он хотел стать участником группы Бете. Вместе с тем на душе у него становилось нехорошо: он начинал осознавать смерть Арлин. В первый раз Ричард признался себе в этом, когда прогуливался по городу Ноксвилл штата Теннесси. Фейнман был направлен туда, чтобы обеспечить технику безопасности в лаборатории Оук-Ридж, занимавшейся обогащением урана:
«Я шел вдоль витрин больших магазинов, которые предлагали красивые платья, и размышлял, какие из них понравились бы Арлин. Это было слишком тяжело для меня».
Фейнман начинает плакать в первый раз. Его отношения с матерью были испорчены после того, как она выступила против его брака. Перебравшись жить в Итаку, где находился Корнелльский университет, он даже не посетил ее. Тем временем Люсиль начинает понимать, какую боль она ему причинила, и отправляет ему полное нежности письмо, письмо матери, которая замечает, что теряет своего сына:
«Что происходит между тобой и твоей семьей? Что тебя отдалило? Мое сердце тоскует по тебе. [...] Это, наверное, моя вина. [...] Ты нужен мне. Я люблю тебя. Я никогда не опущу руки. Даже сама смерть не может разбить то, что нас соединяет. [...] Мой дорогой, о мой дорогой, что еще а могу сказать тебе? Я тебя обожаю и буду обожать всегда».
Джулиан Швингер
Родившийся в Нью-Йорке, Джулиан Швингер (1918-1994) рано увлекся наукой. Но, в отличие от Фейнмана, он знал, где раздобыть учебники по математике и физике: у букинистов, между 4-й и 5-й Авеню. В возрасте 14 лет Джулиан поступает в Городской колледж Нью-Йорка, где его наставником становится первооткрыватель ядерного магнитного резонанса Исидор Айзек Раби. Последний никогда не упускал случая рассказать о том, как он познакомился со Швингером: однажды Раби зашел в свой кабинет и увидел там молодого человека, который, вскочив, начал излагать идею, пришедшую ему в голову, о парадоксе Эйнштейна – Подольского – Розена в квантовой механике. Швингер редко посещает занятия и проводит все свое время, обычно по ночам, за изучением квантовой физики; поэтому нет ничего удивительного в том, что совет университета оказывается недоволен его поведением. Исидор Раби помогает своему ученику отправить его документы в Колумбийский университет. После того как перевод совершен, любимым развлечением Раби станут звонки профессорам Швингера с целью заставить их преодолеть свой страх и завалить его на экзаменах: «Кто ты? Человек или мышь? Поставь ему F (в англо-саксонских университетах F является самой низкой оценкой. – Ред.)», – скажет он однажды профессору химии. Он знает, что такая оценка будет терзать того больше, чем Швингера.