Текст книги "Жизнь до человека"
Автор книги: авторов Коллектив
Жанр:
Биология
сообщить о нарушении
Текущая страница: 7 (всего у книги 11 страниц)
Однако накапливающиеся точные сведения о наследственных механизмах, возможно, позволят в недалеком будущем контролировать некоторые генетические слабости человека. Люди смогут избавиться от кое-какого тяжкого груза, набранного в процессе эволюции – например, если стереть соответствующие генетические инструкции, можно предотвратить развитие умственной отсталости. Быть может, удастся даже стимулировать новый великий этап эволюции, скажем, еще увеличив потенциал человеческого мозга. Однако успешное использование этой новой власти зависит от того, насколько хорошо разберется человек в прошлых этапах своего формирования, когда этим формированием руководила одна природа.
Общие принципы строения нашего тела, которые мы даже не замечаем, настолько они для нас естественны и привычны-внешнее и внутреннее устройство, перед и зад, правая сторона и зеркально симметричная левая сторона,-начали складываться еще в теплом океане, катившем свои волны почти над всей поверхностью древней Земли. Определяющая черта нашего тела – это внутренний пищеварительный тракт, усваивающий пищу и воду. Он появился еще у древнейших обитателей первобытного океана, у первых многоклеточных организмов, которые представляли собой мельчайшие студнеобразные комочки. Одно из этих примитивных существ со временем обзавелось внутренней трубкой, в которую с одного конца втягивались питательные вещества, подвергавшиеся затем процессам усвоения, после чего остатки их извергались с другого конца. Приспособление это обеспечивало огромные преимущества, и в настоящее время оно имеется не только у человека и всех других высших животных, но и у большинства низших животных.
Пищеварительный тракт явился великим достижением эволюции отчасти потому, что он представляет собой трубку, открытую с обоих концов, а отчасти из-за его положения внутри тела. Поскольку выстилающие его клетки надежно защищены от внешних воздействий, стенки их могут быть очень тонкими, а потому лучше поглощают питательные вещества. Кроме того, благодаря сквозному строению тракта непереваренные остатки не смешиваются с вновь поступающей пищей, как это постоянно происходит в пищеварительном аппарате тех животных, у которых он представляет собой мешок с одним отверстием. Прохождение пищи по трубке легко регулируется, а пищеварительные соки в таком ограниченном пространстве куда более действенны, чем в тех случаях, когда они выбрасываются наружу. У более развитых животных пищеварительный тракт снабжен сложными клапанами, резервуарами и насосами, но функция его остается неизменной уже более миллиарда лет и он по-прежнему сохраняет всю свою жизненную важность. Даже высших животных, включая человека, можно рассматривать как биологические механизмы, чье существование в значительной мере зависит от того, как они снабжают и защищают свой пищеварительный тракт.
Первый примитивный многоклеточный организм, у которого развился пищеварительный тракт, тем самым получил передний и задний конец в зависимости от того, с какого конца пища в него поступала и с какого выбрасывались непереваренные остатки. Если такое животное способно ползать или плавать, оно движется передним концом вперед в поисках пищи для своей голодной трубки. Если у него есть органы зрения и обоняния, подсказывающие ему, где находится пища, а также щупальца или зубы, чтобы эту пищу захватывать, они, естественно, сосредоточиваются вокруг входного отверстия трубки, которое в этом случае уже можно назвать ртом. А когда нервная система подобного существа усложняется настолько, что для сортировки ее сигналов требуется подобие мозга, такой контролирующий центр возникает в близком соседстве с местом, где сосредоточены органы чувств, так как это обеспечивает наилучшее выполнение его функций. Тесное соседство рта, мозга и органов чувств равно характерно и для очень примитивных животных, и для человека.
От далеких предков, обитавших в море человек получил еще одну основную черту своего строения – двустороннюю симметрию тела. Для человека и большинства животных, которые свободно ходят, плавают или летают, наиболее выгодным оказалось тело с двумя одинаковыми сторонами. Оно дает возможность двигаться передним концом вперед, а кроме того, поворачиваться во все стороны наиболее удобным образом. Впрочем, симметрия нужна только внешняя – внутренние органы, не связанные с передвижением, могут обладать самой разнообразной формой, хотя многие из них либо занимают центральное положение, либо составляют пары. Животные, передвигающиеся медленно или ведущие неподвижный образ жизни, чаще всего имеют частичную симметрию, как улитки, или радиальную, как пятилучевая морская звезда.
Утверждение общего принципа строения тела было первым шагом в направлении, ведущем к человеку, и организмы, которые обладали этим преимуществом, владычествовали в древних морях около трех миллиардов лет. Все они были беспозвоночными. Многие вроде современной каракатицы состояли только из мягких тканей, другие вроде ракообразных и насекомых обладали внешним твердым покровом. Однако появление рыб – первых животных с внутренним позвоночником – быстро положило конец господству беспозвоночных. Путь эволюции достиг важнейшего разветвления, и начиная с этого момента позвоночные, венцом которых является человек, постепенно берут верх над насекомыми, ракообразными и другими беспозвоночными, хотя те далеко превосходили и превосходят их численностью.
Значение позвоночника невозможно переоценить. Он-та опора, вокруг которой построен внутренний скелет человека. Каждому активно двигающемуся животному выгодно, чтобы его мышцы были прикреплены к твердой основе. Членистоногим, таким, например, как насекомые и ракообразные, защиту и опору для прикрепления мышц обеспечивает внешний скелет. Но беда в том, что такое животное, чтобы расти, время от времени вынуждено сбрасывать скелет и секретировать новый. Этот процесс не только обходится организму очень дорого, но и чреват большими опасностями. Например, рак, сбросив с наступлением линьки карапакс, оказывается совершенно беззащитным и вынужден прятаться под камнями или водорослями, пока его новая оболочка не затвердеет. Именно по этой причине ракообразные да и большинство других членистоногих невелики – большие размеры потребовали бы и большого числа линек. Многие насекомые вообще не сбрасывают свои внешние скелеты – после стадии куколки, когда у них совсем нет скелета, они перестают расти.
Именно внутренний скелет позволяет позвоночным достигать огромных размеров, оставаясь при этом подвижными и ловкими. Им не приходится переживать опасные периоды линьки. Кости внутри их тела не сбрасываются периодически, а растут вместе с прочими его частями.
Первым животным с таким выгодным строением тела было, по-видимому, древнее рыбоподобное существо амфиокс, напоминавшее современного ланцетника, обитателя теплых морских мелководий, который похож на крохотного прозрачного пескарика. Но строение его много примитивнее, чем у пескаря. У него нет ни челюстей, ни зубов, ни парных плавников, ни костей. И в отличие от пескаря он не гоняется за добычей. Пищу он получает, процеживая воду, как двустворчатый моллюск, и почти все время проводит, зарывшись в песок или в ил передним концом вверх, чтобы втягивать воду вместе с различными мелкими организмами – они задерживаются у него во рту, а вода быстро извергается через жаберные щели.
Такой образ жизни не типичен для активных подвижных позвоночных. Однако внутреннее строение вялого ланцетника обладает чертами, сыгравшими в свое время огромную роль в эволюции. Например, вдоль его спины тянется пучок нервных волокон, соответствующих спинному мозгу человека. У переднего конца он слегка расширяется-это уже зачаток головного мозга. Под пучком проходит нечто вроде упругого стержня в волокнистом чехле, так называемая хорда, которая позволяет телу ланцетника изгибаться, но препятствует продольному сжатию. Именно вокруг хорды миллионы лет назад возник позвоночник.
Человек обязан рыбам не только позвоночником, но и другими тесно соседствующими с ним костями, которые кажутся его продолжением. Это челюсти, зубы и череп. На самом же деле все они развились не из внутренних костей какого-то древнего существа, а – по странной прихоти эволюции – из внешнего покрова древней рыбы.
Первым, вероятно, появился череп. У человека, как и у всех высших животных, череп представляет собой крепкий костной футляр, сидящий на конце позвоночника так, словно развился из него. Однако вначале некоторые его кости были пластинками панциря, защищавшего примитивный мозг древних рыб вроде акантодов. У древнейших рыб эти пластинки покрылись кожей и образовали внутреннюю структуру головы.
В процессе эволюции хорда животных, предположительно похожих на ланцетника, покрылась соединенными между собой костными сегментами, которые укрепили ее, а затем и заменили. Первоначально этот более сложный аппарат обеспечивал рыбе возможность лучше плавать. Рыбы плавают с помощью крупных мышц, расположенных по бокам их тела. Поочередно сокращаясь, эти мышцы создают волнообразное движение, которое в сочетании с колебаниями хвостового плавника проталкивает рыбу сквозь воду вперед. Позвоночник служит опорой для плавательных мышц, и благодаря ему рыба способна волнообразно изгибать свое тело, не сжимая его и не деформируя, что сильно мешало бы ей плыть. Обзаведясь позвоночником, рыбы стали плавать гораздо лучше, и это позволило им в конечном счете стать хозяевами океана.
В силурийском периоде, когда численность рыб заметно возросла, они жили, по-видимому, в пресных водоемах, где всасывали питательный донный ил беззубыми, лишенными челюстей ртами. Подобный рот не мог служить защитой от ракоскорпионов и других тогдашних хищников. А для того чтобы сами рыбы начали питаться существами не совсем микроскопических размеров, им необходимо было обзавестись челюстями и зубами, способными кусать и рвать. По сторонам глотки у них имелся ряд парных скелетных дужек, обращенных вершинами назад. Дужки эти поддерживали жабры – ими рыба дышала, а возможно, и захватывала при процеживании воды всякие мелкие организмы, которыми питалась. В ходе эволюции первые две дужки, по-видимому, исчезли, но третья увеличилась, приобрела шарнир в вершине и постепенно превратилась в костные челюсти, которые стали предшественницами челюстей высших животных и человека.
Челюсти обычно бывают по-настоящему полезны, только если они вооружены зубами. Как ни странно, зубы развились вовсе не из костных челюстей древней рыбы, но из чешуй – колючек, или "кожных зубов", которыми была усажена ее кожа. (Акулы сохраняют кожные зубы по сей день, отчего их кожа обладает свойствами наждачной бумаги.) Как и у акул, кожные зубы по краям только что развившихся челюстей древней рыбы состояли главным образом из дентина – основного материала, идущего на формирование зубов. По-видимому, эти колючки все увеличивались и увеличивались, пока не превратились в настоящие зубы, которые могут быть оружием, а также служить для захвата пищи и ее раздробления.
Гораздо позднее, в пермском периоде, у млекопитающеподобных рептилий зубная кость стала гораздо больше остальных шести костей челюсти, типичной для пресмыкающихся, и в ней появилось сходство с изогнутой костью, которая стала нижней челюстью человека и других млекопитающих.
Своими конечностями, благодаря которым он может передвигаться по земле, человек обязан плавникам древней пресноводной рыбы, и это много очевиднее, чем происхождение его черепа, челюстей и зубов. В мультфильмах нередко можно увидеть рыбу, которая шагает, опираясь на задние плавники, а передними помахивает, точно крошечными руками. Путь от плавников такой вставшей на дыбы рыбы до человеческих рук и ног кажется совсем коротким и простым – достаточно удлинить пару-другую костей и добавить кое-какие суставы.
В кино это, конечно, вполне осуществимо, но в реальном мире все происходило по-другому. Если бы древняя рыба действительно встала на дыбы, кости ее плавников, как и у современной рыбы, оказались бы направленными вбок под таким углом, что не смогли бы удержать тело в вертикальном положении, а место, где предстояло развиться ногтям, было бы обращено назад, а не вперед. Прежде чем рыбьи плавники превратились в человеческие руки и ноги, произошли некоторые из самых поразительных изменений за всю историю эволюции (см. рис. на стр. 106). Короткие, относительно широкие и неподвижные кости плавников удлинились, сузились, умножились в числе и приобрели суставы. Развились плоские кости таза и плеч, обеспечивая опору мышцам и соединение между конечностями и позвоночником. И что самое странное, те костные соединения, которым в дальнейшем предстояло стать пальцами человеческих ног, изменили свое положение – к тому времени, когда появился человек, они повернулись почти на 90° по отношению к первоначальной своей позиции, так что стопы оказались обращенными вперед и находились прямо под туловищем, принимая на себя его вес при ходьбе, а руки свободно свисали по бокам, причем их можно было протянуть и изогнуть почти в любом направлении.
Процесс развития конечностей начался около 400 млн. лет назад. В начале девонского периода, который называют Веком Рыб, некоторые рыбы приобрели две пары мясистых подвижных плавников, которые помогали им плавать, хотя в подавляющем большинстве случаев служили только для сохранения равновесия. Задние плавники прикреплялись к маленьким костным пластинкам, которые не были связаны с позвоночником, так что они не имели опоры, а потому движениям их недоставало силы. Передние же плавники были прочно соединены с позвоночником, но в результате их подвижность была крайне ограничена.
Однако среди этих древних рыб была группа так называемых кистеперых, чьи плавники обслуживались более сильными мышцами, причем кости плавников имели суставы. На этих крепких плавниках кистеперая рыба могла с наступлением засухи выбраться из ила и переползти по сухому руслу к какому-нибудь омуту, в котором еще сохранилась вода. У почти неповрежденной окаменелой рыбы, найденной в Пенсильвании в 1971 г., четко видно начинающееся разделение тех костей, которые в дальнейшем образовали плечо, предплечье, запястье и кисть человеческой руки.
От этих рыб, которые могли существовать не только в воде, но и на суше, произошли земноводные. Самые древние из них все еще сохраняли сходство с рыбами: у них имелись рудименты рыбьего хвоста, удобного для плаванья, но прежние плавники стали короткими, широко расставленными ногами, пригодными для того, чтобы ходить, хотя этот глагол не точно описывает способ передвижения первых амфибий. Они неуклюже ковыляли подобно современным саламандрам, так как их ноги были расположены далеко по бокам, отходили от тела горизонтально и поддерживали туловище не слишком надежно, да и шажки они делали очень маленькие.
Однако конечности некоторых амфибий уже завершались пятью четкими группами костей, образовывавших пальцы. Пальцы необходимы для бега, и более поздние позвоночные испробовали разные их количества. Например, у предка современной лошади, эогиппуса, было по четыре пальца на передних ногах и по три на задних. Его потомки постепенно утрачивали пальцы, и теперь у лошади есть лишь по одному полностью развитому пальцу на каждой ноге. Она опирается на кончики этих пальцев-это удлиняет ногу и обеспечивает длинный рычаг для быстрого бега. Когда человек бежит, он тоже удлиняет ноги, ступая на носки, однако чаще он ходит, а потому обычно использует всю стопу. Тут он явный приверженец старины – он все еще сохраняет пять пальцев, которые были у первых рыбообразных амфибий, когда они выкарабкались из ила на твердую землю.
Когда 350 млн. лет назад появились первые пресмыкающиеся, ноги у них, как и у их предков амфибий, были широко расставлены и они передвигались неуклюже, почти ползком. И почти все немногочисленные сохранившиеся представители некогда великого класса пресмыкающихся-например, крокодилы и ящерицы – почти так же неуклюжи. Но 225 млн. лет назад, в конце пермского периода, существовала группа пресмыкающихся, которые, по-видимому, вымерли после того, как от них произошли древнейшие млекопитающие. Эти млекопитающеподобные рептилии хорошо ходили и даже довольно быстро бегали. Их конечности претерпели еще одно смещение и находились не по бокам, как у амфибий, а уже почти под туловищем. Кроме того, бедренная кость их задних конечностей и "плечевая" передних с обоих концов завершались более совершенными суставами, а потому ноги этих рептилий двигались совсем не так, как торчащие в стороны конечности амфибий, которые были способны только описывать дугу. Ноги млекопитающеподобных рептилий могли двигаться вперед и назад параллельно продольной оси туловища, отчего шаг становился широким и уверенным. И лапы у них были уже повернуты пальцами вперед, что обеспечивало походке гибкость, пружинистость и ровность.
Рептилии были первыми настоящими обитателями суши. Они обладали легкими для подачи кислорода из воздуха в кровоток. Легкие пресмыкающихся очень далеко ушли от примитивных плавательных воздушных пузырей, которые у некоторых рыб появились, по-видимому, одновременно с жабрами, и заметно превосходили слабые легкие амфибий, нередко требовавшие дополнительного поступления кислорода в кровь через кожу из воды. Однако величайшим вкладом рептилий в эволюцию жизни на Земле была система размножения, пригодная для суши.
Амфибии вынуждены были размножаться в воде, подобно рыбам, своим предшественницам. Самки откладывали яйца в воду, и самцы оплодотворяли эти яйца уже в воде, чем вся родительская забота о потомстве, как правило, и исчерпывалась. Зародыш развивался, рос и в конце концов превращался в личинку, которая сразу начинала отыскивать пищу в воде самостоятельно. У пресмыкающихся система размножения претерпела радикальное изменение. Яйцо оплодотворялось внутри тела самки. Развивающийся в яйце зародыш находился в наполненной жидкостью полости (амнионе) и был снабжен желточным мешком с запасом питательных веществ, а также полостью для избавления от продуктов распада-аллантоисом. Все это окружала плотная скорлуповая оболочка. Только когда яйцо уже содержало все необходимое для питания и защиты зародыша, оно наконец откладывалось, и дальнейшее его развитие протекало вне тела самки.
Амниотическое яйцо остается основой и в размножении человека. Хотя после ряда важнейших изменений эта система у млекопитающих стала во многом совсем иной, чем у пресмыкающихся, между ними сохраняются и черты сходства, которых гораздо больше, чем может показаться на первый взгляд. Яйцеклетка по-прежнему оплодотворяется внутри материнского тела, и во время развития ее окружает амнион – полость, заполненная особой жидкостью, совсем как в яйце пресмыкающихся.
Чуть солоноватая амниотическая жидкость омывает эмбрион, защищая его от сотрясений и ударов. Это своего рода внутренний водоем, удивительно похожий на среду обитания рыб, которые были предками и человека и пресмыкающихся. Разумеется, скорлуповой оболочкой человеческий зародыш не окружен. Хотя снаружи амниона сохраняется желточный мешок, желтка он практически не содержит.
Питание зародыш получает из материнской крови, которая, кроме того, уносит продукты распада. Осуществляется этот жизненно необходимый процесс через плаценту, возможно развившуюся из аллантоиса, который в яйце пресмыкающихся служит для удаления продуктов распада. Питание, получаемое через плаценту, дает возможность человеческому эмбриону развиваться в теле матери– приюте, куда более безопасном, чем яйцо в гнезде, пусть даже и покрытое скорлупой.
Амниотическое яйцо пресмыкающихся завершило переход жизни из воды на сушу, окончательно приспособив ее к среде, в которой со временем появились и прошли свой путь развития млекопитающие. Рептилии (в основном те, чьи конечности, челюсти и другие черты скелета позволяют говорить об их сходстве с млекопитающими), возможно, совершили еще один решающий шаг на пути к человеку, выработав начатки регулирования температуры тела, что в значительной мере помогло человеку и почти всем его млекопитающим сородичам стать самыми активными и умными обитателями Земли.
Человек обладает сложными системами, которые поддерживают температуру его тела постоянно в пределах нескольких десятых градуса, тогда как внутренняя температура пресмыкающихся, земноводных и рыб – короче говоря, всех живых организмов, кроме млекопитающих и птиц – колеблется вместе с внешней температурой. Неустойчивая температура тела сопряжена с многими неудобствами. Яшерицы, например, в холодное утро бывают вялыми и сонными. Их тела настолько остывают, что это замедляет химические реакции, которые приводят в действие мышцы. И у ящерицы есть только один способ заставить свое тело функционировать нормально: кое-как доползти до места, на которое падают лучи утреннего солнца. По мере того как ткани ее тела и кровь прогреваются, сердце у нее начинает работать все энергичнее, мышцы достигают максимума своей активности и ящерица бросается на беспечную муху стремительно... как ящерица. Активность же человека почти не зависит от внешней температуры. Он способен быстро бегать и усердно трудиться как в жару, так и в холод, при очень больших перепадах температуры.
И не только активность жизненных процессов, но и сама жизнь зависит от внутренней температуры. Все животные должны сохранять температуру внутри тела в определенных строго ограниченных пределах. Выход за эти пределы влечет за собой быструю смерть, как это хорошо известно, например, тем, кто держит в аквариуме тропических рыбок. Наиболее широки эти пределы, по-видимому, у личинок комара-некоторых из них находили в горячих источниках, где температура их тела составляла около 70° С, а другие выживают на Аляске, даже когда в их тканях образуется лед.
Пределы, допустимые для человека, у которого при нормальных обстоятельствах температура тела изменяется лишь на десятые доли градуса, очень узки: смерть обычно наступает, если температура превысит 43° С или упадет ниже 25° С.
Жизненная важность внутренней температуры тела определяется ее взаимосвязью с физической активностью. Физическая деятельность требует энергии, которая обеспечивается реакциями обмена веществ, реакции же эти замедляются под воздействием холода и ускоряются под воздействием тепла.
У многих животных при повышении температуры тела примерно на 10° С их скорость в целом удваивается, однако скорость разных процессов возрастает по-разному. По мнению некоторых ученых, если внутренняя температура превышает нормальный верхний предел, какой-то из процессов обмена может ускориться настолько, что организм перестанет справляться с избытком образующихся промежуточных веществ. И наоборот, при критическом падении температуры какой-нибудь процесс может замедлиться настолько, что возникнет недостаток в веществе, жизненно необходимом для следующей реакции. В обоих случаях организм оказывается жертвой изменений собственных биохимических реакций.
Внутри же указанных пределов существует определенная температура, наиболее благоприятная для жизнедеятельности данного организма. И эволюция, в частности, заключается в развитии способов поддерживать внутреннюю температуру на оптимальном уровне. Для рыб эта проблема стоит в общем менее остро, чем для наземных животных, поскольку температура их среды обитания, особенно больших водоемов вроде морей, колеблется заметно меньше, чем температура земли или воздуха. В океанах ее колебания не превышают 14° С. Например, зимняя температура воды у банки Роколл, в богатом рыболовном районе Северной Атлантики, равна 9,5 °С, а летняя – 13 С.
Обитателям же суши приходится выдерживать чрезвычайно резкие изменения температур-в некоторых областях американского Среднего Запада зимой температура падает ниже – 40° С, а летом превышает +43° С. При очень высоких или очень низких температурах пресмыкающиеся и насекомые, чтобы избежать опасности, зарываются в землю, прячутся под камнями или в воде. Тем не менее их внутренняя температура то поднимается, то падает, далеко отклоняясь от уровня оптимальной выработки энергии. Но более развитые животные в ходе эволюции вырабатывали механизмы, сглаживавшие эти пики и впадины (см. графики внутренней температуры на стр. 113), пока наконец не появились птицы и млекопитающие, которые обладают способностью поддерживать температуру тела на постоянном оптимальном уровне.
И просто поразительно, насколько близки оптимальные температуры всех млекопитающих и птиц. Нормальная температура человека равна 36,8° С, мыши – 36,5°С, лошади – 37,7°С, а слона – 36,2° С. У певчих птиц она выше примерно на 5° С. Совершенно ясно, что процессы обмена протекают с наивысшей скоростью при температуре около 37,8° С (при дальнейшем повышении температуры многие клетки погибают).
Для поддержания температуры тела, обеспечивающей наивысшую активность, человек обзавелся целой системой специальных механизмов и действий, которые помогают ему согреваться или остывать, как того требуют обстоятельства. Проследить эволюцию этих механизмов очень трудно (а иногда и невозможно), поскольку такие их компоненты, как нервы, кровь и мягкие ткани, почти не оставляют следов в окаменел остях. Однако происхождение некоторых можно установить логическим путем.
Одним из условий успешного регулирования температуры является теплоизоляция. У человека, как и у большинства животных, имеется подкожный жировой слой – изоляционная прокладка, которая возникла у пресмыкающихся на очень ранних этапах их развития. Человек, вероятно, когда-то обладал и внешней изолирующей оболочкой – у него все еще сохраняются волосы на теле, а его близкие родственники, человекообразные обезьяны, покрыты шерстью. В настоящее время считается, что впервые волосяной покров появился у пресмыкающихся – у очень подвижных рептилий, так называемых млекопитающеподобных, направление развития которых показывает, что они могли быть покрыты шерстью. У млекопитающих волосяной покров стал прекрасной защитой от холода. К тому же они способны усиливать его теплоизолирующие свойства, поднимая волосы дыбом. Человеческий "мех" для этого, конечно, не годится, однако его редкие волоски дисциплинированно поднимаются, образуя так называемую "гусиную кожу", едва крохотные мышцы у их корней получают сигнал, что телу требуется дополнительная защита от холода.
Второй и, по-видимому, очень древний механизм регулирования температуры-это дрожь. Она создает теплоту за счет мышечной активности, причем автоматически, без сознательных усилий, каких требует нормальная мышечная деятельность. Дрожь обычна у млекопитающих и наблюдалась у пресмыкающихся и насекомых. Некоторые змеи дрожат, чтобы согреть свои яйца. В Нью-йоркском зоопарке питоны, когда температура их помещения понизилась, свертывались кольцами вокруг своей яйцекладки и начинали судорожно сокращать мышцы, что несколько напоминало человеческую дрожь.
Такое сокращение мышц способствует поддержанию внутренней температуры, когда внешняя падает ниже 25° С. Дрожат даже насекомые вроде бабочек, которые в прохладный день сокращают мышцы крыльев, чтобы разогреть их перед полетом.
Один из механизмов, регулирующих температуру тела, способен и согревать его, и охлаждать – это система кровообращения. Кровь несет тепло от внутренних органов к капиллярам под кожей, которая отдает его избыток более прохладному воздуху. Но если тело уже охладилось, доступ крови в капилляры ограничивается и тем самым потеря тепла уменьшается.
Для защиты от переохлаждения руки и ноги человека снабжены хитроумным приспособлением, которое напоминает промышленный теплообменник, построенный на принципе противотока. Конечности теряют тепло быстрее всего-наши руки и ноги всегда замерзают первыми. Они относительно тонки, и рассеивающая тепло поверхность у них сравнительно с их объемом очень велика. Для снижения теплоотдачи артерии, несущие кровь к пальцам, расположены глубоко внутри их, и параллельно каждой тянутся две вены. Кровь, возвращающаяся в туловище по венам, получает тепло от крови, которую артерия несет к пальцам, так что капилляры отдают окружающему воздуху лишь часть тепла. Однако этот "теплообменник" в человеческом теле действует, только когда телу нужно сохранять тепло. Когда же требуется охлаждение, ток возвращающейся крови переключается на вены, пролегающие под кожей в стороне от артерий, несущих теплую кровь. Это переключение можно даже увидеть воочию: в жаркую погоду вены на руках набухают заметно больше, чем в холодную.
Как развилась эта система регулирования температуры с помощью противотока, неизвестно. Она появилась (по-видимому, независимо) у многих животных: у человека, у его дальних млекопитающих родичей китов и у таких птиц, как гуси, которые много времени проводят, стоя в холодной воде. По меньшей мере одна рыба-тунец – также обзавелась подобным приспособлением, чтобы снизить отдачу тепла воде, проходящей сквозь ее жабры, а потому ей удается поддерживать более высокую внутреннюю температуру, чем температура внешней среды. В результате тунцы гораздо энергичнее других рыб и способны быстро плыть более продолжительное время.
Хотя все млекопитающие используют кровообращение для того, чтобы и согревать и охлаждать свои тела, они, кроме того, обладают специальными механизмами, служащими только для охлаждения. Человек потеет. Влага, выделяющаяся из пор в коже, испаряется, отнимая у тела избыточное тепло. Потеют и некоторые другие млекопитающие, например лошади, однако очень многие, и в том числе собаки, добиваются той же цели, усиленно и глубоко дыша.
Почему такое пыхтение помогает собакам охлаждать тело, стало известно совсем недавно. Они быстро втягивают воздух в легкие через влажные ноздри, где он охлаждается, после чего в свою очередь отнимает тепло у внутренней поверхности глотки и легких. А некоторые млекопитающие охлаждают тело с помощью испарения еще одним способом – они вылизывают шерсть и тем самым увлажняют ее.
Главный центр, контролирующий механизмы, которые регулируют температуру тела, называется гипоталамусом и расположен у основания головного мозга. Действует он, как термостат, и очень чувствителен. Когда температура начинает повышаться или понижаться, гипоталамус дает сигнал увеличить или уменьшить ток крови. Если человек раздет, а внешняя температура опускается ниже 27 °С, кровь перестает компенсировать потерю тепла и гипоталамус для поддержания внутренней температуры "включает" дрожь. При температуре 31°С кровь уже не может обеспечить раздетому человеку достаточное охлаждение и он начинает 1 потеть.