355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » В делении сила. Ферми. Ядерная энергия. » Текст книги (страница 8)
В делении сила. Ферми. Ядерная энергия.
  • Текст добавлен: 9 апреля 2017, 07:00

Текст книги "В делении сила. Ферми. Ядерная энергия."


Автор книги: авторов Коллектив


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 8 (всего у книги 9 страниц)

ГЛАВА 6
Создание Фермилаба

За короткий промежуток времени ускорители позволили лабораторным путем получить частицы, содержащиеся в космических лучах. Открытие новых составляющих квантового мира расширило карту элементарных частиц. Компьютеры упростили сложнейшие вычисления, появились новые области физики, изучающие нелинейные системы. Ферми принимал участие во всех главных открытиях, раздвигавших пределы физики. Сегодня этот прогресс поставил под вопрос даже теорию относительности Эйнштейна.

При помощи статистической физики Ферми смог исследовать, что происходит при столкновении ядер на большой скорости, во время чего образуется множество частиц. Он хотел выяснить, какие из этих частиц на самом деле элементарные. Этому вопросу ученый посвятил свои выступления на конференциях, организованных Стилманом в Йельском университете и самим Ферми в Италии. Оба цикла докладов были впоследствии собраны в его книге «Элементарные частицы*. Упрощенные модели Ферми по аналогии с FERMI АС фиксировали тенденции и позволяли рассчитать порядок главных переменных, задействованных в эксперименте, как, например, в случае с эффективным сечением или с вероятностью поглощения частиц. Ферми знал, что с этого момента без статистики не обходится ни один опыт в области физики частиц.


ЧИКАГСКИЙ СИНХРОЦИКЛОТРОН

Весной 1951 года в Чикагском университете заработал новый синхроциклотрон. Ферми наконец-то мог провести опыты со столкновением нуклонов в 450 МэВ: вместе с Андерсоном он проанализировал взаимодействие между протонами и пионами л* и л', измерил их интенсивность и энергию, а также изучил передачу пионов через жидкий водород, что представляло для него особый интерес в связи с работой над водородной бомбой в Лос-Аламосе. Ученый упорно стремился улучшить синхроциклотрон и спроектировал систему с тележкой, получившую название тележки Ферми, при помощи которой цель столкновения могла перемещаться по периферии циклотрона. Тележка контролировалась посредством магнитного поля благодаря бобинам, связанным с колесами, и ей не требовалось ни электричество, ни топливо. Это изобретение Ферми прекрасно проработало в течение долгих лет.

С 17 по 22 сентября 1951 года ученый организовал в Чикаго международную конференцию по ядерной физике, в рамках которой торжественно представил публике новый синхроциклотрон. После окончания мероприятия он взял неделю отдыха, чтобы отпраздновать свое 50-летие. На конференции Ферми предложил список из 21 элементарной частицы, хотя предполагал, что некоторые из них могут быть исключены из этого перечня.

Чикагский синхроциклотрон, или синхронизированный циклотрон, представлял собой улучшенный вариант циклотрона, созданного Лоуренсом в Калифорнийском университете. У него был тот же принцип действия: движущиеся частицы с электрическим зарядом отклонялись магнитным полем. Синхроциклотрон обладал большей точностью по сравнению с циклотроном, так как исправлял некоторые побочные эффекты, проявляющиеся при высоких энергиях.

Ферми сосредоточился на анализе взаимодействия пионов с нуклонами и атомами водорода, измеряя, в частности, эффективное сечение столкновений и угловое распределение дисперсии пионов. Он доказал, что поперечное сечение с увеличением энергии быстро увеличивается (чего и следовало ожидать от сильного взаимодействия), но в случае с положительными π+ пионами больше, чем с отрицательными π-. Его эксперименты заставили вернуться к идее Гейзенберга (предложенной в далеком 1932 году) назначать частицам квантовое число изоспин (или изотопический спин), связанный с сильным взаимодействием. Сила этого взаимодействия между любой парой нуклонов одинакова, независимо от того, ведут они себя как протоны или нейтроны.


ЧАСТОТА СИНХРОЦИКЛОТРОНА

В циклотроне, в области магнитного поля В, ускоряется частица с массой m и зарядом q с частотой резонанса fo так, что

fo = qB/2πm.

При высоких скоростях в циклотроне масса частицы испытывала эффект релятивистского запаздывания. Поскольку скорость была близка к скорости света, то масса увеличивалась. Для компенсации этого эффекта был создан синхроциклотрон, в котором частота переменного электромагнитного поля менялась. Она зависела от коэффициента, основанного на скорости света с и скорости частицы ν:

f = fo √(1-(v/c)2)

Пучок ускоренных частиц мог прийти в столкновение с целью с большей точностью. Ферми использовал его для изучения столкновений между пионами и нуклонами.

Репродукция патента циклотрона Лоуренса (1934), принцип действия которого был улучшен в синхроциклотроне.

В то время как протоны и нейтроны имели изоспин 1/2 (или со знаком +, или со знаком -), у трех пионов (π°, π+, π- ) изоспин был равен единице с соответствующими проекциями (0,1 и -1). Квантовое число изоспин не должно было меняться при взаимодействиях частиц, которые, как мы уже видели, были следующими:

n → p + π- ; π- + p → n

p → n + π+ ; π+ + n → p.

Изоспин объяснял также схожесть масс протона и нейтрона и тот факт, что все пионы обладали одинаковой массой, но разными зарядами и, следовательно, по-разному вели себя при столкновении с нуклонами.

В 1952 году Ферми обменялся по этому вопросу несколькими письмами с молодым физиком Ричардом Фейнманом, с которым познакомился в Лос-Аламосе. Теории Фейнмана казались правильными, но требовали экспериментального доказательства. Ферми смог привести такое доказательство, изучая дисперсию пионов в дейтерии и водороде, и написал на эту тему несколько статей для журнала The Physical Review. Исследования Ферми и Андерсона подготовили революцию в физике элементарных частиц: из их наблюдений за столкновениями пионов и нуклонов вытекало предположение о возможном существовании внутренней структуры протонов и нейтронов. В последующее десятилетие был открыт резонанс между пионами и нуклонами, что привело к неминуемому открытию кварков, из которых состоят протоны и нейтроны. Теоретическую гипотезу их существования предложили в 1964 году Марри Гелл-Манн и Джордж Цвейг.

Однако количество данных, собранных Ферми, было очень велико, и это сильно замедляло их обработку и анализ. Например, для каждой дисперсии пионов надо было решить более девяти уравнений. Специально созданные таблицы немного облегчали задачу, но физика элементарных частиц становилась все более сложной, ее развитие приближалось к своему пределу. Ферми был необходим компьютер. Старые механические вычислительные машины, которыми он и Андерсон пользовались уже давно, работали на пределе своих возможностей.

В 1952 году в Лос-Аламосской лаборатории завершилась сборка компьютера MANIAC (Mathematical Analyzer, Numerical Integrator and Computer). Тем летом Энрико Ферми привез в Лос-Аламос огромное количество данных для анализа. Вместе с Николасом Метрополисом он написал доклад, в котором объяснял принцип действия устройства и его результаты, и продолжил в сотрудничестве с ним, фон Нейманом и Уламом изучать применение в MANIAC метода Монте-Карло и других численных методов. Ферми был полон энтузиазма: казалось, что новый компьютер может решить трудности физиков, вызванные большим количеством данных. Как ученый заявил на Рочестерской конференции в 1952 году, компьютеры могли открыть науке новые горизонты:

«Поскольку на каждый подсчет тратится всего пять минут, мы можем изучить задачу с математической точки зрения, слегка изменяя изначальные условия».

Имитационное моделирование заявляло о себе как о третьем пути к познанию после теории и экспериментов. В конце концов, именно это и сделал Ферми со своим FERMIAC: он рисовал моделированные траектории на плоскости в реакторе. В 1950-е годы, при первой же возможности, ускорители частиц были компьютеризированы.


ФИЗИКА НЕУСТОЙЧИВОСТИ

Летом 1951 года в Лос-Аламосской лаборатории Ферми вместе с фон Нейманом изучал физику жидкостей, в частности неустойчивость границ между двумя жидкими средами, например между водой и воздухом, когда более легкое вещество ускоряет более плотное, в результате чего возникает неустойчивость Рэлея – Тейлора (см. рисунок). Это явление было важным для понимания динамики взрывной и водородной бомбы, которая уже разрабатывалась. Исследование неустойчивости жидкостей подвело Ферми к двум интереснейшим областям физики: физике нелинейных систем и астрофизике.

Модель неустойчивости Рэлея – Тейлора между двумя жидкостями, более плотная из которых изначально находится сверху и падает под действием силы тяжести.

В Лос-Аламосе Улам и Ферми обсуждали, для решения каких задач лучше использовать MANIAC. Оба решили, что начать следует с анализа задач нелинейной физики, поскольку в них уравнения не могли быть решены напрямую. Для упрощения расчетов большинство существующих моделей обычно сводились к линейным, хотя природа все же была нелинейной. В то время молодой американский метеоролог Эдвард Лоренц (1917-2008) уже открыл, что атмосферные явления нельзя описать с помощью линейных моделей, хотя только в 1963 году он написал свою знаменитую статью Deterministic Nonperiodic Flow («Детерминированное непериодическое движение»), которая легла в основу современной теории детерминированного хаоса. Согласно этой теории, даже зная уравнения системы, никогда нельзя предсказать результат эксперимента. Сначала Улам и Ферми запрограммировали экспериментальную симуляцию статистической физики и открыли основы поведения различных нелинейных систем. Некоторые из них были простейшими, например движение точек в пространстве. Они выявили требования для получения устойчивых систем, пребывающих в равновесии, и пришли к выводу, который в 1969 году Лоренц назовет эффектом бабочки: незначительное изменение исходных условий системы влечет существенные изменения результата процесса. Улам и Ферми не сформулировали этот вывод в виде принципа, поскольку посчитали, что он объясняется недостаточной точностью программы. Так зарождалась наука о хаосе.

В некоторых приблизительно линейных задачах можно предположить существование квази-состояний.

Ферми о догадках в теории хаоса, неустойчивости и хаотических системах

Также Ферми пристально следил за развитием астрофизики, особенно в том, что касалось космических лучей, а после изучения жидкостей заинтересовался и динамикой газов в космосе. Почему галактики имеют определенную форму? Как электромагнитные и гравитационные поля влияют на галактические и звездные газы? Ферми стал сотрудничать с индийским астрофизиком и математиком Субраманьяном Чандрасекаром. Они были знакомы со времен Манхэттенского проекта: Чандрасекар работал в Чикагском университете с 1937 года. В 1953 году ученые опубликовали в AstrophysicalJournal несколько совместно написанных статей, в которых анализировали магнитное поле в спиральных галактиках и гравитационную нестабильность в присутствии сильных электромагнитных полей звезд. Ферми доказал, что равновесие межзвездного газа напрямую связано с магнитным полем галактики, а также является причиной космического излучения, над которой он столько думал.

По рекомендации Чандрасекара 28 августа 1953 года Ферми стал первым неастрономом, выступившим на заседании Американского астрономического общества. Из-за большого интереса, который он питал к астрофизике, ученые, не колеблясь, назвали космический гамма-телескоп, запущенный на орбиту в 2008 году, телескопом Ферми.


ПОСЛЕДНИЕ ГОДЫ

В начале 1953 года Ферми был избран президентом Американского физического общества. У него был огромный авторитет, на его лекциях собиралось все больше и больше слушателей, на его курсы в Чикагском университете ходило множество студентов, которых он восхищал своими ораторскими способностями; его авторитет ученого был велик во всем мире. Но в конце того же года глава ФБР Эдгар Гувер с подачи Уильяма Бордена, члена комитета американского конгресса по атомной энергии, обвинил Оппенгеймера в том, что тот угрожает безопасности страны. Президент Эйзенхауэр потребовал, чтобы ученый подал в отставку, на что тот ответил отказом и потребовал официального расследования. Деятельность Оппенгеймера была приостановлена. Процесс начался 13 апреля 1954 года. Неделю спустя Ферми выступил как свидетель в защиту Оппенгеймера. Одним из обвинений в адрес ученого было то, что он не поддерживал расширение арсенала ядерного оружия, и заявление Ферми очень помогло ему:

«На тот момент я считал, что нужно запретить супербомбу до того, как она будет создана. Я подумал, что с помощью международного договора будет проще запретить то, что еще не существует».

Процесс был очень неприятен и для Ферми, и для всех ученых Лос-Аламосской лаборатории. Теллер резко выступил против Оппенгеймера, а остальные пытались хранить нейтралитет, хотя на самом деле большинство поддерживало ученого и также осознавало опасность ядерного оружия. В итоге был вынесен вердикт, согласно которому Оппенгеймер угрожал безопасности США, и ученый был освобожден от всех занимаемых должностей. Ферми и другие коллеги выступили против этого решения: они считали Оппенгеймера свободным мыслителем, а не опасным коммунистом. Но таковы были общественные настроения и политическая обстановка в Штатах в тот период: даже Ферми с его безупречным поведением в свое время вызвал подозрение из-за итальянского происхождения. Ферми вернулся к сотрудничеству с Сегре и изучению взаимодействий между пионами и нуклонами. Он создал новый Брукхевенский космотрон, то есть синхротрон, ускоряющий частицы до очень высоких энергий, превышающих два миллиарда эВ, а Сегре продолжил заниматься протонами. При помощи беватрона, запущенного в Беркли в 1954 году, Сегре вместе с Оуэном Чемберленом в 1955 году открыли антипротон, за что в 1959 году были удостоены Нобелевской премии по физике.

Летом 1954 года Ферми приехал в Италию на открытие Международной школы физики в Варение, рядом с озером Комо, которая сейчас носит его имя. На своих последних лекциях он рассказал о главных достижениях физики элементарных частиц, обратив особое внимание на важность изучения взаимодействия пионов и нуклонов в ускорителях и на использование компьютеров для решения физических задач. Конверси и Сальвини, работавшие тогда в Пизанском университете, прислушались к словам Ферми и вскоре создали один из первых электронных калькуляторов в Италии. Во время этого путешествия ученый почувствовал недомогание, а по возвращении в Чикаго ему поставили диагноз: рак желудка в неоперабельной стадии. Последние дни Ферми посвятил работе над книгой по ядерной физике, проводил время вместе с Лаурой, семьей и самыми близкими друзьями. Умер Энрико Ферми 28 ноября 1954 года, пополнив список ученых-пионеров, исследовавших радиоактивность и скончавшихся от опухоли. Вне всякого сомнения, это был один из самых выдающихся мыслителей в истории человечества.

Ряд распада от фермия-257 до нелтуния-237.


ЭЙНШТЕЙНИЙ И ФЕРМИЙ

Взрыв водородной бомбы «Майк» на атолле Эниветок 1 ноября 1952 года повлек за собой не только разрушения. Хоть это и сохранялось в тайне до 1955 года, уже в декабре 1952-го анализы остатков, проведенные в лаборатории Беркли, показали, что водородная бомба добавила в периодическую таблицу два новых элемента. Они имели атомные номера 99 и 100 и были названы эйнштейнием и фермием соответственно.

Ферми не дожил до того момента, когда элемент с номером 100 был назван его именем, но его существование он предсказывал еще в 1934 году, говоря о трансурановых элементах. Фермий и эйнштейний относятся к семейству актиноидов, и многие его члены не встречаются в природе. Среднее время жизни эйнштейния немногим превышает 20 дней, а фермия – 100, оба эти элемента радиоактивные. Облучение урана-238 огромным потоком нейтронов водородной бомбы привело к появлению тяжелейших изотопов, таких как уран-253 и уран-255, которые в результате бета-распада дали соответственно эйнштейний-253 и фермий-255. Длинные ряды распадов новых элементов, эйнштейния и фермия, были подробно изучены в последующие годы (см. рисунок). Пока работы, ведущиеся в Беркли, были еще совершенно секретными, в мае 1954 года исследовательская группа из Нобелевского института в Стокгольме независимо получила изотоп фермия-250 путем бомбардировки урана-238 изотопами кислорода-16. После смерти Ферми и Эйнштейна и после публикации группой Беркли некоторых результатов международное научное сообщество единогласно решило назвать элемент 99 эйнштейнием, а элемент 100 – фермием.


БОЛЬШИЕ СОВРЕМЕННЫЕ УСКОРИТЕЛИ

Через год после смерти Ферми американский физик Сэмюэл Аллисон, также работавший над Манхэттенским проектом, решил переименовать Чикагский институт ядерных исследований в Институт Энрико Ферми. Сегодня он остается одним из передовых центров изучения физики и вместе с другими организациями является частью холдинга, который использует Фермилаб – бывшую Национальную ускорительную лабораторию, названную так в честь Ферми в 1974 году. В Фермилабе находится второй по величине ускоритель частиц после большого адронного коллайдера (или БАК) Европейской организации по ядерным исследованиям (ЦЕРН) в Женеве. Этот ускоритель – одно из важнейших достижений человеческого разума. Он стал продолжением беватрона Беркли и Брукхевенского космотрона, созданного Ферми.

Если беватрон был назван так потому, что в нем можно было получить энергию в миллиарды электронвольт (эВ), то в тэватроне Фермилаба достигаются тераэлектронвольты (ТэВ), то есть 1012 эВ. Благодаря этой невероятной мощи ускорителей сегодня мы можем обнаружить пучки таких маленьких частиц, как нейтрино, с ничтожной массой, примерно в 5 эВ, и разглядеть квантовую структуру материи.


УСКОРИТЕЛЬ ФЕРМИЛАБА

Первым ускорителем Фермилаба был генератор Кокрофта – Уолтона, который трансформировал переменную электрическую энергию в постоянную, вырабатывая ионы водорода Н-. На их основе с помощью магнетрона создается плазма, или ионизированный газ с низким давлением. Затем посредством электрического поля в 750 КэВ ионы ускоряются до линейного ускорителя (LINAC, Linear Accelerator), который увеличивает энергию частиц до 400 МэВ, после чего они попадают в угольный фильтр, трансформирующий ионы Н- в протоны Н+ и в промежуточное кольцо (бустер) диаметром в 468 м. В нем протоны вращаются со скоростью примерно 20 тысяч раз за 33 миллисекунды и благодаря эффекту циклотрона приобретают на каждом круге энергию, пока не достигнут 8 ГэВ. Следующий этап – главный инжектор, который ускоряет протоны, разделяет протоны для получения антипротонов и затем ускоряет антипротоны. Таким образом, в главном инжекторе находятся два отдельных пучка: протоны и антипротоны, которые двигаются в противоположном направлении и попадают в последний ускоритель, мощный Тэватрон. В нем скорость частиц почти равна скорости света. Они сталкиваются в центре детекторов DZER0 и CDF с энергиями почти 2 ТэВ, что позволяет получить пучки разных элементарных частиц. Сегодня в Фермилабе проводятся эксперименты по обнаружению бозона Хиггса, которые должны подтвердить эксперименты ЦЕРН и изменить наше представление о квантовой вселенной.

Не так давно в ускорителях были проведены два эксперимента, которые имели огромное значение для теоретической физики и потрясли научное сообщество: связаны они были с возможным открытием нейтрино, чья скорость превышает скорость света, и обнаружением бозона Хиггса. Эти предполагаемые нейтрино движутся со скоростью, превышающей скорость света. Если это так, то теория относительности Эйнштейна нуждается в переработке: ведь нейтрино обладают массой, пусть и очень маленькой, и согласно этому открытию, скорость света больше не является предельной для материальных частиц. Нейтрино – это фермионы, окружающие нас, хотя мы не можем воспринимать их органами чувств. Наше тело производит примерно 4000 нейтрино в секунду, миллионы миллиардов нейтрино попадают на Землю из космоса и проходят через нас, при этом не взаимодействуя с нами. Они не относятся ни к одному атому или ядру, мы словно погружены в бульон из частиц. Существуют электронные, мюонные и таонные нейтрино – результат распада электрона, мюона или таона. Нейтрино – единственные лептоны, которые не подвержены сильному взаимодействию и не имеют заряда.

Итак, в эксперименте OPERA от ускорителя ЦЕРН в Женеве под землей (чтобы минимизировать интерференцию) был пущен пучок нейтрино до итальянской лаборатории в Гран Сассо, на расстояние 732 км. Сначала казалось, что нейтрино двигаются со скоростью, превышающей скорость света, но в феврале 2012 года в измерениях были обнаружены две ошибки, из-за которых результаты эксперимента были признаны недействительными. Стоит упомянуть, что в таких случаях требуется точность до миллионной доли секунды и используются системы типа GPS. Пока идет опыт, Земля вращается, хоть и совсем немного, поэтому чрезвычайно важно идеально синхронизировать системы измерений в лабораториях. Тем не менее вероятность того, что скорость нейтрино может превышать скорость света, изучается.

После еще одного эксперимента, взволновавшего научный мир и общественное мнение, 4 июля 2012 года ЦЕРН обнародовала официальный доклад, в котором говорилось, что в ходе экспериментов CMS и ATLAS с высокой долей вероятности была найдена частица, похожая на бозон Хиггса стандартной модели, массой примерно 125 гэВ.

Бозон Хиггса – это частица, существование которой в 1964 году предположил британский физик Питер Хиггс (р. 1929) и названная в его честь. Считается, что она поможет нам объяснить, почему материя обладает массой. Эта частица связана с полем Хиггса, в которое – теоретически – погружена вся наша Вселенная. Таким образом, частицы, не обладающие массой, как фотоны, не взаимодействуют с ним, а частицы с массой – взаимодействуют, и чем сильнее их взаимодействие с полем Хиггса, тем больше их масса. Но есть и другие версии этого механизма, объясняющие обладание массой, в которых говорится о целых семьях частиц, а не только об одном бозоне Хиггса, поэтому для окончательного ответа ученые должны получить больше данных. На данный момент с помощью статистических методов они приблизились к промежутку, в котором точно (с вероятностью 95 %) нет бозона Хиггса или какой-либо другой частицы, связанной с полем Хиггса (считается, что надо отбросить промежуток энергий между 110-112,5 гэВ и 127– 600 гэВ). Это отбрасывание возможных результатов задачи так привлекало Ферми: если бозон Хиггса существует, то он окружен, если существует другая похожая на него частица – она тоже окружена. Бозон Хиггса стал своего рода легендой, особенно после того, как в 1993 году американский физик Леон Ледерман (р. 1922) выпустил научно-популярную книгу, в которой назвал его «частицей Бога». Если существование бозона будет подтверждено, то список элементарных частиц стандартной модели будет полным – именно об этом мечтал Ферми, когда начинал составлять карту нашей квантовой вселенной.


НАСЛЕДИЕ ФЕРМИ

Без сомнения, Ферми сделал огромный вклад в развитие ядерной инженерии и ядерного оружия, поэтому после его смерти АЕС учредило премию Ферми, которая вручается ученым, внесшим «особенно ценный вклад в развитие, использование или контроль ядерной энергии». Международное сообщество следит за расширением и развитием ядерного арсенала в странах, у которых пока нет атомной бомбы.

Второго декабря 1952 года в Чикагском университете отпраздновали десятую годовщину атомной эпохи. На фото: Энрико Ферми (первый слева)кладет руку на модель первого ядерного реактора.

Вид сверху на Фермилаб, примерно в 50 км от Чикаго. Кольцо на первом плане – главный инжектор, за ним – Тэватрон.

Существуют также технологии, связанные с мирным применением ядерной энергии. Сегодня никто не сомневается в важности ядерной физики и радиоактивности в медицине: их возможные риски строго контролируются, а польза чрезвычайно высока. Тем не менее со времен Чернобыльской катастрофы (Украина) в 1986 году и особенно после аварии на Фукусиме (Япония) в 2011 году современные атомные электростанции вызывают опасение в обществе. Возможно, урок Фукусимы заключается в том, что какие бы меры предосторожности мы ни принимали, природа, в данном случае Цунами, может разрушить любую систему безопасности. Ферми догадывался об этом риске и мечтал о мире, в котором были бы решены все проблемы, связанные с ядерной энергией и радиоактивными отходами. В своих последних выступлениях Ферми надеялся, что человечество осознает: наступление атомной эры требует объединения усилий всех стран, все нации должны нести одинаковую ответственность. Ученый предлагал серьезно подумать об этой технологии, от которой уже нельзя отказаться.

Ферми опередил свое время, угадав, какие вопросы будут занимать нас, и начал искать на них ответы. Какие частицы действительно являются элементарными? Как они ведут себя? Почему Вселенная такая, какая есть? Цельное видение физики помогло Ферми объединить области, считавшиеся далекими друг от друга, такие как астрофизика и физика элементарных частиц. Он также развил инженерию и математику, необходимые для его исследований. Ферми был провидцем, который не сдавался перед вызовами, брошенными новыми технологиями. Он прекрасно работал с первыми детекторами, ускорителями частиц, компьютерами и создал ядерную инженерию. Энрико Ферми был невероятно разносторонним физиком, теоретиком, экспериментатором. Он был уникальным ученым.


    Ваша оценка произведения:

Популярные книги за неделю