355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » В делении сила. Ферми. Ядерная энергия. » Текст книги (страница 6)
В делении сила. Ферми. Ядерная энергия.
  • Текст добавлен: 9 апреля 2017, 07:00

Текст книги "В делении сила. Ферми. Ядерная энергия."


Автор книги: авторов Коллектив


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 6 (всего у книги 9 страниц)

Сначала ни плутоний, ни работы Ферми не были в числе приоритетов американского правительства. К счастью, ученый нашел в Комптоне искреннего сторонника; дружба с семьей Юри, которая приняла Ферми в Колумбийском университете и ввела его с женой в местное общество, а также контакты с группой Лоуренса помогли ученому собрать воедино кусочки атомной мозаики. В Колумбийском университете Ферми поставил источник нейтронов радия и бериллия в диффузорное устройство, содержащее графит, оксид урана и другие материалы, такие как сталь, чтобы наблюдать за особенностями размножения нейтронов. Коэффициент k показывает количество тепловых нейтронов, которые переходят из одной реакции к другой, поэтому теоретически для непрерывной цепной реакции он должен иметь значение k ≥ 1.

В идеальных условиях для атомного реактора:

– если k = 1, возникают критические условия, то есть самоподдерживающаяся цепная реакция (как на современных атомных станциях);

– если k < 1, возникают подкритические условия, и ядерный реактор остановится;

– если k > 1, возникают надкритические условия, которые могут привести к взрыву.


ФОРМУЛА ЧЕТЫРЕХ СОМНОЖИТЕЛЕЙ k

Обычно коэффициент размножения к. определяют как произведение четырех величин

k = η · f · ε · р, где:

– η – коэффициент размножения, который показывает количество нейтронов, полученных в среднем на каждый тепловой нейтрон, захваченный ядерным топливом (обычно ураном-235 и -238). В случае с природным ураном он равен примерно 1,3;

– f – коэффициент использования тепловых нейтронов, который показывает вероятность того, что захват нейтронов произойдет в замедлителе или в структурных элементах, а не в топливе (уране). Обычно имеет значение 0,9;

– ε – коэффициент быстрого деления, который показывает вероятность того, что быстрые нейтроны спровоцируют деление. В реакторах с ураном в качестве топлива это привело бы, например, к делению урана-238; в этом случае значение коэффициента было бы равно 1,03;

– р – показывает вероятность того, что нейтроны избегут резонансного захвата. С графитом в качестве замедлителя его значение равно 0,9.

В идеальном случае при k = 1 произойдет самоподдерживающаяся реакция без использования внешнего источника нейтронов. В реальных системах обычно коэффициент размножения нейтронов kef определяется как произведение бесконечного коэффициента размножения k идеальной системы на вероятность Р того, что нейтрон ускользнет от системы размножения реактора:

kef = P · k

Это значение коэффициента, которое учитывает потерю нейтронов в реакторе, подразумевает, что на практике можно иметь k > 1 и сохранять подкритические условия. Критическая масса – это количество ядерного топлива, которое при определенных условиях делает цепную реакцию самоподдерживающейся. Критическая масса зависит от геометрии реактора, а также от состава и уровня чистоты ядерного топлива. Если потеря нейтронов сокращается, то критическая масса может быть уменьшена. С другой стороны, нейтроны характеризуются временной постоянной т, которая соответствует времени, необходимому для торможения (примерно 10-6 с), и времени рассеяния перед поглощением (порядка 10-3 с). Таким образом, если N0 – изначальное количество нейтронов, то с течением времени их количество будет соответствовать выражению, зависящему от k.

N(t) = N0 · e(k-1)t/τ.

Поэтому если k = 1, то появляются критические условия и количество нейтронов N не меняется (N = N0). При k < 1 оно экспоненциально уменьшается, а при k > 1 мы имеем надкритическое состояние, при котором число нейтронов экспоненциально увеличивается и реакция выходит из-под контроля.

В настоящих реакторах обычно сначала создается подкритическое состояние и используются замедленные нейтроны и аварийная регулирующая кассета для того, чтобы достигнуть критического – рабочего – состояния.


ЭКСПОНЕНЦИАЛЬНЫЙ РЕАКТОР КОЛУМБИЙСКОГО УНИВЕРСИТЕТА

Атака на Перл-Харбор вызвала огромный резонанс в американском обществе. К иностранным ученым, в особенности бежавшим из вражеских стран, стали относиться с большим подозрением: любой из них мог оказаться шпионом. Руководителями групп по исследованию урана назначались только американские граждане. В таких условиях в Чикаго была создана «Металлургическая лаборатория» во главе с Артуром Комптоном. Ее целью было получение плутония при помощи ядерных реакций на основе урана и с графитом в качестве замедлителя. Название проекта было призвано сохранить в тайне истинную его цель: в лаборатории почти не занимались металлургией, если не считать саму конструкцию ядерного реактора.

За короткое время Ферми завоевал в Чикаго всеобщее уважение, но когда в конце декабря 1941 года он первый раз приехал туда из Нью-Йорка, ему пришлось предупредить власти, взять у них разрешение на отъезд и сообщить цель и длительность поездки. Секретарь отделения физики в Колумбийском университете некоторое время исследовал досье ученого, а в апреле 1942 года Ферми окончательно переселился в Чикаго. Лаура с детьми ждали июня, когда заканчивалась учеба в школе. Для семьи Ферми это были сложные месяцы: они еще не были американскими гражданами и к тому же приехали из вражеской Италии, что усложняло каждый их шаг, в частности связанный с переездами.

В 1941 году Ферми и Силард не без сложностей получили большие количества чистого графита и чистых минералов урана. Силард сам вел переговоры с американскими и канадскими компаниями, чтобы получить достаточное количество качественного материала, а Ферми проектировал уран-графитовый ядерный реактор, как он сам его назвал, пытаясь найти наилучшую геометрическую форму для обоих компонентов и разместить их так, чтобы получить самоподдерживающуюся цепную реакцию. Ученые знали, что чем больше размеры реактора, тем лучше протекает диффузия нейтронов и возрастает коэффициент размножения kef.

К сентябрю того же года лаборатория располагала шестью тоннами оксида урана (U3O8) и 30 тоннами графитовых блоков. Учитывая размеры и вес материалов, Пеграму пришлось найти другое помещение для их хранения. Так была построена Шермерхорн Рум – квадратная камера со сторонами длиной 2,45 м и высотой 3,35 м с блоками графита и урана, вставленными в герметичные контейнеры, с источником нейтронов радия и бериллия высокой интенсивности у основания. Из-за огромных размеров этой «поленницы» Ферми в шутку говорил, что впервые ему удалось совместить свою страсть к физике и горам и «карабкаться по собственным устройствам». Нейтроны можно было обнаружить с помощью панелей из индия, распределенных по камере. Так появился первый экспоненциальный реактор Ферми. По расчетам ученого, коэффициент размножения нейтронов был равен 0,87, но результаты оказались на 13% меньше необходимого минимума для получения самоподдерживающейся цепной реакции.


«ЧИКАГСКАЯ ПОЛЕННИЦА.

Несмотря на итальянское происхождение, Ферми заслужил доверие Вэнивера Буша и был назначен руководителем проекта по разработке ядерного реактора в Чикаго. Как любой начальник управления или отделения, ученый начал, как он сам говорил, «заниматься физикой по телефону». Он руководил инженерами, строящими новый реактор, обучал своих сотрудников, писал отчеты для военных (60 из них были обнародованы). С марта по сентябрь 1942 года Ферми провел ряд семинаров для членов своей команды и для военных властей, проявив выдающиеся педагогические способности.

По приезде в Колумбийский университет он вместе с Андерсоном проанализировал поглощающие способности бора и кадмия. Реактор должен был иметь систему контроля, чтобы надкритическое состояние не было превышено, и для реализации такой системы Ферми выбрал аварийную кассету из кадмия, механизм действия которой хорошо знал. По настоянию ученого к нему в Чикаго в феврале 1942 года приехал Андерсон.

Ферми назначил его ответственным за контроль чистоты материалов. Ученые начали конструировать «поленницы» меньшего размера по сравнению с Колумбийской, так называемые сигма-призмы с квадратным основанием, сторона которого была равна 1,22 м, и 2,44 м в высоту. Это было необходимо, чтобы определить эффективное сечение (о, сигма, – отсюда и название) графита, приобретенного Силардом. В основании был помещен источник нейтронов, и при помощи пластин индия были произведены измерения.

В июне 1942 года Рузвельт вместе с армией США и Управлением научных исследований и развития начал масштабную работу по созданию атомной бомбы. В августе программу, посвященную урану, назвали Манхэттенским проектом. Работа металлургической лаборатории стала государственным приоритетом, а Ферми получил пост руководителя теоретического отдела проекта.

Между преподаванием и исследовательской работой небольшая разница, если она вообще есть.

Замечание Ферми после цикла лекций, прочитанных в 1942 году

Между 15 сентября и 15 ноября 1942 года Зинн и Андерсон соорудили 16 экспоненциальных реакторов и успешно провели в них измерения. В августе были получены реакторы с коэффициентом размножения, превышающим 1, но контроль реакции еще стоял на повестке дня. В конце ноября казалось, что в реакторе Аргоннской национальной лаборатории все готово для получения самоподдерживающейся цепной реакции.

Однако из-за забастовки сотрудников лаборатории Комптону пришлось принять предложение Ферми и разместить реактор под западным сектором заброшенного стадиона Чикагского университета Stagg Field, на прямоугольном поле для сквоша размерами 9,15 x 18,30 м и немногим больше 8 м в высоту. Зинн и Андерсон уже построили там несколько экспоненциальных реакторов. Ферми смог убедить генерала Лесли Гровса, который должен был контролировать исследования в рамках Манхэттенского проекта (и самого Комптона), в том, что все будет в порядке. Ученый решил придать реактору более округлую форму диаметром 8 м, почти равным высоте поля для сквоша, – это позволяло свести к минимуму потери нейтронов. Он начал работу с деревянным остовом 16 ноября. Андерсон предложил обтянуть сферу оболочкой для аэростатов, а потом откачать из нее воздух и заменить его диоксидом углерода, уменьшив таким образом поглощение нейтронов азотом воздуха. Он сам заказал нужный материал компании Goodyear, которая вначале сочла этот запрос странным и не хотела за него браться, но в конце концов ее убедили деньги и приказ военных властей.

Конструкция состояла из перемежающихся слоев графита с содержанием оксида урана и блоков чистого графита, которым пытались придать близкую к сферической форму. В сборке реактора приняли участие студенты физического факультета Чикагского университета. В графите были проделаны желобки, в которые были вставлены деревянные брусья, покрытые пластинами кадмия. Каждый день в 8 утра Ферми просматривал эти пластины и данные, полученные за предыдущую ночь с помощью счетчика бора-фтора, чтобы проверить интенсивность поглощенных нейтронов. При необходимости пластины заменялись на новые.

Зинн спроектировал особый стержень, который назвали Zip. Он располагался в верхней части, был привязан к веревке и вытаскивался вручную. В желоб реактора он спускался с помощью ролика. Ферми решил сделать Zip встроенным, в том числе чтобы успокоить генерала Гровса и Комптона: многих волновало то, что реактор находится рядом с населенными пунктами. По мнению Нормана Хилбери, который должен был контролировать Zip, это был избыточный механизм обеспечения безопасности, поскольку ту же функцию выполняла кассета с кадмием, и группа Ферми наблюдала за ней ежедневно. Однако безопасность с момента построения первого ядерного реактора не была лишней.

По мере продвижения работ Ферми пришел к выводу, что критическая масса будет получена, даже если не достраивать сферу. Металлический уран Спеллинга имел отличную чистоту, а его расположение в центре реактора значительно увеличило коэффициент размножения.

В июне 1941 года было создано Управление по научным исследованиям и развитию. Артур Комптон с Вэнивером Бушем и Эрнестом Лоуренсом занялся американской программой по развитию атомной бомбы. На фото слева направо: Эрнест Лоуренс, Артур Комптон, Вэнивер Буш, Джеймс Конант, Карл Комптон и Альфред Ли Лумис.

Четвертая годовщина запуска «Чикагской поленницы – 1» (2 декабря 1946 года). Слева направо, в заднем ряду: Норман Хилбери, Сэмюэл Аллисон, Томас Брилл, Роберт Ноблс, Уоррен Ниер и Марвин Вилкенинг.

В среднем ряду: Гарольд Агню, Вильям Штурм, Гарольд Лихтенбергер, Леона Вудс и Лео Силард. Впереди: Энрико Ферми, Вальтер Зиин, Альберт Ваттенберг и Херберт Андерсон.

В ночь с 1 на 2 декабря был уложен последний, 57-й, слой урана и графита. По расчетам Ферми, он должен был создать критическое состояние, учитывая компенсацию потерь нейтронов и все дополнительные системы безопасности. В то же утро Ферми созвал около 40 человек (большинство из них были учеными металлургической лаборатории) и запустил процесс, который должен был привести к критическому состоянию. Совершенно случайно в тот момент в металлургической лаборатории с рабочим визитом находилась группа представителей компании DuPont. Они принимали участие в Манхэттенском проекте, и генерал Гровс обсуждал с этой компанией возможность промышленного создания атомных реакторов, если чикагские эксперименты будут успешными. Гровса интересовали и производство плутония, и возможности будущих реакторов. Таким образом, на DuPont была возложена огромная ответственность, особенно принимая во внимание участие Америки в мировой войне. Учитывая все это, Комптон решился нарушить инструкции военных и отправил Кроуфорда Гринуолта, представителя компании, который позже стал ее президентом, на запуск реактора, хотя к этой зоне могли приближаться только ученые.

Меня не интересует, как выглядят стулья: разумеется, у них должны быть ножки.

Фраза Ферми, свидетельствующая о его прагматизме

По мере того как вынимались кадмиевые стержни, активность нейтронов росла и приближалась к критической. Когда Вейль достал последний стержень, Ферми улыбнулся и прервал всеобщее молчание: «Реакция поддерживается сама». Критическое состояние было достигнуто к 15:22. Ферми оставил реактор включенным в течение 28 минут на максимальной мощности всего в 0,5 Вт, после чего попросил Зинна ввести стержень Zip. Увы, при этом событии, состоявшемся 2 декабря 1942 года, не присутствовали фотографы, и никто не увековечил момент запуска первого реактора с самоподдерживающейся ядерной реакцией – все связанное с этим было военной тайной.

Юджин Вигнер открыл бутылку кьянти – что лучше итальянского вина могло воздать дань уважения Ферми! Все выпили молча и с облегчением: ничего не взорвалось. Лео Силард воскликнул: «Это счастливый день в истории человечества!» Так появилась «Чикагская поленница – 1» (СР-1), первый искусственный ядерный реактор в мире. Это был еще один шаг к созданию атомной бомбы. Только после окончания войны, на симпозиуме в Филадельфии, который состоялся 17 ноября 1945 года, Ферми описал этот поворотный момент в истории человечества в статье «Создание первого ядерного котла*. А в военном докладе «Экспериментальное осуществление расходящейся цепной реакции», сделанном в декабре 1942 года и обнародованном годы спустя, Ферми написал:

«Деятельность физического отделения в этом месяце была посвящена в основном экспериментальному созданию расходящейся цепной реакции. Структура для производства ядерной реакции была закончена 2 декабря и с этого момента работает удовлетворительно».


ГЕНРИ ФАРМЕР

В 1943 году генерал Гровс приставил телохранителей ко всем ведущим ученым, принимавшим участие в Манхэттенском проекте, а также к тем, кто, по его мнению, подвергался наибольшему риску. К Ферми был приставлен Джон Баудино – сын итальянских эмигрантов, который почти не говорил по– итальянски. Благодаря своему происхождению он стал тенью Ферми вплоть до конца войны. Гровс опасался, что за Ферми будут охотиться итальянские шпионы: работа ученого имела огромное значение для США, поэтому его необходимо было защищать и даже контролировать. «Чикагская поленница» проработала до февраля 1943 года. Потом ее разобрали и перевезли в Аргоннскую лабораторию, где она была перестроена с добавлением радиологической защиты и получила название «Чикагская поленница – 2» (СР-2). В марте 1943 года она уже работала и достигла критического состояния. Ферми делегировал задачи ядерной инженерии (эта дисциплина появилась вместе с созданием СР-1) компании DuPont и другим военным проектам, пришедшим на смену СР-1, целью которых было получение плутония и обогащение урана. Это были лаборатории Ок-Ридж, Хэнфордский комплекс и Лос-Аламосская лаборатория. Большая часть группы, которую Комптон собрал для работы над СР-1, была перераспределена между новыми военными проектами.

Таким образом, Ферми мог сосредоточиться на области, которая интересовала его больше всего,– на базовой физике. С 1943 по 1944 год он продолжал работать в Аргоннской лаборатории вместе с прежними коллегами: Андерсоном, с которым у него сложилось особое взаимопонимание, Джоном Маршаллом и Леоной Вудс (летом 1943 года она вышла замуж за Маршалла и взяла его фамилию). Ученые сдружились и часто проводили вместе то небольшое количество свободного времени, которым располагали. Также они совместно написали несколько статей о возможности замедления нейтронов с помощью графита.

[Чудо – это] любое явление с вероятностью ниже 20 %.

Ответ Ферми на вопрос о том, что он считает чудом

Технический прогресс позволил Ферми систематизировать анализ оптических свойств нейтронов, которому он посвятил несколько статей, написанных вместе с Зинном. Теперь он мог получить и правильно измерить коллимированные пучки нейтронов высокой интенсивности. Необходимо подчеркнуть, что открытие коллимированных пучков света, таких как лазер, произошло лишь 15 лет спустя, поэтому изучение свойств структуры материалов посредством коллимированных пучков нейтронов означало новую эру в физике твердых тел.

В июне 1944 года был закончен новый атомный реактор («Чикагская поленница – 3»), в котором вместо графита замедлителем выступала тяжелая вода. Вскоре Ферми использовал его для экспериментов с нейтронами и подробного анализа их свойств, таких как показатель преломления нейтронов в опытах по их рассеянию. Война обязывала заниматься определенными задачами, и от этого никто не мог уклониться. Без сомнения, Ферми обладал самым большим мировым авторитетом в своей области и периодически посещал «место X» в Ок-Ридже и Ханфорде, где компания DuPont конструировала реакторы, а также выступал главным консультантом Лос-Аламосской лаборатории по созданию реакторов.

В июле 1944 года Джулиус Роберт Оппенгеймер, руководивший проектом Y2 в Лос-Аламосе, несколько раз приезжал в Чикаго, чтобы убедить Ферми переехать в так называемое «место Y». У Оппенгеймера возникли различные сложности в ходе проектирования атомной бомбы, и на него начал оказывать давление сам президент. Он понимал, что сможет добиться успеха с помощью Ферми. Приказ был ясен: собрать в Лос-Аламосе как можно больше ученых и ускорить процесс создания атомной бомбы. У семьи Ферми не было выбора: им пришлось переезжать в Лос-Аламос. В конце августа Лаура с детьми отправились в «место Y», а Энрико задержался в Хэнфорде, помогая DuPont решить проблемы с новыми сборками. Прибыв в Лос-Аламос, Лаура обнаружила, что теперь стала женой Генри Фармера: в целях безопасности все ученые, занятые в проекте, и их родственники должны были сменить имя.

Всего за несколько недель до этого, 11 июля 1944 года, в Чикаго Лаура и Энрико поклялись в преданности Соединенным Штатам и получили американское гражданство. Произошло это через пять лет после их переезда в Америку. Когда новоиспеченный Генри Фармер приехал в Лос-Аламос, то увидел, что его семья живет в гораздо более скромных условиях, чем в Чикаго.

Общее руководство Манхэттенским проектом осуществлял Оппенгеймер, а Ферми был назначен одним из директоров. В частности, он отвечал за так называемый отдел F, названный так по первой букве его фамилии (и старой, и новой). Ум и всестороннее знание вопроса помогали ученому решать задачи, перед которыми пасовали работники остальных отделов. Именно в Лос-Аламосе Ферми впервые заинтересовался компьютерами. Для упрощения вычислений Николас Метрополис, Ричард Фейнман и особенно Джон фон Нейман занялись установкой и программированием новой электромеханической вычислительной машины, IBM. В ее задачи входило прогнозирование детонации бомб, и Ферми провел вместе с Андерсоном много часов, анализируя и испытывая новую технику.


АТОМНАЯ БОМБА

Идея, лежащая в основе атомной бомбы, была проста: надо было быстро собрать части вещества, способного к делению, так, чтобы при достаточной критической массе цепная реакция вышла из-под контроля и по достижении критического состояния высвободилось такое количество энергии за такое короткое время, чтобы произошел взрыв. Если энергия высвобождалась медленно, то взрыва не было: максимум получалась небольшая вспышка, которую словно бы испускает бракованная петарда. Если же, наоборот, цепная реакция начиналась раньше положенного времени, то бомба не достигала цели и могла поразить союзные войска.

В Лос-Аламосе было открыто, что для получения эффективной атомной бомбы нужно выстрелить тяжелым шаром урана-235 по ядру того же урана-235, чтобы детонация была достаточно быстрой, а цепная реакция не начиналась раньше времени, замедляя высвобождение энергии. Эта пушечная система впоследствии использовалась при создании ядерной бомбы для Хиросимы, но она работала недостаточно хорошо. Зато плутоний-239, производимый реакторами Хэнфорда, содержал нужное количество изотопов плутония-240, который распадался спонтанно, не вступая в цепную реакцию. Спонтанное деление плутония-240 приводило к преждевременной цепной реакции и вызывало дефективный взрыв. Проблема плутония-240 и его спонтанного деления так беспокоила Ферми, что Оппенгеймер начал сомневаться в том, что создать атомную бомбу вообще возможно. Ферми попробовал уменьшить количество плутония-240, производимого реакторами Хэнфорда, но результат оставался неудовлетворительным. В конце концов Сет Неддермейер понял, как создать плутониевую бомбу. Его идея состояла в том, чтобы получить сферический взрыв плутония. Для этого была важна концентрация материала, поскольку данный взрыв направлен внутрь. При помощи специалиста по взрывчатым веществам Георгия Кистяковского Неддермейер придумал, как добиться того, чтобы ударная волна конвенционального взрыва сжала плутониевый шар вдвое по сравнению с его обычным размером и быстрее, чем цепная реакция, вызванная пушечным методом (см. рисунок). Сжатая сфера плутония легко достигала надкритичности.

Общая схема бомб двух типов, разработанных в рамках Манхэттенского проекта: пушечная бомба на основе урана-235 и плутониевая бомба.

В феврале 1945 года правительство США запланировало взрыв первой атомной бомбы в истории: это был проект «Тринити». Президент Трумэн, сменивший Рузвельта, решительно хотел завершить войну и в мае 1945 года создал комиссию, которая должна была оценить целесообразность использования бомбы. Советские войска уже вошли в Берлин, Гитлер покончил с собой, а Германия 8 мая официально капитулировала. Однако японский фронт еще держался. Трумэн созвал научный комитет под руководством Оппенгеймера, Ферми, Лоуренса и Комптона, чтобы проконсультироваться о возможности применения ядерного оружия. Этот комитет отправил Трумэну 11 июня длинный документ, в котором рекомендовал не использовать атомную бомбу в военных целях или, самое большее, продемонстрировать японцам ее мощь на пустом пространстве. Члены комитета по-разному оценивали эффективность такой демонстрации. Если Ферми не верил в то, что она даст результат, то Силард предлагал организовать такой «показ» перед японскими учеными и военными. С другой стороны, бомбардировки уже привели к тысячам жертв среди мирного населения Японии. Военное командование оказывало на ученых все большее давление, так как число жертв росло, и американское общество хотело как можно быстрее положить конец конфликту. В своем докладе, составленном в конце июня, комитет писал:

«Запросили нашу точку зрения на первое использование нового оружия... Мнения наших коллег-ученых разделились и колеблются между простой технической демонстрацией и военным применением, которое скорее убедило бы японцев сдаться... Мы не в состоянии предложить техническую демонстрацию, которая положила бы конец войне; мы не видим другой приемлемой альтернативы, кроме как прямое использование в военных целях».

Месяц спустя, 16 июля 1945 года, в 5:29, в пустынной местности около Аламогордо, в южной части штата Нью-Мексико, была взорвана первая атомная бомба. Испытание «Тринити» было успешным и произвело ужасающее впечатление. В конце концов было решено использовать имплозивную плутониевую бомбу. Хэнфордские реакторы по указу генерала Гровса работали на полную мощность, чтобы произвести нужное количество плутония. Бомба была собрана. Сегодня мы сказали бы, что ее конструкция была избыточной, а структура – неоптимальной, но, тем не менее, она оказалась эффективной. Манхэттенский проект не мог позволить себе поражение.

Атомную бомбу можно считать одной из главных природных катастроф.

Энрико Ферми

Плутониевая бомба напоминала смертоносную луковицу. В ее центре находился инициатор – небольшой источник нейтронов полония и бериллия, который давал начало цепной реакции. Вокруг него – шар из плутония-239 весом 4,5 кг, окруженный природным ураном, который, в свою очередь, был окружен двумя тоннами взрывчатки. Его волны после детонации должны были вызвать сферический взрыв плутониевой сферы. Природный уран служил для того, чтобы направить нейтроны, участвующие в цепной реакции, к внешней стороне, а также задержать имплозию до необходимого момента. Ферми и другие ученые расположились примерно в 10 км от стальной башни, внутри которой находилась бомба, когда произошла детонация.

Следуя своему методу простого решения сложных задач, Ферми уронил на пол пачку бумажных листов ровно в тот момент, когда до него докатилась ударная волна. Затем он шагами измерил расстояние, на которое они отлетели, и смог примерно оценить мощь бомбы. Ко всеобщему удивлению, через несколько дней, когда были произведены более основательные подсчеты, его оценка подтвердилась. Ферми предположил, что энергия бомбы соответствовала 10 тысячам тонн тринитротолуола. Закончив вычисления, он вместе с остальными руководителями Манхэттенского проекта и представителями высшего военного командования сел в танк Sherman, покрытый свинцом, и подъехал к месту взрыва. Там образовался кратер радиусом 365 м, покрытый твердым стеклообразным слоем ярко-зеленого цвета – расплавленным и застывшим песком. Этот новый минерал назвали тринититом.

Бомбардировщик В-29 под названием Enola Gay сбросил 6 августа 1945 года на Хиросиму «Малыша» (Little Boy) – бомбу на основе урана-235, от которой погибли почти 100 тысяч человек. Плутониевая бомба «Толстяк» (Fat Man), сброшенная 9 августа с другого В-29, Bock’s Саг, стерла с лица Земли Нагасаки, уничтожив 40 тысяч человек. В следующие недели умерли тысячи раненых японцев. Смерти от лучевой болезни продолжались долгие годы, включая несколько последующих поколений. После этих двух величайших катастроф в истории человечества 14 августа Япония капитулировала.

Манхэттенский проект завершился так, как и предлагали его организаторы: оба вида бомб были протестированы в военных условиях. Жертвы среди гражданского населения были неизбежным «побочным эффектом». Однако ученые переживали эти события иначе. Те из них, кто принимал активное участие в проекте, 19 марта 1946 года в Чикаго получили от генерала Гровса медаль за заслуги. Ферми был в их числе. В дипломе, который ему вручили вместе с медалью, говорилось, что он «внес основополагающий вклад в успех создания атомной бомбы».

Ученый стал героем войны, но его мучила совесть. Годы спустя он высказывался за исключительно гражданское применение ядерной энергии. Нравственные страдания, вызванные его участием в разработке самого жуткого оружия массового поражения в истории, не покинули Ферми до самой смерти.


    Ваша оценка произведения:

Популярные книги за неделю