355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » В делении сила. Ферми. Ядерная энергия. » Текст книги (страница 5)
В делении сила. Ферми. Ядерная энергия.
  • Текст добавлен: 9 апреля 2017, 07:00

Текст книги "В делении сила. Ферми. Ядерная энергия."


Автор книги: авторов Коллектив


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 5 (всего у книги 9 страниц)

ГЛАВА 4
Манхэттенский проект

Приехав в США, Ферми начал углубленно изучать деление урана и исследовал механизмы рассеяния и поглощения нейтронов.

В разгар Второй мировой войны, когда атомная физика нашла военное применение под кодовым названием «Манхэттенский проект», ученый возглавил исследовательскую группу, запустившую первый ядерный реактор в истории, «Чикагскую поленницу – 1». Он также участвовал в работе Лос-Аламосской лаборатории, в частности в разработке смертоносной атомной бомбы, которая была применена в конце войны.

Энрико вместе с Лаурой, детьми и служанкой покинули Рим на поезде 6 декабря 1938 года. Нелле было семь лет, Джулио – меньше трех. Самое тревожное было – пройти паспортный контроль на границе с Германией, а после этого путешествие в Швецию прошло довольно спокойно. К счастью, Ферми предусмотрел все возможные трудности и подготовился к ним заранее. Приняв решение уехать из Италии, супруги продумали побег в мельчайших подробностях. Прежде всего, они должны были делать вид, что Ферми едет получать Нобелевскую премию, а после этого вернется в Италию как гордый триумфатор и символ фашизма. Однако радикальные фашисты придерживались другого мнения, ведь в 1935 году Гитлер запретил принимать премии Нобелевской академии. Случилось это после того, как премия мира была присуждена Карлу фон Осецкому – пацифисту, который чуть позже оказался в нацистской тюрьме. Многие в окружении Муссолини считали, что Ферми должен отказаться от премии. К счастью, дуче придерживался собственной точки зрения, которая не всегда совпадала с мнением Гитлера.

Чтобы гарантировать успешный побег, Ферми переступил через себя и, воспользовавшись знакомствами, сделал Лауре «чистый» паспорт, в котором отсутствовали указания на ее еврейское происхождение (что было в то время обязательным).

Затем с помощью своих связей ученый получил визы в немецком консульстве. Эта минута, пока нацистский офицер проверял паспорта семьи Ферми, показалась супругам вечностью. Офицер никак не мог найти страницу с визой, и Энрико на прекрасном немецком спросил, в чем задержка. Тут офицер наконец нашел страницу и поставил печать. В это мгновение жизнь Ферми разделилась на до и после: теперь ученый мог стряхнуть с себя все страхи и волнения предыдущих месяцев, освободиться от напряжения, которое ощущал с того дня, как был издан расовый манифест, ведь под действие этого документа попадала и его семья. Доехав до Балтийского моря, Ферми пересели на корабль до Стокгольма. Они превратились в эмигрантов, оставив родственников, друзей, результаты долгой и упорной работы – всю прежнюю жизнь. Воспоминания тонули в холодном Балтийском море.

Ферми понимал, что покидает своих товарищей и студентов навсегда, но жизнь в Риме становилась невыносимой: фашистское общество проявляло все большую враждебность, и угроза нависла над любимой Лаурой и детьми. Таинственное исчезновение Майораны не давало Ферми покоя, он видел, что многие его коллеги-евреи были вынуждены уволиться из университета. Ученый уехал вовремя, и он это знал. Скоро примеру Ферми последовали и остальные, в Италии остались только Амальди и Д’Агостино. Еще раньше, чем Ферми, родину покинул Сегре: он воспользовался работой в Беркли с Лоуренсом летом 1938 года и после публикации «Расового манифеста» остался в Калифорнии. Понтекорво, который тоже был евреем, не вернулся из Парижа, где продолжал работать с Ирен Кюри и Фредериком Жолио. Он оставался там, пока Германия не захватила Францию, а потом уехал в Испанию и оттуда – в США. Разетги в 1939 году получил место в Университете Лаваля в Канаде. Амальди тем временем провел два года в армии, а впоследствии ему поручили поддерживать огонь физики, который Корбино и Ферми зажгли в сердце Италии.

В день смерти Альфреда Нобеля, 10 ноября 1938 года, как того требовала традиция, Ферми получил премию по физике. Эта церемония развеяла последние сомнения и навсегда

Энрико Ферми с женой Лаурой и их детьми Джулио и Неллой во время побега в США. Там Ферми провел важные исследования, приняв участие в создании первого атомного реактора и разработке атомной бомбы.

Король Швеции Густав V вручает Ферми 10 декабря 1938 года Нобелевскую премию по физике. При получении награды ученый так и не вскинул руку в римском салюте, как надеялся Муссолини.

закрыла семье ученого обратный путь: при получении награды Энрико не вскинул руку в фашистском приветствии и обменялся твердым рукопожатием с королем Швеции Густавом V. Фашистская пресса в дипломатических целях попыталась не слишком акцентировать внимание на этом эпизоде, чтобы не показать Италию слабой в глазах Германии.

В своей речи Ферми говорил в основном о своих работах по радиоактивности и медленным нейтронам, но упомянул также аузоний и гесперий – предполагаемые новые трансурановые элементы. Несколько месяцев спустя, после открытия деления ядра, ученый исправил текст своего выступления. Тем временем мир катился в пропасть – Европа разваливалась на куски.


ПРИБЫТИЕ В США

По пути в Америку Ферми с семьей заехал в Копенгаген, чтобы встретиться с Бором. Вместо физики ученые говорили о неизбежности войны. Ферми поблагодарил Бора за помощь в получении премии, а тот рассказал, что, учитывая сложное положение в Дании (вскоре страна была оккупирована), он и сам собирается в США. Бор хотел провести хотя бы несколько месяцев в Принстоне с Эйнштейном.

В канун Рождества, 24 декабря 1938 года, семья Ферми села на корабль «Франкония», отплывающий из Саутгемптона в Нью-Йорк. В ту ночь, словно вестник из будущей жизни, подарки маленьким Джулио и Нелле принес незнакомый им Санта-Клаус: до сих пор дети получали дары только от волхвов. Все в их жизни менялось.

Утром 2 января 1939 года после спокойного плавания, занявшего несколько дней, пассажиры корабля увидели впереди силуэт статуи Свободы. Глядя с улыбкой на губах на такой близкий американский берег, Ферми воскликнул: «Мы создадим американскую ветвь семьи Ферми!» В Нью-Йорке его ждали Джордж Пеграм, директор физического отделения Колумбийского университета, и Габриелло Джаннини, друг ученого, который в свое время занимался регистрацией в США патента Ферми и его группы на использование медленных нейтронов.

Ферми легко вошел в новую команду в Колумбийском университете и быстро усовершенствовал свой английский методом полного погружения. Его способность вливаться в исследовательские группы упростила процесс привыкания. К тому же Ферми сразу подружился с Хербертом Андерсоном – студентом, который как раз заканчивал докторскую диссертацию на тему дисперсии нейтронов и хотел продолжить исследования под руководством Ферми. Тема этого исследования изменила ход истории: речь шла о делении ядра.


ДЕЛЕНИЕ ЯДРА

В конце 1938 года, когда Ферми только начинал новую жизнь в Америке, немецкие химики Отто Ган и Фриц Штрассман на страницах журнала Naturwissenschaften рассказали о том, что после бомбардировки нейтронами ядер урана обнаружили барий. Ган предоставил результаты экспериментов Лизе Мейтнер, которая совершенно верно усмотрела в них доказательство деления ядра. Мейтнер была еврейкой, бежавшей в Швецию от нацистских преследований, и входила в исследовательскую группу Гана и Штрассмана. В то время с ней в Гетеборге проводил каникулы ее племянник Отто Фриш, сотрудник Бора. Фриш повторил эксперимент 13 января 1939 года, и они вместе с Мейтнер впервые подсчитали выброс энергии при делении. Исследователи поняли: то, что считалось новыми трансурановыми элементами, на самом деле было осколками, образующимися при делении ядра.

События разворачивались одно за другим, как в настоящей цепной реакции. Вернувшись в Копенгаген, Фриш встретился с Бором, который собирался бежать в США, и рассказал ему о своем открытии. Бор прибыл в Америку в середине января. Во время плавания он обсуждал деление с Леоном Розенфельдом, бельгийским физиком-теоретиком, плывшим на том же корабле. Бор вместе с Розенфельдом и Уилером на неформальной встрече в Принстоне 16 января 1939 года изложил результаты экспериментов Гана и Штрассмана и трактовку Мейтнер. На этой встрече присутствовали Раби и Лэмп, физики из Колумбийского университета. Они рассказали об этой беседе Ферми, и тот через несколько дней встретился с Бором. Хотя Ферми виделся с Мейтнер на награждении в Стокгольме, только сейчас он понял свою ошибку. Несколько лет он проводил бомбардировку нейтронами и не разглядел деления ядра!

Ферми решил приступить к работе в Колумбийском университете, где он мог использовать только что созданный группой Джона Даннинга циклотрон, о котором узнал от Джорджа Пеграма. Среди участников группы Даннинга особенно выделялся Херберт Андерсон, разработавший устройство для наблюдения ионизации, вызванной осколками, которые отлетают от ядра в ходе его деления. Благодаря осциллоскопу с катодными лучами, 25 января 1939 года Андерсон выявил импульсы, вызванные делением урана.

После того как нейтрон вызывал первое деление урана, необходимо было подсчитать количество нейтронов, получавшихся в ходе деления, и количество высвобождающейся энергии. Ферми настаивал на необходимости квантитативных методов для разработки способов практического применения, которые он уже держал в уме. Над первой статьей, написанной в США, – The Fission of Uranium («Деление урана») – Ферми работал вместе с группой Даннинга, руководителя диплома Андерсона. В тексте, опубликованном в журнале The Physical Review, были представлены вычисления эффективного сечения при столкновениях медленных и быстрых нейтронов и их обратная зависимость от скорости, что было доказано в опыте с изотопом урана-235, способного к делению. Ферми остановился на испускании нейтронов и на проблеме цепной реакции. Параллельно с ним, также в Колумбийском университете, физик венгерского происхождения Лео Силард и его канадский помощник Вальтер Зинн изучали испускание вторичных нейтронов после деления.


АВАРИЙНЫЕ СТЕРЖНИ И ЗАМЕДЛИТЕЛИ

РИС. 1

Для того чтобы контролировать цепную реакцию, необходимо поглощать часть высвобождающихся нейтронов. В реакторах используются аварийные стержни из материалов, слабо подверженных делению и хорошо поглощающих нейтроны, таких как бор и кадмий (рисунок 1). Чтобы замедлить быстрые нейтроны, используется замедлитель, например тяжелая вода или графит, которые применял Ферми, так как медленные нейтроны вызывают больше процессов деления и их легче поглотить аварийными стержнями (рисунок 2).

РИС . 2

Благодаря структура графит особенно хорошо выполняет функцию замедлителя нейтронов. Вода не является хорошим замедлителем, так как ее протоны имеют тенденцию соединяться с нейтронами, что уменьшает эффективность реакции.

Вскоре Ферми вместе с Хербертом Андерсоном и Лео Силардом опубликовал в The Physical Review статью Neutron Production and Absorption of Uranium («Образование и поглощение нейтронов в уране»), в которой говорилось, что при делении ядер урана с помощью медленных нейтронов, испускаемых нейтронов было больше, чем поглощенных, а также что тепловые нейтроны не могли правильно замедляться водой. По подсчетам ученых, в среднем при каждом делении получалось 1,2 вторичных нейтрона, и это количество могло увеличиться до 1,5. Это был первый и последний проект Ферми в сотрудничестве с Лео Силардом. Ученые слишком по-разному подходили к работе, и это вызывало разногласия. К тому же некоторая неорганизованность Силарда нервировала Ферми, который во всем любил порядок и систематичность.

Так образовались две исследовательские группы, одну из которых возглавил Ферми, а другую – Силард. Сначала они соперничали за первенство публикаций о вторичных нейтронах, получаемых в ходе деления урана: в марте 1939 года каждая группа подготовила статью для The Physical Rexnew. Силард написал ее совместно с Зинном, а Ферми – с Андерсоном. Так или иначе, профессиональные отношения между Силардом и Ферми сохранились на долгие годы и оставили след в виде обширной переписки. Со временем Ферми понял, что Силард – хороший организатор, умеющий вести переговоры с поставщиками и политиками. Именно он убедил Ферми в том, что возможность создать оружие массового поражения, использующего энергию деления ядра, более чем реальна.

Утром 16 марта Джордж Пеграм организовал встречу с Силардом и Ферми, на которой присутствовал также Юджин Вигнер, физик из Принстона. Вигнер был другом Эйнштейна и, как и Силард, венгерским беженцем. Ученые говорили о необходимости держать свои исследования в секрете или, по крайней мере, как можно меньше рассказывать о них в печати. Силард выступал за полное неразглашение, в то время как Ферми взывал к традиции и научной этике. Далекий от мыслей о военном использовании открытия, он был слишком наивен, а может быть, просто сомневался в потенциальной возможности такого использования ядерной энергии. В итоге ученые решили, что они должны связаться с правительством США и военным командованием: и для того, чтобы сохранить исследования в секрете, и для того, чтобы получить финансирование. Ферми проинформировал североамериканские власти 18 марта 1939 года о возможности применения атомной энергии в военных целях.


КАПЕЛЬНАЯ МОДЕЛЬ

Эта модель была предложена Бором и Уилером в 1939 году. Ход деления ядра можно изменять при помощи параметра s, который обозначает расстояние между новыми атомными ядрами и начальным ядром, как в случае с каплей, делящейся на две (рисунок 1). Если V(s) – потенциальная энергия системы, зависящая от s, то вначале значение s невелико; бомбардируемое ядро вибрирует, и его поверхностное натяжение побеждается электрическим отталкиванием. V(s) увеличивается из-за поверхностного натяжения так же, как при делении капли воды. Превысив определенный порог, натяжение перестает быть релевантным, и начинает действовать электростатическое отталкивание между двумя новыми ядрами с положительным зарядом, осколками деления (рисунок 2). Этот процесс, вероятнее всего, происходит спонтанно или же очень медленно. При делении, наведенном бомбардировкой термическими нейтронами, если у них достаточно энергии, барьер деления V(s), равный примерно 6 МэВ для больших ядер, сохраняется, и начинается цепная реакция. Если она происходит на ядерной станции, реакцию можно контролировать, а если в бомбе, то нет. Ядерная энергия деления происходит от разницы масс продуктов деления и реагентов по знаменитой формуле Эйнштейна Е = mc2.

РИС. 1

РИС . 2


Однако власти не проявили большой заинтересованности: отчасти из-за того, что Ферми довольно осторожно описывал возможности использования деления, а отчасти потому, что на этой беседе не присутствовало высокое командование. Создание атомной бомбы казалось несбыточной мечтой. Ферми вернулся в Колумбийский университет всего с 1500 долларами, которые пожертвовал молодой офицер, имевший физическое образование. По любопытному совпадению, в тот же день группа Жолио на страницах журнала Nature рассказывала о большинстве результатов, к которым независимо от нее пришли Ферми и Силард. Жолио и его сотрудники обнародовали открытия, в то время как работа Ферми и Силарда попала под гриф «совершенно секретно», и их исследования уже не могли печататься в научных журналах.

Эйнштейн после разговора с Вигнером и Силардом 2 августа 1939 года написал президенту Рузвельту письмо, в котором рассказывал о прогрессе в изучении цепных ядерных реакций, о возможностях создания бомбы нового типа и просил сформировать комиссию из физиков, которые работали над делением ядра, и из представителей правительства, поскольку в Германии также могли вести работу в этом направлении. И действительно, в Европе Халбан, Жолио и Коварский добились похожих результатов в области деления урана и цепных реакций. Рузвельт создал комиссию, о которой просил Эйнштейн, в октябре 1939 года и пригласил Ферми участвовать в ее работе. Тем временем 1 сентября 1939 года началась Вторая мировая война, и правительство Америки все больше волновал вопрос о том, обладает ли Гитлер атомной бомбой. Ферми получил от Вооруженных сил США дополнительные средства на секретные исследования цепных реакций. Уже летом, одновременно с Силардом, он определил, что вода – плохой замедлитель, так как водород поглощает слишком много термических нейтронов, и начал опыты с графитом. Гонка за атомной бомбой началась.


ПРОБЛЕМА УРАНА

В то время существовало два основных мнения по поводу цепных реакций деления урана. Бор доказал, что делятся атомы урана-235 (он составляет 1 % от всего природного урана), а не более распространенного урана-238, который имеет тенденцию поглощать большое количество нейтронов и образовывать уран-239. Поэтому Бор утверждал, что в случае возникновения цепной реакции надо разделять большое количество изотопов урана-235, или, как мы сказали бы сегодня, обогатить уран. Ферми же, напротив, думал, что с хорошим замедлителем и термическими нейтронами можно вызвать цепную реакцию с природным ураном и даже чуть меньше 0,7 % урана-235.

Даннинг, научный руководитель Андерсона, разделял мнение Бора. Он поручил Альфреду Ниру, специалисту по делению изотопов, работу над проблемой обогащения урана. Именно Нир первым определил соотношение изотопов урана– 235 к урану-238 (он нашел хорошее приблизительное значение 1 /139). Ферми видел, что можно пойти по любому из этих двух путей, но предполагал, что обогащение урана вызовет больше трудностей, чем продолжение уже начатой работы. Однако ему пришлось оставить свои исследования, особенно после статьи в The New York Times, опубликованной по итогам конференции Американского физического общества, в которой сравнивались научные подходы в области изучения цепных реакций.

В 1934 году Юкава заявил о существовании мезотрона, частицы – переносчика значительной ядерной силы, держащей ядра вместе. Он назвал эту частицу, отталкиваясь от греческого слова mesos («средний»), поскольку ее масса была средней между массой протона и электрона. Впоследствии Гейзенберг, как сын преподавателя греческого языка, исправил этот вариант, и сегодня семья бозонов, существование которой было предсказано Юкавой, известна как мезоны. Под влиянием открытия Юкавы Карл Дэвид Андерсон и Сет Неддермейер назвали новую частицу, выявленную в космической радиации, мезотроном (впоследствии она оказалась новым лептоном – мюоном). Мюон ведет себя как фермион, а его масса примерно в 200 раз превышает массу электрона и очень близка к мезотрону Юкавы. Свойства этой частицы поразили научное сообщество.


РАСЧЕТ МАССЫ ПОКОЯ ПИОНА

Массу покоя пи-мезона, или пиона, можно приблизительно рассчитать способом, аналогичным предсказанному Юкавой (это хороший пример подсчета, который в то время выполнил Ферми). Отталкиваясь от принципа неопределенности энергии-времени и от уравнения Эйнштейна, мы получим:

Затем применим теорию относительности, поскольку пион не может иметь скорость, превышающую скорость света, а значит, чтобы переместиться на расстояние г, максимальным значением будет:

Следовательно,

что не противоречит нуклоновой силе. Если мы обозначим через г приблизительный радиус вовлеченных частиц, протонов и нейтронов ядра, то r ≈ 2·10-15 м. Заменив постоянную Планка и скорость света, мы получим приближение, при котором mx ≈ 200 me ≈ 100 МэВ/с2; масса пиона примерно в 200 раз больше массы электрона (me ≈ 0,5 МэВ/с2). Сегодня считается, что масса пиона π° равна примерно 135 МэВ/с2, а масса мюона (лептона, с которым его путали вначале) – примерно 105,7 МэВ/с2. Ошибка была вполне закономерной, учитывая погрешность измерений того времени. Добавим, что названия «пион» и «мюон» были предложены Ферми. Придумав название для нейтрино, ученый находил удовольствие в том, чтобы упорядочивать терминологию физики частиц.

То, что мюон не является одним из мезонов Юкавы, было открыто после того, как в 1939 году Ферми опубликовал свою работу Absorption of Mesotrons in Air and in Condensed Materials («Поглощение мезотронов в воздухе и в конденсированных материалах >) в которой он анализировал поглощение мезотронов, возможно пытаясь найти более легкие, чем нейтроны, частицы для бомбардировки ядра урана. Мысленные эксперименты Ферми по сталкиванию новых частиц на десятки лет опережали существовавшие тогда технологии.

К тому же у Ферми были свои счеты с «элементом 93», доставившим ему столько головной боли после того, как в июне 1934 года он опубликовал в журнале Nature статью «Возможное образование элементов с атомным номером выше 92». В статье Simple Capture of Neutrons by Uranium («Простой захват нейтронов ураном»), написанной совместно с Андерсоном, Ферми доказывал, что изотоп урана-238 в состоянии захватывать медленные нейтроны и после перехода в радиоактивный изотоп урана-239 разлагается на мелкие части. Получался элемент с атомным номером 93 и атомной массой 239, которому Макмиллан и Абельсон в Беркли дали название нептуний. А он, в свою очередь, был промежуточным этапом, ведущим к плутонию – элементу, имеющему огромное значение для ядерных технологий. Нейтроны, испускаемые при первом делении урана, рассеиваются ядрами с меньшей массой, которые находятся в замедлителе. Их энергия в ходе этих столкновений значительно уменьшается, и, следовательно, они не в состоянии вызывать последующее деление урана-238, но могут быть захвачены и участвовать в образовании урана-239.

Изотопы урана и их деление были основным объектом внимания ученых, когда в феврале 1940 года Ферми поехал в Беркли и в сотрудничестве с Сегре создал новый циклотрон, на котором ученые продемонстрировали возможности деления урана-235 с помощью альфа-частиц.

Вернувшись в Колумбийский университет, Ферми вместе с Андерсоном проанализировал создание и поглощение медленных нейтронов углеродом C126 в куске графита. Это вещество не содержит водорода и, следовательно, замедляет скорость нейтронов незначительно. Главная причина, по которой графит стали использовать, заключается в том, что он поглощает меньше нейтронов, чем другие материалы. Завершающий штрих в контроле цепной реакции Ферми поставил, применив кадмий. Вскоре выяснилось, что водород Н11 очень эффективен для захвата нейтронов и образования дейтерия Н21 и что эти нейтроны теряются в ходе цепной реакции.

Радиоактивный ряд урана-238, изученный Ферми.

Указанное время соответствует средней продолжительности жизни изотопа. Оно обозначается, когда речь идет об альфа– или бета– распаде.

Ферми вывел уравнение рассеяния, описывающее поведение нейтронов, а позже, опять же вместе с Андерсоном, определил вероятность того, что уран после деления спровоцирует каскад радиоактивных распадов (так называемый процесс разветвления), который был ему знаком со времен изучения бета-распада. Продукты многих альфа– и бета-распадов могут состоять из еще не стабильных ядер. Эти ядра распадаются снова и снова, пока не появится стабильный элемент. Совокупность этих предопределенных ядерных распадов называется радиоактивным рядом. Радиоактивный ряд урана-238 (см. рисунок), который изучал Ферми, заканчивается созданием стабильного изотопа свинца-206 и занимает 4,51·109 лет. Именно по этой причине в природных залежах урана всегда находят свинец, и именно поэтому радиоактивные останки так опасны, ведь средняя продолжительность жизни радиоактивных материалов обычно огромная. Тем временем Рузвельт отреагировал на продвижение Гитлера в Европе, создав Национальный совет по оборонным исследованиям (National Defense Research Committee, или NDRC) и в его рамках – особую комиссию по изучению урана. Ни Ферми, ни Силард сначала не были допущены в этот орган, поскольку не были гражданами США. Деление урана уже представляло собой вопрос государственной важности, а вскоре ему было суждено обрести и мировое значение. NDRC стремился направить науку на военные цели. Американское правительство знало, что рано или поздно США должны вступить в европейский военный конфликт.


РЕАКТОРЫ ИЛИ БОМБЫ?

Ферми был убежден, что энергия, выделяемая во время самоподдерживающейся цепной реакции с использованием урана, может быть прекрасным источником мощности. Ученый посвятил этому вопросу статью Some Remarks on the Production of Energy by a Chain Reaction in Uranium («Некоторые замечания о получении энергии с помощью цепной реакции в уране»-), которую представил комиссии по изучению урана 30 июня 1941 года. Однако для решения этой задачи требовалось отделить достаточное количество урана-235 от урана-238. Но комиссия сочла невозможным конструирование маленьких ядерных реакторов за имеющееся время для использования их в военных целях, например при запуске снарядов или подводных лодок. Таким образом, она не посчитала приоритетным подобное использование урана.

Другой возможный с технической точки зрения путь деления был открыт Отто Ганом и Лизой Мейтнер: они доказали, что уран-238 может поглощать нейтрон, трансформируясь в уран-239, то есть он становится первым известным трансурановым элементом с атомным номером 93 и атомной массой 239 – так называемым нептунием, обнаруженным в 1940 году в Калифорнийском университете Макмилланом и Абельсоном. В результате распада нептуния, в свою очередь, получался радиоактивный изотоп с атомным номером 94 и атомной массой 239 – плутоний-239 (это название предложил Солд по окончании войны, в 1947 году). Силард на собрании комиссии по урану заявил, что этот элемент обладает всеми необходимыми свойствами для создания ядерной бомбы.

Ферми не терял связи со своим другом Сегре, и когда тот в конце 1940 года приехал к нему на Рождество в Леонию (Нью-Джерси), где семья Ферми жила с лета 1939-го, коллеги обсудили результаты своих исследований. Основной темой был плутоний. Вскоре после этого Сегре и группа ученых из Калифорнийского университета получили плутоний-239. Первые доклады об атомной бомбе на основе плутония появились в июле 1941 года, но наибольшее впечатление произвел доклад, представленный 6 ноября. В нем говорилось о возможности создания ядерных бомб только на основе урана-235. Правительство США оставило открытыми обе линии исследований.

Когда мы открываем новое базовое знание, то любая попытка помешать его применению становится такой же тщетной, как, например, попытка запретить Земле вращаться вокруг Солнца.

Ферми об идее остановить распространение ядерной энергии

В Беркли Эмилио Сегре и Гленн Сиборг усовершенствовали метод получения плутония, показав, что это хороший материал для деления – примерно в 1,7 раза лучше, чем уран-235. Проблема заключалась в том, что циклотрон в Беркли не мог вырабатывать достаточное количество плутония-239. Тогда правительству США стало ясно, что исследования Ферми в Колумбийском университете представляют огромный военный интерес, поскольку он мог получить большее количество плутония.

Тем временем в Бирмингеме (Великобритания) Отто Фриш и Рудольф Пайерлс, бежавшие от нацистского режима, вместе с Жолио и его группой, приехавшими из оккупированной Франции, занимались исследованием цепных атомных реакций с тяжелой водой в качестве замедлителя (водой, в состав которой входил дейтерий Hf вместо водорода Н|) и возможности создания атомной бомбы с ураном-235. Британцы вели с американским правительством переговоры, побуждая США сконцентрироваться на совершенствовании добычи обогащенного урана, игнорируя прогресс, достигнутый в области добычи плутония.

Национальный совет по оборонным исследованиям испытывал трудности с заключением промышленных контрактов, необходимых для развития вооружения, а также вступил в бюрократический конфликт с Национальной академией наук и даже с правительством страны, которому приходилось чрезвычайно дипломатично общаться со странами-союзниками, особенно в том, что касалось атомной бомбы. Чтобы решить все возникшие проблемы, Рузвельт создал Управление научных исследований и развития под своим непосредственным руководством и назначил его директором Буша Вэнивера, который до этого стоял во главе Национального совета по оборонным исследованиям. Буш, следуя рекомендациям своего преемника на прежнем посту Джеймса Конанта, отправил Ферми 19 августа 1941 года письмо, в котором приглашал ученого стать консультантом комиссии по урану, в частности заняться теоретическими аспектами в специальной группе по развитию ядерного реактора.

Японская атака на Перл-Харбор 7 декабря 1941 года подтолкнула США к вступлению в войну против группы союзников – Японии, Германии и Италии. Разработка атомной бомбы пошла быстрее. Исследования развивались по линии и плутония-239, и урана-235, при этом учитывалась возможность продолжения конструирования ядерных реакторов: согласно данным британской разведки, немецкие ученые испытывали к ним особый интерес.

Любопытно, что за день до атаки на Перл-Харбор Вэнивер Буш, уже будучи директором Управления научных исследований и развития, распределил обязанности по изучению ядерного потенциала следующим образом.


ОБОГАЩЕНИЕ УРАНА

Для создания бомбы необходимо было иметь достаточное количество плутония или урана-235. Эрнест Лоуренс использовал электромагнитный метод обогащения урана, разработанный Фрэнсисом Астоном в 1919 году. Метод состоял в том, чтобы создать пучок частиц с ураном в газообразном состоянии. Частицы ускорялись при помощи электрического поля, а потом входили в область воздействия магнитного поля, искривляющего ось так, что оси каждого изотопа урана разделялись и разделялся сам уран-235.

РИС. 1

Разряд калютрона α-1.

Лоуренс разобрал часть своего циклотрона, чтобы сконструировать аппарат, который он назвал калютроном – от слов «Калифорния» и «циклотрон» (рисунок 1). Метод газовой диффузии (рисунок 2), разработанный Гарольдом Юри и Джоном Даннингом в Колумбийском университете, был основан на том, что молекулы в газовых соединениях урана (например, гексафторид урана, UF6), проходя через тончайшие фильтры, делают это с разной скоростью в зависимости от атомной массы изотопа. Уран-235, более легкий по сравнению с ураном-238 и другими изотопами, проходит быстрее, и его можно отделить с помощью центрифугирования.

РИС . 2

Лоуренс в Калифорнийском университете должен был руководить исследованиями по обогащению урана электромагнитными методами в циклотроне; Гарольд Юри в Колумбийском университете был ответственным за улучшение процессов обогащения по газодиффузионной технологии; Эгер Мерфри, директор по исследованиям компании Standard Oil, должен был заниматься в Нью-Джерси промышленным обогащением урана путем центрифугирования; наконец, на Артура Комптона в Чикаго было возложено руководство исследованиями в области теоретической физики, а также проектированием и созданием бомбы. Параметр спонтанной делимости – это вероятность спонтанного деления атома за единицу времени без какого-либо внешнего воздействия. Параметр делимости плутония-239 очень высок по сравнению с ураном-235, поэтому с плутонием-239 проще получить сверхкритическую систему, чем с ураном-235. Однако плутоний был получен искусственно, и необходимая технология его производства была развита недостаточно, поэтому власти США считали, что проще идти по пути обогащения урана.


    Ваша оценка произведения:

Популярные книги за неделю