355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » У интуиции есть своя логика. Гёдель. Теоремы о неполноте. » Текст книги (страница 7)
У интуиции есть своя логика. Гёдель. Теоремы о неполноте.
  • Текст добавлен: 7 апреля 2017, 04:00

Текст книги "У интуиции есть своя логика. Гёдель. Теоремы о неполноте."


Автор книги: авторов Коллектив


Жанры:

   

Математика

,

сообщить о нарушении

Текущая страница: 7 (всего у книги 8 страниц)

Чтобы понять эту идею, приведем доказательство для одного специфического примера, хотя ясно, что эта процедура работает во всех случаях. Итак, назначим действительное число каждому натуральному и посмотрим, как можно найти пропущенное число (на следующем рисунке показаны только числа от 1 до 5, но в действительности список продолжается до неопределенности).

Правило, по которому мы назначили эти числа, неясно, но это не имеет значения, поскольку метод работает при любом правиле назначения. В качестве первого шага этого метода сосредоточим наше внимание на цифрах, находящихся после запятой.

Обратим внимание на диагональную линию, начинающуюся в левом верхнем конце, опускающуюся вправо (см. рисунок). Выдающаяся роль этой линии определила название метода – диагональное доказательство.

Число, которое мы ищем (оно осталось без пары), начинается с 0, а знаки после запятой определены числами, появляющимися по диагонали.


НАТУРАЛЬНЫЕ И РАЦИОНАЛЬНЫЕ ЧИСЛА

Можно было бы подумать, будто N и R имеют разные кардинальные числа потому, что N – дискретное множество (то есть его графическое представление заключено в изолированных точках), в то время как R не является таковым (между двумя действительными числами всегда есть другие действительные числа, в R нет изолированных точек).

Однако дело не в этом. Возьмем множество рациональных чисел, которое обычно обозначается буквой Q и в котором содержатся все рациональные числа, то есть те, что можно представить в виде дроби (или в виде частного двух целых чисел). Например, 1/2 = 0,5 и -4/3 = -1,333... рациональные числа, в то время как √2 = 1,4142... и π = 3,1415... таковыми не являются. Целые числа включены в рациональные, поскольку, например, 6 = 6/1. Хотя рациональные числа не заполняют всю числовую прямую, они не дискретны: между двумя рациональными числами всегда есть другое рациональное число. Например, между двумя рациональными числами всегда лежит среднее для них число. Так, между 1/3 и 1/2 находится

между 1/3 и 5/12 находится среднее для них число, а между 1/3 и этим средним числом – их среднее число, и так далее (схема выше).

Несмотря на то что Q – плотное множество, а N – дискретное, между ними можно установить биективное соответствие. Один из способов сделать это показан на схеме, где появляются все рациональные числа, а стрелки указывают путь, вдоль которого можно пройти один раз через каждую дробь. Способ установления последовательности следующий: первому числу пути (то есть 0) соответствует натуральное число 1, второму (то есть 1) – натуральное число 2, третьему (то есть 1/2) – число 3, и так далее. Пояснение: дробь -2/2 занимает седьмое место на пути, и сначала мы должны были бы назначить ему натуральное число 7. Однако -2/2 равно -1 (-1 и -2/2 – это одно и то же число, записанное по-разному), а числу -1 мы до этого назначили натуральное число 5. Мы не можем назначить 5 числу -1, а 7 – числу -2/2, поскольку это одно и то же число. Способ решения этой проблемы – просто опустить -2/2 и назначить 7 следующей дроби, то есть -2/3.

Для получения первого знака после запятой числа мы берем первую цифру диагонали и прибавляем к ней 1 (если бы это было 9, взяли бы 0). В примере наше первое число диагонали – 3, так что наше число будет начинаться с 0,4.

Для получения второго знака после запятой числа мы прибавляем 1 ко второму числу диагонали (если это 9, берем 0). Для третьего знака после запятой мы пользуемся третьим числом диагонали и так далее. В нашем примере искомое число начинается с 0,41162...

Число, которое мы только что вычислили, не назначено никакому натуральному числу. Оно не может быть назначено первому числу, потому что они отличаются первым знаком после запятой. Также оно не может быть назначено второму числу, потому что они отличаются вторым знаком после запятой. Также оно не может быть назначено третьему числу, потому что они отличаются третьим знаком после запятой, и так далее.

Поскольку существует число, которое избежало назначения, наш пример не может представлять собой биективного соответствия между N и R. Любая попытка такое соответствие определить провалится по описанной причине, следовательно, мы не можем утверждать, что у множеств N и R одно кардинальное число.


КОНТИНУУМ-ГИПОТЕЗА

Кардинальное число действительных чисел больше, чем кардинальное число натуральных. Кантор доказал это в 1873 году и сразу же задался вопросом, существует ли некое множество, кардинальное число которого больше N, но меньше R? В течение нескольких лет он предпринял много попыток найти промежуточное множество между N и R, но ему это так и не удалось. В конце концов, в 1877 году он сформулировал гипотезу о том, что промежуточного множества не существует. Она стала известна как континуум-гипотеза: «Не существует такого множества А, что card (N) < card (А) < card (R)».


ПОЛ КОЭН

Пол Джозеф Коэн родился в Лонг– Бренче (Нью-Джерси, США) в 1934 году в семье польских иммигрантов. С самого раннего возраста он демонстрировал экстраординарные математические способности и считался вундеркиндом. Это позволило ему, несмотря на скудные финансы родителей, учиться в лучших школах Нью– Йорка. Коэн получил высшее образование в Чикагском университете, где в 1958 году защитил докторскую диссертацию, в которой обобщал проблему единственности представления периодической функции рядом Фурье (над этой проблемой работал в начале 1870-х Кантор, и она привела его к разработке собственной теории).

Коэн внес значительный вклад в различные области математики, такие как теория чисел, математический анализ и логика. В1966 году на Международном математическом конгрессе в Москве он получил Филдсовскую премию – самую престижную математическую награду – за работу над континуум-гипотезой. Пол Коэн скончался в Калифорнии в марте 2007 года.

Кантор безуспешно пытался доказать ее в течение многих лет. К 1900 году решения все еще не было, и Гильберт поставил эту гипотезу на первое место в списке проблем в своем знаменитом докладе на конгрессе в Париже.

Решение проблемы в том виде, в каком мы знаем его сейчас, было получено в два этапа. Первый был завершен Гёделем в конце 1930-х годов. В 1938 и 1940 годах Гёдель опубликовал две статьи, где вкратце изложил различные аспекты первой части решения, которое детально изложено в курсе, прочитанном в Институте перспективных исследований. Конспекты курса были изданы в форме книги в 1940 году.

Вторую часть решения получил в 1963 году Пол Коэн – американский математик, который также работал в Институте перспективных исследований. Говорят, Коэн первым показал свое решение Гёделю, но когда он пришел к знаменитому коллеге, тот как раз переживал пик маниакально-депрессивного кризиса и не захотел впускать гостя, поэтому ему пришлось просовывать бумаги под дверь. Через несколько дней Гёдель позвонил коллеге и пригласил выпить чаю, из чего Коэн сделал вывод, что его решение верно. И действительно, за эту работу ученый в итоге получил Филдсовскую премию – для математиков она эквивалентна Нобелевской.


РЕШЕНИЕ ГЁДЕЛЯ И КОЭНА

Верна ли континуум-гипотеза? Это до сих пор неизвестно, поскольку ответ, найденный Гёделем и Коэном, состоит в том, что ни подтвердить континуум-гипотезу, ни опровергнуть ее невозможно на основе аксиом теории множеств. Если обозначить СН высказывание, в котором говорится, что «не существует множества с кардинальным числом, промежуточным между N и R», то СН для теории множеств – это идеальный пример первой теоремы Гёделя о неполноте: ни оно, ни его отрицание недоказуемы.

Как Гёдель и Коэн доказали это? Обозначим • абстрактную числовую операцию и предположим, что она удовлетворяет двум аксиомам:

– аксиома 1: операция коммутативна, то есть a • b = b • а;

– аксиома 2: у операции есть нейтральный элемент, то есть такой, что при операции с ним не происходит никаких изменений (если этот нейтральный элемент назвать е, то а • е = а).

Моделью назовем любой конкретный пример, любую специфическую операцию, выполняющую эти аксиомы. Например, сумма целых чисел – это модель, поскольку сумма коммутативна и имеет нейтральный элемент (то есть 0). Произведение целых чисел – также модель, поскольку эта операция также коммутативна и имеет нейтральный элемент (то есть 1). Вычитание целых чисел, наоборот, не является моделью, поскольку оно некоммутативно (например, 2 – 3 – не то же самое, что 3-2).

На основе этих аксиом можно синтаксически (согласно терминологии из предыдущей главы) доказать, что не может быть двух различных нейтральных элементов. То есть если е и е' – элементы, удовлетворяющие аксиоме 2, то обязательно е = е'. Доказательство состоит в следующем: предположим, что для e и e' верна аксиома 2. Тогда, так как е – нейтральный элемент, е • е' = е' (при операциях с е не происходит никаких изменений). Но е также нейтральный элемент, тогда e' • е = е (при операциях с е' не происходит никаких изменений). Получается, что:

е = е' • е = е • e' = е', следовательно, е = е'.

Любое утверждение, выводимое из аксиом, обязательно будет справедливо во всех моделях, потому что это же самое доказательство воспроизводимо на каждом конкретном примере. Следовательно, в любом примере, выполняющем аксиомы 1 и 2, окажется, что нейтральный элемент операции является единственным. Это происходит, конечно же, в случае суммы (где нет другого нейтрального элемента, кроме 0) и произведения (где единственный нейтральный элемент – 1).

Теперь назовем поглощающим такое число ƒ, что при операциях с ним результат вновь дает ƒ(то есть а • ƒ = ƒ), и рассмотрим утверждение Р "у операции есть поглощающий элемент". Вопрос: можно ли вывести Р из аксиом 1 и 2? Можно ли вывести отрицание Р? Из того факта, что операция коммутативна и имеет нейтральный элемент, можем ли мы вывести, обладает она поглощающим элементом или нет?

Сверху – аксиомы коммутативной операции с нейтральным элементом. Слева внизу – пример, выполняющий эти аксиомы, но не имеющий поглощающего элемента. Справа внизу – пример, в котором имеется поглощающий элемент. Следовательно, существование или отсутствие поглощающего элемента не может быть выведено из аксиом из верхней части схемы.

Если бы существование поглощающего элемента было доказуемым на основе аксиом, то любая коммутативная операция с нейтральным элементом обладала бы поглощающим элементом. Однако это не так, поскольку у суммы, коммутативной операции с нейтральным элементом, нет поглощающих элементов. Следовательно, утверждение Р недоказуемо на основе аксиом 1 и 2.

А если бы отсутствие поглощающего элемента было доказуемым, то ни одна операция, выполняющая аксиомы 1 и 2, не имела бы поглощающих элементов. Однако у произведения целых чисел он есть, поскольку 0 – поглощающий элемент, так что отрицание Р также недоказуемо на основе аксиом. Существование или отсутствие поглощающего элемента не может быть ни доказано, ни опровергнуто на основе аксиом 1 и 2 (см. схему на этой странице).

Гёдель приводит подобные рассуждения в своей второй статье по теории относительности, чтобы опровергнуть факт, утверждаемый Джеймсом Джинсом, о том, что в рамках теории относительности можно определить понятие абсолютного времени. Гёдель отвечает ему, что поскольку он нашел модели теории, в которых этого понятия не существует, невозможно вывести из уравнений Эйнштейна обязательного существования абсолютного времени.

Вернемся к проблеме Кантора. Способ, которым Гёдель и Коэн доказали, что континуум-гипотеза неразрешима на основе аксиом теории множеств, подобен способу, которым мы воспользовались для доказательства неразрешимости Р относительно аксиом 1 и 2. В статьях 1938 и 1939 годов, а также более детально в книге 1940 года Гёдель демонстрирует модель, выполняющую аксиомы теории множеств, для которой континуум-гипотеза верна. В этой модели нет множеств с промежуточными кардинальными числами между N и R – подобно тому, как мы нашли модель, в которой нет поглощающих элементов. Это доказывает, что СН не может быть опровергнута (если бы ее можно было опровергнуть на основе аксиом, она была бы ложной во всех моделях).

Изменение – это иллюзия видимости, вызванная особенностями нашего восприятия.

Курт Гёдель, 1949 год

В 1963 году Коэн нашел модель аксиом теории множеств, в которой существует множество с промежуточным кардинальным числом между N и К, то есть модель, в которой СН ложна, и таким образом доказал, что СН не может быть доказана на основе аксиом теории множеств.

Но в стандартной модели, которую мы имеем в виду, формулируя аксиомы теории множеств, континуум-гипотеза истинна или ложна? На этот вопрос еще нет ответа. Многие специалисты считают, что надо найти еще одну аксиому, которую будут согласны принять как верную все заинтересованные лица, и она позволит в конце концов доказать или опровергнуть СН в стандартной модели. Общее мнение, основанное на философских аргументах (Гёдель и Коэн его разделяли), состоит в том, что континуум-гипотеза на самом деле ложна.


ГЛАВА 5
Следствия из работы Гёделя

Теоремы Гёделя о неполноте обозначили поворотную точку в исследованиях, связанных с философией математики. Современные тексты по философии математики обязательно учитывают теоремы Гёделя, анализируют и делают из них выводы, которые часто становятся причиной споров. Изучение следствий из теорем о неполноте едва лишь началось и, возможно, будет длиться еще десятки или сотни лет.

В Принстоне Гёдель нашел спокойный и однообразный социальный климат, идеально подходящий его образу жизни. Однако даже благоприятное окружение не смягчило ни ипохондрию ученого, ни его чудачества. Напротив, с течением времени его странности усилились до такой степени, что в 1941 году директор Института перспективных исследований Франк Эйделотт был вынужден спросить у личного врача Гёделя, существует ли опасность того, что его начинающаяся паранойя станет опасной для него и окружающих. Хотя врач ответил, что такой опасности нет, сам факт возникновения этого вопроса говорит о многом.

Гёделем владел страх болезней, реальных и мнимых. Так, он был убежден, что от отопления и кондиционера исходит плохой воздух, вредный для здоровья. У него был навязчивый страх холода, и нередко в разгар лета ученого видели в пальто, шарфе и перчатках. Как ни парадоксально, этот страх перед болезнями сопровождался полным недоверием к врачам, которое медленно трансформировалось в опасение людей в целом. Его стремление к одиночеству росло, и иногда он проводил долгие периоды, избегая любого контакта с другими, за исключением супруги Адели и двух-трех самых близких друзей.


ФРАНК ЭЙДЕЛОТТ

Франклин Риджвей Эйделотт родился в деревне округа Гибсон (Индиана, США) в 1880 году и изучал английскую литературу в Индианском университете, который окончил в 1911 году. С 1921 по 1940 год он руководил колледжем Свартмор – образовательным учреждением, в котором провел много инновационных реформ. С 1939 по 1947 год был директором Института перспективных исследований в Принстоне, Нью-Джерси. В тот период в нем работало много выдающихся преподавателей, среди них Альберт Эйнштейн, Гёдель и Джон фон Нейман. Эйделотт скончался в 1956 году в Принстоне.

Фотография, сделанная 14 марта 1951 года – в день, когда Эйнштейну исполнилось 72 года.

На снимке рядом с Эйнштейном – Франк Эйделотт и его супруга.

С момента прибытия в США Адель вела грустную и одинокую жизнь, которая в основном заключалась в заботе о муже, однако необходимость такой заботы становилась все сильнее. Вначале Адели помогал Освальд Веблен, первый друг Гёделя в Принстоне, который поспособствовал ему в получении работы в Институте перспективных исследований. Через некоторое время помощь в заботе о Гёделе стал оказывать Альберт Эйнштейн. Их дружба (особенно крепкая после 1942 года) оказала на Гёделя благотворное влияние; прогулки с Эйнштейном были для него, если можно так сказать, терапевтическими, и хотя чудачества не исчезли полностью, они значительно смягчились. Можно понять, что смерть Эйнштейна в 1955 году стала тяжелым ударом для Гёделя и вызвала обострение его ипохондрии и паранойи. Восполнить эту утрату было невозможно, хотя Адели и помогал в ее заботах о супруге еще один его друг, Оскар Моргенштерн.

Кажется ясным, что плодотворность его идей вдохновит на новые работы. Немногим математикам дарован этот вид бессмертия.

Некролог, посвященный Гёделю, в лондонской газете «Таймс»

Психическое расстройство прогрессировало и в середине 1970-х годов превратилось в бред преследования. Гёдель жил с навязчивой идеей, что его хотят отравить. Доверял он только Адели и Моргенштерну и решительно отказывался принимать пищу, если Адель до этого ее не пробовала.

Оскар Моргенштерн скончался 26 июля 1977 года, через некоторое время Адели пришлось на шесть месяцев лечь в больницу, и Гёдель, оставшийся наедине со своими страхами и навязчивыми идеями, практически перестал есть. Его организм, и так не очень крепкий, быстро ослабел от истощения. Ученого положили в больницу в Принстоне, где он скончался вечером 14 января 1978 года. В заключении о смерти в качестве причины указано "недоедание и истощение, вызванные личными проблемами".

Но в некотором смысле Гёдель так и не умер; его работы, идеи, мысли, теоремы все еще живы; его методы доказательства изучаются и используются по сей день, и не будет преувеличением сказать, что их будут анализировать в течение веков.


ОСКАР МОРГЕНШТЕРН

Оскар Моргенштерн – экономист и математик. Родился в Силезии (сегодня – часть Польши) в 1902 году. Учился в университетах Вены, Гарварда и Нью-Йорка. В Вене посещал знаменитые семинары, организованные Карлом Менгером (профессором Венского университета), в которых также участвовал Гёдель. Во время Второй мировой войны эмигрировал в Принстон и уже в США в 1944 году совместно с Джоном фон Нейманом опубликовал книгу Theory of Games and Economic Behavior («Теория игр и экономического поведения»), которая положила начало современной теории игр. Моргенштерн скончался в 1977 году в Принстоне, Нью-Джерси, США.

В книге «За гранью чисел» американский математик Джон Аллен Полос пишет:

«Логик математики Курт Гёдель был одним из интеллектуальных гигантов XX века, и если предположить, что наш вид выживет, возможно, этот ученый окажется в числе немногих наших современников, которых будут помнить еще тысячу лет. [...] Речь идет не о самоуспокоении математиков, хотя для представителей всех дисциплин характерна некоторая профессиональная близорукость. Просто это правда».


ГИББСОВСКАЯ ЛЕКЦИЯ

Хотя после 1950 года Гёдель публиковался очень мало, это не значит, что он перестал размышлять и писать. Ученый оставил внушительное число неизданных рукописей, посвященных в основном философии и теологии, с исследованиями, среди прочего, на тему существования Бога, переселения душ и анализа философских работ Готфрида Лейбница. Все эти рукописи – поскольку Гёдель не оставил инструкций о том, что делать с ними, – были унаследованы его супругой Аделью, которая, в свою очередь, перед смертью в 1981 году передала их библиотеке Института перспективных исследований, где они и хранятся.

Среди неизданных бумаг выделяется текст Гиббсовской лекции, которую Гёделя пригласили прочитать на ежегодной встрече Американского математического общества, состоявшейся в Провиденсе 26 декабря 1951 года. По свидетельствам, Гёдель ограничился тем, что быстро прочел подготовленную заранее рукопись и даже не предоставил права на вопросы и комментарии в конце, хотя его встречали громкими аплодисментами, вызванными редкой возможностью лично увидеть гения такого уровня.

В последующие годы Гёдель занимался тем, что исправлял и завершал рукопись с намерением опубликовать ее, однако ему так и не удалось придать ей форму, которая удовлетворяла бы его самого. В конце концов лекция была опубликована в 1994 году как часть сборника под названием "Курт Гёдель, неизданные очерки".

Чем так интересна Гиббсовская лекция? В ней Гёдель очень детально (больше, чем в любой другой своей работе) изложил собственное понимание философских следствий из своих теорем о неполноте. В этой лекции он утверждал: теоремы доказывают, что математический платонизм – правильная позиция философии математики.

Вопрос состоит в следующем: математика создается или открывается? Это человеческое творение, или ученые открывают факты, существующие во внешней реальности независимо от них?

Платонизм утверждает, что математические объекты имеют объективное существование, и работа ученых состоит в том, чтобы открывать характеристики этих объектов. Платон был уверен, что наши ощущения – только деформированное отражение высшей действительности, существующей в "мире идей". В этом самом мире живут и объекты, исследуемые математиками.

Знаменитая теорема Гёделя о неполноте показывает, что нет никаких формальных [синтаксических] методов доказательства, с помощью которых можно доказать все математические истины.

Уиллард ван Орман Куайн о теореме Гёделя

Противоположная позиция, которая обычно называется формализмом и в которой собраны некоторые идеи интуиционизма и программы Гильберта, утверждает, что математика – это творение человека, подобное музыке. С этой точки зрения математика – лингвистическая (синтаксическая) игра, в которой есть некоторые отправные точки (аксиомы) и логические правила, позволяющие осуществлять операции на их основе. Работа ученого состоит в том, чтобы открыть, куда нас заведут правила игры (что, по сути, не сильно отличается от работы шахматиста, который ищет оптимальный ход в определенной позиции). Если, согласно платонизму, математические объекты существуют сами по себе, а ученые открывают их свойства, то формализм утверждает обратное: математические объекты и их свойства существуют лишь благодаря ученым. У обеих позиций есть сильные и слабые стороны, и они существуют в математической мысли параллельно друг другу. Современный философ математики Джон Барроу пишет: «Математики – формалисты с понедельника по пятницу и платонисты по выходным».

То есть для повседневной работы, для доказательства теорем и написания статей формалистская позиция является более подходящей, поскольку в конечном счете любая истина основывается на аксиомах, выбор которых не нуждается в дальнейших подтверждениях (в формализме требуется только, чтобы аксиомы были непротиворечивыми, но они не обязаны отражать внешнюю истинность). Однако по выходным, когда математики расслабляются, они чувствуют, что работают с "истинными объектами", существование которых независимо и реально (что бы это ни означало).

Обе позиции четко разделены в отношении вопроса континуум-гипотезы. В предыдущей главе мы увидели, что континуум-гипотеза (СН) неразрешима относительно аксиом теории множеств. Так истинна она или ложна? Для чистого формалиста (хотя сегодня таких почти не существует) ответ не имеет смысла. Аксиомы – это правила игры, выбранные произвольно, не отражающие никакую внешнюю "истинность"; существуют только синтаксические понятия "доказуемого" и "недоказуемого", а не понятия "истинности" или "ложности". Согласно этой точке зрения так же законно добавить в теорию множеств новую аксиому, при которой СН будет доказуема, как и добавить другую аксиому, при которой она будет опровергнута. Две различные теории множеств могут существовать параллельно друг другу так же, как одновременно существуют различные виды шахмат (например, китайские и японские), которые допускают варианты правил игры, и нет необходимости думать, что существуют "истинные" шахматы.

Для платонизма, наоборот, аксиомы теории множеств отражают истину, которая существует объективно и в которой СН либо истинна, либо ложна, и не хватает всего лишь аксиомы, которая позволила бы решить вопрос.

Гёдель был убежденным платонистом и в статье, опубликованной в 1947 году под названием "Что представляет собой проблема континуума Кантора?", писал: "Следует отметить [...], что с точки зрения, принятой здесь, доказательство неразрешимости гипотезы Кантора на основе аксиом, принятых в теории множеств, [...] в какой-то степени решило бы проблему. Итак, если принять, что значение первичных символов теории множеств [...] корректно, то понятия и теоремы теории множеств описывали бы некую точно определенную действительность, в которой гипотеза Кантора должна была бы быть истинной или ложной". Позже, в 1963 году, дополнив доказательство о неразрешимости СН, Пол Коэн согласился с этой точкой зрения и рискнул предположить, что гипотеза Кантора на самом деле ложна.


ЕСТЬ ЛИ ИСТИННЫЕ ШАХМАТЫ?

Китайские шахматы – стратегическая игра из той же серии, что и западные шахматы и сёги (японские шахматы). Считается, что все они происходят от игры под названием чатуранга, зародившейся в Индии в VI веке. Для формалистов (которые подчеркивают синтаксические аспекты математики) выбор аксиом для математической теории не сильно отличается от определения правил настольной игры. Западные, китайские или японские шахматы – родственные настольные игры, но среди них нет «истинной» и «ложных». Подобно этому, поскольку континуум-гипотеза (СН) неразрешима относительно аксиом теории множеств, можно добавить СН или ее отрицание в качестве новой аксиомы. В обоих случаях получаются разные теории множеств (разные правила игры), и нельзя сказать, что одна из них истинная, а другая ложная. Для платонистов, наоборот, теория множеств относится к объективной действительности, в которой континуум-гипотеза на самом деле истинна или ложна.

Доска китайских шахмат с исходной позицией фигур.



РИС. 1

Как мы уже сказали, на Гиббсовской лекции 1951 года Гёдель утверждал, что его теоремы о неполноте доказывают справедливость платонистической точки зрения.

Рассмотрим кратко аргументацию Гёделя. В разуме каждого из нас есть интуитивное представление о том, что такое натуральные числа. Мы понимаем, как определяются основные операции и каковы их основные свойства. Например, мы воспринимаем, что умножение 8 на 5 равносильно физической операции образования восьми столбиков с пятью объектами в каждом из них (рисунок 1).

РИС. 2

Следовательно, у нас есть мысленная модель натуральных чисел, их структуры, которую изучают математики. С другой стороны, первая теорема Гёделя о неполноте доказывает, что эта модель не может быть полностью охарактеризована синтаксическими методами, то есть если мы ограничимся синтаксическими методами рассуждения, всегда найдутся недостижимые истины. Синтаксических методов доказательства недостаточно, чтобы постичь все свойства модели, которую мы не способны понять семантически. Это предполагает, согласно Гёделю, что эта мысленная модель, эти сущности, которые мы называем натуральными числами, со всеми их свойствами и взаимоотношениями, существуют в платонической реальности, находящейся за гранью чистой лингвистики (рисунок 2).


АКСИОМЫ ТЕОРИИ МНОЖЕСТВ

Парадокс Бертрана Рассела был в конце концов решен благодаря переформулировке аксиом теории множеств, предложенной немецким математиком Эрнстом Цермело в 1908 году и улучшенной через несколько лет также немецким математиком Абрахамом Френкелем. Хотя существовали и другие аналогичные предложения (одно из них было представлено самим Гёделем), аксиоматическая теория Цермело – Френкеля (или ZF, как ее обычно называют) сегодня является теорией множеств по умолчанию.

1. Два множества равны, если они имеют в точности одни и те же члены.

2. Существует пустое множество.

3. При заданных х и у существует упорядоченная пара (х, у).

4. Объединение множеств – это также множество.

5. Существует по крайней мере одно бесконечное множество.

6. Любое свойство, которое можно выразить на формальном языке теории множеств, может быть использовано для определения множества.

7. При заданном множестве всегда существует множество, образованное всеми его подмножествами.

8. При заданном конечном или бесконечном семействе непустых множеств всегда существует множество, содержащее ровно один член каждого множества этого семейства.

9. Ни одно множество не является членом самого себя.

Ключевая аксиома для избегания парадокса Рассела – шестая, которая уточняет, на каких свойствах могут основываться определения множеств. Эта аксиома в сочетании с девятой позволяет доказать, что парадоксального множества Рассела просто не существует.


Выводы Гёделя были оспорены современными логиками, такими как Соломон Феферман или Пану Раатикайнен, утверждавшими, что аргументы Гёделя основываются на предположениях, справедливость которых можно оспорить (как тот факт, что в каждом человеческом мозге существует модель натуральных чисел).

Дело в том, что сегодня пока еще нет единодушного мнения о том, какая связь существует между теоремами Гёделя и природой математических объектов. В любом случае прошло чуть более 80 лет с момента публикации теорем Гёделя, а это небольшой срок для того, чтобы делать какой-то определенный математический вывод.


МАТЕМАТИЧЕСКАЯ ИСТИНА

Во многих популярных книгах говорится, что теорема Гёделя о неполноте доказывает невозможность найти множество аксиом арифметики, которое позволило бы доказать все истины этой теории; но это утверждение на самом деле некорректно. Как мы уже много раз говорили, это правда, только если ограничиваться только методами доказательства, принятыми программой Гильберта. Однако существуют и другие методы.

Например, вспомним аксиомы Пеано, то есть аксиомы, относящиеся к натуральным числам и включающие в качестве первоначальных составляющих сумму, произведение и функцию последующего элемента.

Аксиома 1: нет ни одного числа с последующим элементом 1.

Аксиома 2: если у двух чисел один и тот же последующий элемент, то они равны.

Аксиома 3: последующий элемент для х – это х + 1.

Аксиома 4: (х + у) + 1 = х + (у + 1).

Аксиома 5: произведение х на 1 равно х.

Аксиома 6: х · (у + 1) = х · у + х.

Аксиома 7: если 1 выполняет некое свойство и можно быть уверенным, что и х выполняет это свойство, а значит, его последующий элемент тоже его выполняет, то при таких условиях можно быть уверенным: любое число выполняет это свойство.

Докажем, что аксиомы Пеано непротиворечивы. Для начала заметим, что все семь аксиом – это истинные высказывания (в мире натуральных чисел). Мы уже сказали, что из истинных предпосылок можно вывести только истинные утверждения, следовательно, из аксиом Пеано нельзя вывести ни одного ложного высказывания. Но если множество аксиом противоречиво, то на его основе доказуемо любое высказывание. Поскольку есть высказывания, которые недоказуемы на основе аксиом Пеано (ложные высказывания недоказуемы), то мы делаем вывод, что аксиомы Пеано непротиворечивы.


    Ваша оценка произведения:

Популярные книги за неделю