355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » У интуиции есть своя логика. Гёдель. Теоремы о неполноте. » Текст книги (страница 3)
У интуиции есть своя логика. Гёдель. Теоремы о неполноте.
  • Текст добавлен: 7 апреля 2017, 04:00

Текст книги "У интуиции есть своя логика. Гёдель. Теоремы о неполноте."


Автор книги: авторов Коллектив


Жанры:

   

Математика

,

сообщить о нарушении

Текущая страница: 3 (всего у книги 8 страниц)

Иногда говорят, что Гильберт считал, будто работа математика должна сводиться к механическому процессу: он, словно компьютер, должен вычислять, но не думать. Но это не так. Механический характер носит только проверка справедливости аргументов, использованных математиком, а не открытие самих аргументов. Чтобы подчеркнуть эту разницу, Гильберт говорил о двух науках: математике и метаматематике. Объектом второй науки, механической и связанной с конечностью, была бы проверка методов первой.


АКСИОМЫ ПЕАНО

Давид Гильберт в качестве одной из кардинальных проблем представил нахождение множества аксиом арифметики, которые позволили бы доказать все истины теории (не упоминая необходимости механической проверки правильности использованных рассуждений). В своем докладе Гильберт не указал на существующие работы по этой теме. Это упущение вызвало недовольство Джузеппе Пеано – итальянского математика, присутствовавшего на лекции Гильберта. В1889 году он предложил аксиомы арифметики, считая, что они позволят вывести все истинные арифметические высказывания. Аксиомы Пеано, как они известны сегодня, имеют в качестве первичных элементов число 1, знаки сложения (+) и умножения (·) и функции последующего элемента (S).

– Аксиома 1: S(x) никогда не равно 1, то есть 1 не является последующим членом ни для какого числа.

– Аксиома 2: если S(x) = S(y), то х = у.

– Аксиома 3: х + 1 = S(x).

– Аксиома 4: х + S(y) = S(x + у).

– Аксиома 5: х · 1 = х.

– Аксиома 6: х · S(y) = х · у + х.

– Аксиома 7: если можно доказать, что 1 выполняет некое свойство, х его выполняет и S(x) – тоже, то можно сделать вывод: это свойство справедливо для всех натуральных чисел.

Последняя аксиома, также называемая схемой индукции, выражает тот факт, что все натуральные числа получаются на основе единицы повторяющимся применением функции последующего элемента. Если свойство справедливо для числа 1 и мы можем быть уверены, что оно будет распространяться на каждое число, выраженное последующим элементом, то это свойство будет справедливо для всех натуральных чисел. Следствие из теоремы Гёделя состоит в том, что если учитывать условие алгоритмической проверки всех рассуждений, то будут существовать арифметические истины, недоказуемые на основе этих аксиом. Таким образом, арифметика будет неполной.

С 1920 по 1930 год Гильберт опубликовал ряд статей, в которых постепенно излагал свою программу и показывал, как ее можно осуществить на практике. Другие математики увлеклись этой идеей и внесли значительный вклад в ее осуществление. Сам Гёдель в 1929 году, защищая докторскую диссертацию, показал, что можно установить методы рассуждения, правильность которых может быть проверена алгоритмически. В том же году польский математик Мойжеш Пресбургер представил ряд аксиом, непротиворечивость которых можно было проверить алгоритмически. Они позволяли доказать хотя и не все арифметические истины, но их значительную часть. Это были две важные победы формальной программы.

В то же время интуиционизм терял авторитет среди математиков. Многие из тех, кто симпатизировал общим идеям Брауэра, начинали чувствовать, что их реализация на практике, предполагавшая отказ от рассуждений из области теории множеств, принесет больше потерь, чем преимуществ. Формальная программа, в свою очередь, предлагала альтернативу, которая была допустима с философской точки зрения и осуществима на практике.

К 1930 году стало ясно, что Гильберт победил. Оставалось только помочь интуиционистам сохранить лицо и достойно сдаться. В Кёнигсберге, родном городе Гильберта (выбор, конечно, не случаен), был организован конгресс, посвященный основаниям математики. Он проводился с пятницы 5 сентября по воскресенье 7 сентября; на понедельник было назначено награждение Гильберта званием почетного гражданина Кёнигсберга. Все было готово к великой победе учителя.

В пятницу представляли свои работы менее значимые, неизвестные математики. В субботу выступали более значимые, среди них был Ханс Хан, руководитель докторской диссертации Гёделя. Брауэр, который враждовал с Гильбертом по причинам, выходившим далеко за рамки академической науки, не присутствовал; интуиционистскую точку зрения излагал Аренд Гейтинг. Гильберт, имевший проблемы со здоровьем, также отсутствовал, и его главным представителем был его ученик Джон фон Нейман. На конгрессе присутствовал и представитель логицизма, философ Рудольф Карнап. В воскресенье конгресс закрылся пленарным заседанием, на котором были подведены итоги точек зрения интуиционизма, формализма и логицизма. Резюме подвел Гейтинг. Завершая выступление, он сказал, что отношения между интуиционизмом и формализмом наконец-то прояснились и больше нет необходимости продолжать борьбу между этими школами: «Если выполнится программа Гильберта, даже интуиционисты примут бесконечность с распростертыми объятиями». Интуиционисты сдались. Гильберт победил.

Какое значение могут иметь жалкие остатки, немногочисленные, неполные, не связанные друг с другом единичные результаты, которые были выработаны интуиционистами, по сравнению с могущественным размахом современной математики.

Давид Гильберт об интуиционистской школе

Все очевидцы говорят, что именно в этот момент неизвестный молодой математик скромно поднял руку, прося слова. Он был худым, носил очки и, похоже, очень нервничал. Этот молодой человек, Курт Гёдель, объявил, что доказал следующую теорему: если требуется, чтобы доказательства проверялись механически, то невозможно задать аксиомы арифметики, которые позволили бы доказать все истины теории; всегда будут истинные утверждения, которые будет невозможно доказать на основе предложенных аксиом. (Сегодня это утверждение известно как первая теорема Гёделя о неполноте.) Более того, если предложенные аксиомы позволяют доказать довольно обширную часть арифметических истин, то невозможно проверить их непротиворечивость механическими методами. (Это вторая теорема Гёделя о неполноте.) Другими словами, программа Гильберта абсолютно нереализуема.

Мы можем представить себе сцену, которой на самом деле не было, но которая отражает состояние духа формалистов в тот воскресный вечер. Представим себе, что Гильберт звонит по телефону Джону фон Нейману, чтобы спросить его, как все прошло, и тот отвечает: «У меня одна хорошая новость и одна плохая. Хорошая – интуиционисты сдались. Плохая – Гёдель говорит, что и мы проиграли».

Как Гёделю удалось доказать свою теорему? Как можно доказать, что, независимо от предлагаемых аксиом, всегда будет существовать утверждение истинное, но недоказуемое на их основе? Доказательство Гёделя, один из самых больших интеллектуальных подвигов XX века, будет центральной темой следующей главы.


ГЛАВА 2
Первая теорема Гёделя

В первой теореме Гёделя о неполноте говорится, что при любом заданном множестве аксиом арифметики всегда будет существовать истинное арифметическое высказывание, которое невозможно доказать на основе этих аксиом, если пользоваться только теми методами доказательства, которые удовлетворяют программе Гильберта. Доказательство этой теоремы, по сути, состоит в том, чтобы получить самореферентное высказывание, которое говорит о себе: «Я недоказуемо».

После окончания Первой мировой войны Австро-Венгерская империя была разделена на части. Некоторые из них, такие как Австрия, Венгрия, Югославия и Чехословакия, стали отдельными странами. Другие вошли в состав уже существовавших государств, таких как Италия или Румыния. После этого раздела город Брно, в котором жила семья Гёделя, был присоединен к Чехословакии. Курт вспоминал, что с этого момента его отец всегда чувствовал себя австрийцем в изгнании. Возможно, это ощущение в какой-то степени повлияло на решение послать обоих сыновей учиться в Венский университет, чтобы они хотя бы таким образом могли вернуться на родину.

Гёдель поступил в Венский университет в 1923 году с намерением изучать физику. Можно предположить, что врожденное любопытство с самого раннего детства привело его к вопросам о том, почему вещи, подброшенные вверх, падают, или почему некоторые предметы плавают, а другие нет, или почему светит Солнце, – все они связаны с физикой. Однако основная причина, по которой он решил посвятить себя этой науке, по– видимому, сформировалась, когда Гёделю было 15 лет, после того как он прочитал о теории цвета Гёте и о противостоянии подходу Ньютона.

Очень мало известно о личной жизни Гёделя в студенческие годы. Он едва не женился на женщине, которая была на десять лет его старше, но родители воспротивились, и Курт отказался от своего намерения. Нет информации о других личных отношениях или близкой дружбе. По-видимому, юноша посвящал большую часть времени учебе. Но в университете его намерение посвятить себя физике вскоре пропало. В те годы в Вене преподавал Филипп Фуртвенглер, немецкий математик, специализировавшийся на высшей арифметике. Он родился в 1869 году в Эльце (Германия), в 1896-м защитил докторскую диссертацию в Геттингене под руководством Феликса Клейна, одного из самых выдающихся математиков конца XIX века.

Занятия Филиппа Фуртвенглера отличались блеском и ясностью. Число студентов, которые записывались на его курс, было таким большим (оно доходило до 400 человек одновременно), что ученики были вынуждены делиться на две группы, и урок проводился дважды, для каждой из них. У Фуртвенглера был поперечный паралич, и он со своего кресла на колесах диктовал помощнику, что тот должен написать на доске.


ТЕОРИЯ ЦВЕТА ГЁТЕ

Иоганн Вольфганг фон Гёте (1749– 1832) – немецкий романист, драматург и поэт, один из главных представителей романтизма. Помимо литературного творчества, Гёте также занимался наукой и стал автором работ по физике, зоологии и ботанике.

Многие его идеи вызвали споры, некоторые из них разрешились в последующие десятилетия. Например, его классификация растений и понятия о морфологии животных были использованы Чарльзом Дарвином и другими натуралистами XIX века. В книге Zur Farbenlehre («К теории цвета»), написанной в 1810 году, Гёте утверждал, что изучение цвета не должно сводиться к физическим аспектам света, но также должно включать в себя размышления о человеческом восприятии. Для Гёте оптика Ньютона была неполной и представляла собой только частный случай в рамках его собственной теории. Идеи Гёте о свете не заинтересовали физиков его времени; обычно они даже не включаются в работы по истории науки. Однако сегодня признано, что Гёте был прав, различая оптический аспект в том виде, как его изучал Ньютон, и более широкое явление – восприятие цветов человеком.

Портрет Гёте руки немецкого художника Йозефа Карла Штилера.



На юного Курта так подействовали занятия Фуртвенглера, что он оставил решение изучать физику и обратился к математике. Это, без сомнения, выдающийся пример того, как преподаватель может повлиять на жизнь ученика. Только через 25 лет в Принстоне у Гёделя появится возможность вспомнить о своей любви к физике. В 1949 и 1950 годах он опубликовал две важные работы по теории относительности – эти труды Гёделя, единственные не связанные с математической логикой, безусловно, стали результатом его бесед с Эйнштейном.

Небольшое совпадение: Филипп Фуртвенглер закончил обучение в Геттингене в 1896 году и оставался там до 1912-го, когда переехал в Венский университет. Между тем в 1895 году в Геттинген прибыл Давид Гильберт, считавшийся молодой надеждой немецкой математики. Хотя точных сведений об этом нет, мы уверены, что они были знакомы – Филипп Фуртвенглер, благодаря которому Гёдель посвятил себя математике, и Давид Гильберт, чья математическая работа 1920-х годов была «разрушена» теоремами Гёделя. Узнал ли когда-нибудь Фуртвенглер, что именно он вдохновил Гёделя посвятить себя математике? Нам это неизвестно.


ВЕНСКИЙ КРУЖОК

Вернемся к Гёделю и его университетским годам. В то время, в начале 1920-х годов, интеллектуальная жизнь Вены протекала более или менее неформально, в виде кружков (Kreise). Такие группы (которых, вероятно, были десятки, и многие из них назывались одинаково) собирались еженедельно в городских кафе, чтобы обсуждать различные темы, касающиеся философии, политики или психоанализа (в те годы в Вене жил и работал Фрейд).

Самый важный кружок был основан в 1922 году Морицем Шликом, который, кроме того, преподавал Гёделю философию науки. Сначала Шлик дал группе название «Ассоциация Эрнста Маха», но позже она была известна просто как «Венский кружок» (Der Wiener Kreis). В состав группы входили, среди прочих, философы Рудольф Карнап и Людвиг Витгенштейн, а также философ и математик Ханс Хан (который руководил докторской диссертацией Гёделя). Карл Поппер также участвовал в некоторых дискуссиях. Одна из его самых важных работ, Logik der Forschung («Логика научного исследования»), впервые появилась среди публикаций кружка.

Вступить в группу можно было строго по приглашению; Гёдель получил его от Шлика в 1926 году и регулярно ходил на встречи до 1928 года – только как слушатель. Когда Гёдель получил приглашение присоединиться к кружку, он был еще студентом, и это много говорит об авторитете, который он имел среди преподавателей.

Темы обсуждений в Венском кружке касались философии науки в целом и языка науки в частности. Также обсуждали математику, в особенности решения проблемы кризиса оснований, предложенные Расселом, Брауэром и Гильбертом. Явно именно там Гёдель приобрел первые глубокие знания о формальной программе.

Участие Гёделя в Венском кружке привело его в 1928 году к окончательному решению посвятить себя математической логике. На следующий год он закончил свою докторскую диссертацию о проблеме, связанной с программой Гильберта (хотя речь еще не шла о знаменитой теореме о неполноте, которую он представил в сентябре 1930 года на конгрессе в Кёнигсберге).


МОРИЦ ШЛИК

Мориц Шлик – немецкий философ, родился в 1882 году. Он изучал физику вместе с Максом Планком в Берлинском университете; его докторская диссертация, представленная в 1904 году, называлась «Об отражении света в неоднородной среде». Однако Шлинк посвятил свою жизнь не физике, а философии. Его первая научная работа, «Мудрость жизни», была опубликована в 1908 году, а через два года появилось эссе Das Wesen der Wahrheit nach der modernen Logik («Природа истины согласно современной логике»). Через некоторое время Шлинк переключил свое внимание на эпистемологию и философию

науки, и этим темам более не изменял. В 1922 году он занял кафедру философии в Венском университете и в это же время основал Венский кружок как центр для обсуждения новых философских горизонтов, далеких от метафизики и сосредоточенных на эмпиризме. Встречи кружка прекратились в 1936 году, с убийством Морица Шлика студентом университета (некоторые историки утверждают, что студент был психически нездоров, другие – будто он был сторонником нацистов, хотя обе версии не исключают друг друга).

Гёдель представил свою диссертацию в Венском университете 6 февраля 1930 года. В том же году он опубликовал ее в виде статьи. Эта его первая научная публикация появилась в томе 37 (1930) журнала Monatshefte für Mathematik und Physik под заголовком «Полнота аксиом логического функционального исчисления». Теорема, которая в ней доказана, сегодня известна как теорема Гёделя о полноте. В то время она была воспринята как знак выполнимости программы Гильберта.


ТЕОРЕМА О ПОЛНОТЕ

Чтобы понять теорему Гёделя о полноте, мы должны прежде углубиться в теорию математического доказательства по программе Гильберта. Напомним, что согласно ей нужно найти множество аксиом, которые позволили бы доказать все арифметические истины с помощью рассуждений, проверяемых алгоритмически. Но что точно представляет собой арифметика? Каковы истины, которые мы хотим доказать?

Цель моей теории – установить раз и навсегда определенность математических методов.

Давид Гильберт, «О бесконечности»· (1925)

Арифметика – это область математики, в которой говорится о свойствах сложения и умножения натуральных чисел: 1, 2, 3, 4, 5, 6, 7,...; она включает в себя такие понятия, как простые, совершенные, треугольные или четные числа. Теория образована всеми утверждениями (также называемыми предложениями, или высказываниями), связанными с этими понятиями, например «1 + 1 = 2», «2 – четное число», «5 – простое число», «любое число, делящееся на 4, четное» или «сумма двух нечетных чисел дает в результате четное число». Аксиомы, которые искал Гильберт, были бы множеством базовых истин, из которых можно вывести, при уже изложенных условиях, все остальные истинные арифметические утверждения, в том числе упомянутые выше.

С другой стороны, что означает алгоритмическая проверка справедливости рассуждений, доказывающих эти истины? Это означает, что по крайней мере в начале должно быть возможным так запрограммировать компьютер, чтобы за конечное количество шагов он мог определить, является ли доказательство справедливым. В соответствии с этой идеей мы вводим доказательство в машину, она обрабатывает его по предварительно написанной программе и через некоторое время (возможно, долгое, но в любом случае конечное) говорит нам, справедливо рассуждение или в нем содержится ошибка.

В целом проверка правильности математического доказательства – непростая работа, иногда даже для специалистов. Например, когда в 1995 году Эндрю Уайлс представил свое доказательство последней теоремы Ферма, которому он посвятил семь лет, специалисты, его проверявшие, нашли логический пробел – шаг, который, насколько они понимали, не был должным образом обоснован. Уайлс, естественно, этой ошибки не заметил, и ему потребовался год на ее исправление. В конце концов в 1996 году он представил полное доказательство.

Продемонстрируем менее сложный пример. Пусть а и b – два числа, которые мы считаем равными и при этом отличными от нуля. На основе того факта, что а = b, мы можем получить «доказательство» того, что 1 = 2 (для большей ясности пронумеруем логические шаги рассуждения).


1.а = bПо гипотезе.
2.a · b = b · bУмножили оба члена на Ь.
3.a · b = b²Заменили b · b на b².
4.a · b – a² = b² – a²Вычли а² из обоих частей.
5.a · (b – a) = (b + a) · (b – a)Использовали известные алгебраические равенства.
6.a = b + aСократили (b – а) в обеих частях.
7.a = a + aЗаменили b на а> поскольку числа равны.
8a = 2 · aИспользовали равенство а + а = 2 · а.
9.1 = 2Разделили обе части на число а.

Очевидно, что это рассуждение неверно, но где ошибка? Она находится в переходе от шага 5 к шагу 6. В равенстве

а · (b – а) = (b + а) · (b – а)

мы сокращаем скобки (b – а) и делаем вывод, что а = b + а. Это ошибочно, потому что (b – а) равно 0 (поскольку а = b), а 0 нельзя делить. Если представить это в виде чисел и предположить, например, что а и b равны 2, переход от 5 к 6 соответствует тому, чтобы сказать, что из 2 · 0 = 4 · 0 (что истинно) следует 2 = 4.

Но как мы можем научить компьютер обнаруживать ошибки такого типа? Компьютер – это только машина; он не рассуждает, а слепо следует программе, записанной в его памяти. Для того чтобы компьютер мог проверить правильность математического рассуждения, необходимо перевести это рассуждение в последовательность высказываний, каждое из которых либо аксиома, либо выводится из предыдущих высказываний посредством применения точных и заранее установленных логических правил.

Рассмотрим пример математического доказательства, выраженного таким образом. Для начала нам нужны некоторые аксиомы, которые будут служить нам отправной точкой. В 1889 году, задолго до открытия парадокса Рассела, итальянский математик Джузеппе Пеано предложил набор аксиом, которые (как он предполагал) позволяют доказать все арифметические истины. Эти аксиомы основывались на операциях сложения (+), произведения (·), а также понятии последующего элемента (обозначаемого буквой S).

Пеано понимал, что последовательность натуральных чисел получается на основе числа 1 посредством повторного применения функции последующего элемента. Таким образом, 2 определяется как последующий элемент для 1, что обозначается S (1) = 2; 3, по определению, – последующий элемент для 2, то есть S (2) = 3; и так до бесконечности.

Для нашего примера достаточно взять две аксиомы Пеано, относящиеся к сложению.

Аксиома 1: каким бы ни было число х, х + 1 = S(x).

Аксиома 2: какими бы ни были числа х и у, S(x + у) = х + S(у).

В первой аксиоме говорится, что последующий элемент числа х всегда получается прибавлением к нему 1. Вторую аксиому можно воспринимать как (x+y) + 1 = x + (y +1). На основе этих двух аксиом докажем, что 4 = 2 + 2.

Логическая структура доказательства того, что 4*2 + 2. Стрелки показывают применения правил вывода.

Но действительно ли нужно доказывать, что 4 = 2 + 2? Разве это не очевидный факт? Хотя это действительно очевидно, по программе Гильберта любое истинное утверждение, не являющееся аксиомой, должно доказываться на их основе. За исключением высказываний, которые явно указаны как аксиомы, нет других утверждений, которые сами по себе считаются истинными.

Итак, докажем, что 4 = 2 + 2, но запишем рассуждение таким образом, чтобы его мог обработать компьютер. Добавим несколько комментариев, чтобы мы, люди, могли следить за идеей (см. схему).

1. S(x + у) = х + S(y) Аксиома 2.

2. S(2 + 1) = 2 + S(1) Подставили х=2 и у= 1 в аксиому 2.

3. S(2 + 1) = 2 + 2 Заменили S(1) на 2 в предыдущем шаге.

Комментарий: в следующих трех шагах представлено небольшое поддоказательство того, что 2 + 1 = 3; таким образом, в шаге 3 мы можем заменить S(2 + 1) на S(3).

4. х +1 = S(x) Аксиома 1.

5. 2 + 1 = S(2) Подставили = 2 в аксиому 1.

6. 2 + 1 = 3 В предыдущем шаге заменили 5(2) на З.

Комментарий: теперь мы можем заменить 5(2 + 1) на 3 в третьем шаге.

7. S( 3) = 2 + 2

8. 4 = 2 + 2 Заменили S(3) на 4 в предыдущем шаге.

Нужна ли такая точность для доказательства того, что два плюс два равно четыре? Да, это необходимо, если мы хотим, чтобы компьютер был способен проверять правильность рассуждений. Компьютер не думает; следовательно, мы должны вести его за руку, шаг за шагом показывая ему, используя заранее установленные правила, что именно мы сделали на каждом этапе рассуждений.

Действительный мир есть мир, постоянно изменяющийся. [...] Но такие изменения, независимо от их силы, никогда не разрушат истинности отдельного логического или арифметического закона.

Рудольф Карнап. «Философские основания физики»

Что будет делать компьютер, чтобы проверить, правильно ли наше доказательство? Для начала он возьмет первое высказывание и проверит, является ли оно аксиомой. Эта проверка происходит от символа к символу, точно так же как текстовый редактор проверяет орфографию, буква за буквой сверяя слова со словарем, загруженным в память компьютера.

Вспомним, что каждое высказывание должно либо быть аксиомой, либо выводиться из предыдущих высказываний. В нашем примере машина убедилась бы, что первое высказывание – это одна из аксиом в списке (первое высказывание должно быть аксиомой, его нельзя вывести из предыдущих высказываний, просто потому что их нет). Компьютер, конечно же, не понимает значения аксиомы, он только проверяет, что первое высказывание присутствует в списке, предварительно в него загруженном.

После первой проверки машина переходит ко второму высказыванию, S(2 + 1) = 2 + S(1), и проверяет, что это не аксиома (поскольку ее нет в списке). Тогда это второе высказывание должно сводиться к первому с помощью какого-либо логического правила. Чтобы осуществить эту проверку, в память компьютера должен быть загружен список правил логики, то есть правил, которые показывают, какие выводы можно сделать из определенных предпосылок (см. схему).

В случае нашего доказательства правило, позволяющее перейти от шага 1 к шагу 2, заключается в том, что если высказывание начинается с «какими бы ни были числа х и y...», то в следующем выражении буквы х и у могут быть свободно заменены любыми числами. В нашем примере буква х заменена числом 2, а у – числом 1.

Эти логические правила находятся вне арифметики, они справедливы для любой области математики, поэтому выражающие их высказывания называются универсально справедливыми высказываниями (или логическими аксиомами, поскольку они выражают правила логических рассуждений).

Мы уже упомянули одно из этих правил. Другие примеры: «если х = у, то у = х» и «если два числовых выражения равны, то любое из них может быть заменено на другое». Именно это – последнее – правило оправдывает переход от шага 2 к шагу 3, где S(1) заменяется на 2.

Схема механической проверки доказательства.

Но когда существует потенциально бесконечное число универсально справедливых высказываний, как мы можем загрузить их все в память компьютера? Если это нельзя сделать, то компьютер неспособен проверить справедливость любого рассуждения, и, следовательно, программа Гильберта оказывается неосуществимой. При этом ни один компьютер не способен содержать бесконечное число высказываний.


ФОРМАЛЬНЫЙ ЯЗЫК

Как программа Гильберта, так и доказательство Гёделя предполагают, что все арифметические высказывания написаны на формальном языке с помощью заранее установленных символов. Существуют возможные варианты символов, один из наборов которых следующий.

Квантор всеобщности, читается «для каждого». Указывает, что обозначаемое свойство справедливо для любого числа.

=>: Символ импликации; «Р => Q» означает «если Р, то Q».

┐:Символ отрицания;"┐ Р" означает «не-Р».

=: Знак равенства.

1: Число один.

S: Означает «последующий элемент».

+; Символ суммы.

(·): Символ произведения.

(): Скобки.

х₁ х₂, х₃,...: Переменные.

В некоторых представлениях предпочитается брать в качестве первого элемента 0, но это не является существенным. При использовании символов, которые мы привели, число 2 записывается как S(1), то есть следующий за 1. Число 3 записывается как S[S(1)], то есть следующий за следующим за 1. И так далее.

К счастью, в теореме о полноте Гёдель доказал, что хотя количество логических правил потенциально бесконечно, любое рассуждение можно осуществить, используя только 12 из них. Если загрузить в память компьютера эти 12 правил, он будет способен проверить правильность любого доказательства.

Когда в начале 1930 года эта теорема была опубликована, казалось, что необходимая логическая основа для программы Гильберта обеспечена: можно механически проверить правильность арифметических доказательств. Проблема, которую оставалось решить, состояла в том, чтобы найти множество аксиом, которое (на основе этих 12 правил) позволило бы доказать все арифметические истины.

Теорема о полноте не произвела на математический мир большого эффекта. Считалось, что Гёдель просто подробно описал доказательство того, что все и так считали верным, – такой большой была вера в успешную реализацию программы Гильберта. Оставалась только проблема нахождения аксиом арифметики.


ТЕОРЕМА О НЕПОЛНОТЕ

Когда была установлена логическая база, дававшая возможность осуществлять доказательства, проверяемые алгоритмически, оставалось только найти аксиомы, которые позволили бы доказать все арифметические истины. К несчастью для программы Гильберта, эта цель недостижима. Теорема, в которой изложена эта невозможность, известна как первая теорема Гёделя о неполноте, или просто теорема Гёделя:

«Если выбрать в качестве аксиом любое множество истинных арифметических высказываний и требовать, чтобы доказательства, которые можно сделать на их основе, могли быть проверены алгоритмически, то будет по крайней мере одно истинное высказывание, которое не может быть доказано на основе этих аксиом».

Гёдель доказал эту теорему в 1930 году и, как мы уже знаем, впервые открыто изложил ее на конгрессе в Кёнигсберге 7 сентября того же года. Статья с выведением доказательства была послана в журнал Monatshefte für Mathematik und Physik ("Ежемесячник по математике и физике") в ноябре и появилась в томе 38 (1931). Значение этой публикации для логики сравнимо только с "Метафизикой" Аристотеля. Изложение доказательства было таким ясным и прозрачным, что не вызвало ни малейшей полемики.


12 ЛОГИЧЕСКИХ ПРАВИЛ

В своей докторской диссертации, представленной в 1930 году, Гёдель доказал, что любое рассуждение, которое можно проверить алгоритмически, может быть построено всего на 12 логических правилах, которые мы приводим ниже. Далее выражение «Р => Q» означает «если Р, то Q», а " x Р(х)" – «каждое х выполняет свойство Р».

1. Если справедливо высказывание Q, то, каким бы ни было Р, справедливо высказывание «Р => Q».

2. Если справедливо «Р => (Q => R)» и также справедливо «Р => Q», то справедливо «Р=> R».

3. Если справедливо «не-Q => не-Р», то также справедливо «Р => О».

4. Если справедливо" x P(x)", то справедливо «Р(n)», где n – любое число.

5. Если справедливо " x Р => Q(x)", то справедливо "Р => [ x Q(x)]", если только х не используется в Р.

6. Каким бы ни было число х, справедливо, что х = х.

7. Какими бы ни были числа х и у, справедливо, что если х = у, то у = х.

8. Какими бы ни были числа х, у, z, справедливо, что если х = у и у = z, то х = z.

9. Если х = у, то можно заменить х на у в любом числовом выражении.

10. Если х = у, то можно заменить х на у в любом высказывании.

11. Если справедливо Р и справедливо «Р => Q», то справедливо Q.

12. Если справедливо Р(х) для произвольного х, то справедливо" x P(х)".

В целом первые десять правил представлены как универсально справедливые высказывания, в то время как два последних представлены отдельно как правила вывода. Это разграничение чисто техническое и не имеет значения для наших целей.

Но как можно доказать факт такого масштаба? Как можно доказать, что каким бы ни было множество выбранных аксиом (если рассуждения проверяются алгоритмически), то всегда найдется истина, недоказуемая на их основе? Сейчас мы перейдем к объяснению доказательства и для этого рассмотрим, шаг за шагом, основные моменты рассуждений Гёделя.

Ханс Хан, руководитель докторской диссертации Гёделя. Этот австрийский философ и математик внес значительный вклад в формирование Венского кружка.

Немецкий математик Филипп Фуртвенглер, преподаватель Гёделя в Венском университете.

Курт Гёдель в 1935 году, через пять лет после защиты докторской диссертации в Венском университете.


ОБЩАЯ ИДЕЯ ДОКАЗАТЕЛЬСТВА

Предположим, что в качестве аксиом были выбраны некоторые истинные арифметические высказывания. Для начала заметим: тот факт, что аксиомы – это истинные утверждения, гарантирует истинность всех высказываний, которые можно будет доказать на их основе, поскольку из истинных предпосылок (при правильных методах рассуждения) можно сделать только истинные выводы. Это гарантирует, что ни одно доказываемое высказывание не будет ложным, однако это ни в коем случае не означает, что все истины доказуемы. Действительно, наша цель – доказать, что существует истинное арифметическое высказывание, которое не может быть доказано на основе этих аксиом (если мы будем придерживаться методов доказательства программы Гильберта).


    Ваша оценка произведения:

Популярные книги за неделю