355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » У интуиции есть своя логика. Гёдель. Теоремы о неполноте. » Текст книги (страница 4)
У интуиции есть своя логика. Гёдель. Теоремы о неполноте.
  • Текст добавлен: 7 апреля 2017, 04:00

Текст книги "У интуиции есть своя логика. Гёдель. Теоремы о неполноте."


Автор книги: авторов Коллектив


Жанры:

   

Математика

,

сообщить о нарушении

Текущая страница: 4 (всего у книги 8 страниц)

Главная идея доказательства состоит в том, чтобы получить высказывание G, в котором будет говориться: "G недоказуемо". Другими словами, G может быть записано так: "Это утверждение недоказуемо".

Высказывание G самореферентно и говорит о самом себе, что оно недоказуемо (в дальнейшем слово "доказуемый" всегда должно пониматься как "доказуемый на основе предложенных аксиом"). Докажем, что это высказывание G является недоказуемой истиной.

Для начала заметим, что G либо истинно, либо ложно. Если бы G было ложно, в связи с тем, что в G говорится о самом себе, можно было бы сделать вывод, что G доказуемо. Следовательно, G было бы одновременно ложным и доказуемым, но это невозможно (ведь мы сказали, что исходя из истинных аксиом можно доказать только истинные высказывания). Следовательно, G не может быть ложным.

Следовательно, G истинно, и согласно тому, что оно говорит о самом себе, оно недоказуемо. Так мы делаем вывод, что G – истинное и недоказуемое высказывание (см. схему).


ЧИСЛА И УТВЕРЖДЕНИЯ

Предыдущая идея, хотя и правильная в целом, имеет одну проблему: G должно быть арифметическим утверждением. Но арифметические высказывания относятся к свойствам натуральных чисел, в них не говорится о других высказываниях и тем более о самих себе. Как мы можем преодолеть это ограничение и сделать так, чтобы арифметическое высказывание относилось к другому высказыванию? Если в высказываниях говорится о числах, а нам надо, чтобы в них говорилось о других утверждениях, то нужно приравнять числа к утверждениям:

Числа ↔ Утверждения.

Требуется связать с каждым арифметическим высказыванием какое-нибудь натуральное число так, чтобы замечание об этом числе было равносильно замечанию о соответствующем утверждении. Например, если бы утверждению соответствовало число 457, мы могли бы считать, что в любом высказывании, в котором речь идет о 457, одновременно речь идет о Р.

Теперь каждому арифметическому высказыванию назначим число, которое назовем числом Гёделя, или его кодом. Назначение чисел Гёделя происходит специфическим способом, который можно запрограммировать для компьютера, однако для того, чтобы в общих чертах понять идею доказательства теоремы о неполноте, нет необходимости углубляться в технические детали. Примеры, которые мы приведем далее, чисто гипотетические и служат только для того, чтобы проиллюстрировать общее понятие. Представим, что:

"4 = 2 + 2" ↔ код 67

"2 – четное число" ↔ код 223

"162 делится на 18" ↔ код 103

"4 – нечетное число" ↔ код 149

"171 – четное число" ↔ код 61.

Мы настаиваем: коды не назначаются наугад или произвольно. Напротив, существует алгоритм, который при заданном высказывании позволяет точно вычислить его код. Также существует обратный алгоритм, который при заданном коде может восстановить высказывание, которому он соответствует. Более того, в действительности коды, если их правильно вычислить, могут содержать десятки цифр. Например, при реальном вычислении утверждению "1 = 1" соответствует код 2187000000000.

Заметим, что в нашем примере два последних высказывания ложны. Это показывает, что числа Гёделя назначаются всем высказываниям, как истинным, так и ложным. С технической целью числа Гёделя также назначаются общим выражениям, таким как "х – четное число" или "х делится на 18". Они относятся не к конкретному числу, а к переменному числу х. Эти выражения Бертран Рассел называл пропозициональными функциями.

Сами по себе пропозициональные функции не являются высказываниями, поскольку высказывание по определению должно быть истинным или ложным, в то время как истинность или ложность фразы "х – четное число" зависит от значения х. Каждый раз, когда мы заменяем х конкретным числом, мы получаем высказывание, которое будет истинным или ложным в зависимости от выбранного числа. Например, если в "х – четное число" заменить х числом 8, то мы получим истинное высказывание "8 – четное число". Наоборот, если заменить х числом 3, мы получим ложное высказывание "3 – четное число".

Мы уже сказали, что каждой пропозициональной функции также назначается число Гёделя (как и для высказываний, эти коды вычисляются с помощью установленного алгоритма). Например, мы можем представить, что:

"х делится на 18" ↔ код 162

"х – четное число" ↔ код 171.

Заметим, что "х – четное число" назначается код 171, в то время как высказыванию "2 – четное число" соответствует код 223. Коды разные, и это правильно, поскольку речь идет о разных лингвистических объектах. Точно так же "1 – четное число", "3 – четное число", "4 – четное число" имеют разные числа Гёделя.

Наконец, число Гёделя также назначается каждой конечной последовательности высказываний (которое вычисляется на основе кодов высказываний, образующих последовательность). Идея этого назначения в том, чтобы гарантировать, что каждое доказательство также можно будет идентифицировать по его коду. Например, следующему доказательству того, что "4 = 2 + 2" на основе аксиом "S(x + у) = х + S(y)" и "х + 1 = = S(x)":

S(x + y)=x + S(y) 173

S(2 + 1)-2+ S(1) 199

S(2 + 1) = 2+ 2 13

х + 1 = 5(х) 37

2 + 1 = 5(2) 83

2 + 1=3 7

S(3) = 2+ 2 251

4 = 2 + 2 67

может соответствовать (гипотетически) код 2414871965597, который мы вычислили как произведение кодов высказываний, его образующих (они указаны рядом с соответствующим высказыванием).


НУМЕРАЦИЯ ГЁДЕЛЯ

Как в действительности определяется нумерация Гёделя? Чтобы определить ее, каждое высказывание и каждая пропозициональная функция должны быть выражены с помощью символов формального языка. Ученый назначил каждому символу этого языка нечетное число.

 1

=> 3

┐ 5

= 7

1 9

S 11

+ 13

· 15

( 17

) 19

x1 21

х2 23

х3 25

Количество переменных потенциально бесконечно. Оставшимся (х4, х5, ...) соответствуют числа 27, 29 и так далее. Гёдель назначил коды высказываний и пропозициональных функций. Для большей ясности объясним метод на конкретном примере. Какой код соответствует, например, высказыванию «1 = 1»? Шаги для его вычисления следующие.

1. Сначала остановимся на кодах символов, образующих высказывание: 9, 7,9.

2. Поскольку есть три символа, теперь возьмем по порядку три первых простых числа: 2, 3, 5.

3. Тогда код следующий: 29 · З7 · 59 = 2187 000 000 000. (Заметьте, что простые числа – это основания степеней, а коды символов – показатели степеней.)

Для вычисления числа Гёделя конечной последовательности высказываний поступают похожим образом, только на шаге 1 берутся по порядку коды высказываний, образующих последовательность, а на последнем шаге они становятся показателями степеней простых чисел.

Конечно же, как и в предыдущих случаях, должен существовать механический способ, указывающий, как вычислить код последовательности высказываний, и другой, обратный способ, который при заданном коде позволил бы восстановить последовательность соответствующих ему высказываний. Наше правило вычисления кода последовательности как произведения индивидуальных кодов неверно, потому что игнорируется порядок высказываний (при перестановке высказываний местами код конечной последовательности остается тем же самым, но этого не должно происходить, так как при перестановке на самом деле получается другая последовательность). Однако, поскольку речь идет только о гипотетическом примере, мы не будем останавливаться на этом вопросе.


ПОНЯТИЕ ДОКАЗУЕМОСТИ МОЖНО ВЫРАЗИТЬ

Коды, или числа Гёделя, приводят не только к тому, что арифметическое высказывание можно связать с другим высказыванием, но и к возможности говорить о доказуемости этого высказывания. Например, при заданном утверждении Р мы можем записать арифметическое высказывание, в котором говорилось бы, что «Р недоказуемо». Посмотрим, как достичь этой цели.

Как только выбрано множество аксиом, можно без ошибки определить, какие высказывания доказуемы, а какие нет (хотя это может быть и очень сложно на практике). Каждому доказуемому высказыванию, в свою очередь, соответствует число Гёделя. Итак, у нас есть множество чисел, образованное кодами доказуемых высказываний.

Гёдель доказал, что оно характеризуется четко определенным арифметическим свойством. Другими словами, "быть кодом доказуемого высказывания" – свойство, выраженное на языке арифметики (который использует в качестве базовых элементов сложение, умножение и логические операции). Другими словами, свойство "х – это код доказуемого высказывания" может сводиться к числовому свойству, выраженному в терминах сумм, произведений и логических операций. Как обычно говорят, понятие доказуемости можно выразить.

Подчеркнем: именно эта часть аргументации Гёделя зависит в основном от того факта, что программа Гильберта допускает только доказательства, проверяемые алгоритмически. Если бы были разрешены другие методы рассуждения (поговорим о них в следующей главе), то не было бы возможности гарантировать, что свойство "х – это код доказуемого высказывания" может быть выражено в арифметических терминах.

Все принципы математики сводятся к принципам логики.

Уиллард ван Орман Куайн. "С точки зрения логики"

Как Гёдель доказал, что понятие доказуемости можно выразить? Для начала он доказал, что любое числовое свойство, проверяемое алгоритмически (например, "быть простым числом", "быть четным" или "делиться на 9"), всегда можно выразить с помощью сумм, произведений и логических операций.

Итак, то, что высказывание Р доказуемо, означает, что существует доказательство (принимаемое программой Гильберта), в котором Р – это конечное высказывание. В качестве примера мы уже приводили доказательство того, что "4 = 2 + 2" на основе аксиом "S(x + у) = х + S(y)" и "х + 1 = S(x)". Вспомним, что этому доказательству, с учетом последовательности высказываний, соответствует число Гёделя 2414871965597. Вспомним также, что "4 = 2 + 2" соответствует число 67. В переводе на язык кодов доказуемость "4 = 2 + 2" означает, что существует конечная последовательность высказываний (ее код 2414871965597), являющаяся доказательством, в котором конечное высказывание имеет код 67.

"Быть кодом доказательства" – это свойство, проверяемое алгоритмически, поскольку при заданном коде для осуществления проверки компьютер сначала использовал бы программу, восстанавливающую последовательность высказываний, соответствующую этому коду, а затем применил бы к этой последовательности высказываний алгоритм, который определяет, идет ли речь о доказательстве:

Код последовательности → Последовательность высказываний → Это доказательство?


НАЙТИ ИЛИ ПРОВЕРИТЬ

Теория доказательства ставит две проблемы, которые хоть и схожи, но не должны смешиваться. Первая заключается в том, чтобы при данном высказывании Р найти его доказательство (или доказать, что его не существует). Вторая – в том, чтобы определить, верно ли предложенное доказательство. Вторая проблема может быть сложной, но первая намного сложнее. Если методы доказательства подходящие, то вторая проблема может быть решена алгоритмически. Проблема нахождения доказательства, наоборот, неразрешима таким образом.

Британский математик Эндрю Уайлс.


Последняя теорема Ферма

В качестве примера можно рассмотреть последнюю теорему Ферма.

В 1637 году Пьер Ферма записал, что если n > 2, то уравнение хn + уn = zn не имеет решений для натуральных чисел. Ферма уверял, что у него есть доказательство этого факта, но так и не привел его. Проблема нахождения доказательства последней теоремы Ферма стала широко известной и в конце концов была решена Эндрю Уайлсом в 1996 году (он представил первое доказательство в 1995 году, но выяснилось, что в нем содержится ошибка, которая была исправлена почти через год). Определение правильности доказательства Уайлса потребовало несколько дней усилий; но для нахождения доказательства понадобилось более 350 лет.

Каждый шаг может осуществляться алгоритмически.

Следовательно, при заданных х и у свойство "у – это код доказательства, которое заканчивается высказыванием с кодом х" также является свойством, проверяемым алгоритмически, поскольку к предыдущей процедуре надо добавить только проверку того, что последовательность заканчивается высказыванием, соответствующим числу Гёделя х. Поскольку свойство проверяется алгоритмически, пропозициональную функцию "у – это код доказательства, которое заканчивается высказыванием с кодом х" можно выразить в терминах сумм, произведений и логических операций.

Наконец, делаем вывод, что выражение "существует некое у у являющееся кодом доказательства, заканчивающегося высказыванием с кодом х" также можно выразить арифметическими терминами. Фактически в этом утверждении говорится, что существует некое доказательство высказывания с кодом ху другими словами – что высказывание с кодом х доказуемо. Так мы приходим к выводу, что пропозициональную функцию «х – это код доказуемого высказывания» можно выразить арифметическими терминами.

Обычно этот арифметический перевод так сложен, что его явная структура может занять десятки страниц. Поэтому, чтобы понять идею доказательства Гёделя, предположим в качестве гипотетического примера, что свойство, характеризующее коды доказуемых высказываний, – это свойство "быть простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел". Тогда мы допускаем, что "х – это код доказуемого высказывания" равносильно "х – это простое число, которое может быть записано как сумма или разность трех последовательных простых чисел".

Прежде чем продолжить, разберем это свойство. Простые числа – это числа, которые делятся только на единицу и на самих себя. Существует бесконечное число простых чисел: 2,3,5, 7,11,13,17, 19, 23,... (как уже говорилось в предыдущей главе, по техническим причинам число 1 не считается простым).

Число 23, например, простое и может быть записано как сумма или разность трех последовательных простых чисел, поскольку 23 =17 +19 -13 (заметим, что 13, 17 и 19 идут друг за другом в цепочке простых чисел, при выполнении операций их записали в другом порядке). В нашем примере мы можем убедиться, что 23 – это код доказуемого высказывания. Наоборот, 149 – это простое число, которое не может быть записано как сумма или разность трех последовательных простых чисел. Но 149 в нашем гипотетическом примере – это код высказывания "4 – нечетное число". Следовательно, говорить, что "149 не является простым числом, которое можно записать как сумму или разность трех последовательных простых чисел" равносильно тому, чтобы сказать: "высказывание о том, что 4 – нечетное число, является недоказуемым" (и действительно, оно недоказуемо, потому что мы предположили: аксиомы – это истинные высказывания, следовательно, всякое ложное высказывание недоказуемо). Повторим это понятие, поскольку это сердце доказательства Гёделя. Высказывание:

«149 не является простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел» — это, для начала, утверждение арифметического свойства, связанного с числом 149. Но используя нумерацию Гёделя, этому же высказыванию мы можем приписать значение:

«высказывание о том, что 4 – нечетное число, является недоказуемым».

Существует два уровня прочтения "149 не является простым числом, которое можно записать как сумму или разность трех последовательных простых чисел". С одной стороны, чисто арифметически это дословный уровень, на котором мы истолковываем высказывание, выражая свойства числа 149. С другой стороны, у нас есть высший уровень прочтения, метаматематический, зависящий от нумерации Гёделя, и на нем мы истолковываем высказывание, говоря, что утверждение "4 – нечетное число" недоказуемо.


МЕТОД САМОРЕФЕРЕНЦИИ

Мы увидели, что с помощью нумерации Гёделя можно получить арифметические высказывания, в которых идет речь о других арифметических высказываниях. Теперь посмотрим, как мы можем сформулировать высказывание, в котором речь идет о самом себе.

Предположим, что 101 – это код некоего высказывания Q. При таком предположении высказывание "101 – нечетное число" относится к Q и означает "код высказывания Q нечетный". Теперь представим себе, что мы ищем, какому высказыванию соответствует код 101 (то есть задаемся вопросом, что такое Q), и выясняем, что 101 – это число Гёделя для "101 – нечетное число". В этом случае "101 – нечетное число" действительно относится к самому себе и может быть переведено как "мой код – нечетное число".

Да, так и есть, можно построить высказывание, относящееся к его собственному коду. В своей статье Гёдель изложил систематический метод, позволяющий записать арифметические высказывания, относящиеся к собственному коду. Если Р – это любое арифметическое свойство (такое, как "быть четным числом" или "быть простым числом"), то этот метод – метод самореференции – объясняет, как записать высказывание, которое может означать "мой код выполняет свойство Р". Основной инструмент этого метода – функция d(x), которую Гёдель назвал диагональной.

Функция – это правило, которое каждому числу х ставит в соответствие другое число. Оно может совпадать с х или отличаться, но вычисляется однозначно (одному и тому же х не могут соответствовать два разных числа). Правилами могут быть "умножить число х само на себя" или "прибавить 3 к числу х". Для числа 2 первая функция даст значение 4, а вторая – 5. В частности, нас интересуют функции, которые могут быть выражены в терминах сумм, произведений и логических операций.

Пропозициональные функции получили это название, потому что они похожи на функции, но ставят в соответствие не числа, а высказывания. Например, пропозициональная функция "х – четное число" сопоставляет числу 2 высказывание "2 – четное число".

В запись пропозициональных функций мы можем ввести числовые функции, если только они могут быть выражены в терминах сумм, произведений и логических операций. Так, мы можем записать: "х + 3 – простое число" или даже "х² делится на 18", и в обоих случаях это полноправные пропозициональные функции.

Теперь рассмотрим определение функции d(x), которая на самом деле вычисляется только для чисел, являющихся кодами пропозициональных функций. Поясним определение на примере. Возьмем код пропозициональной функции, например 171, который, как мы предположили, является числом Гёделя выражения "х – четное число". Далее в этой пропозициональной функции заменим х числом 171. Мы получим высказывание "171 – четное число". Код этого высказывания – d( 171), число, которое диагональная функция назначает числу 171:

171 → соответствует «х – четное число» → заменяем х на 171 → «171 – четное число» → d(171) – код «171 – четное число».

В первых примерах мы указали, что "171 – четное число" имеет код, равный 61. Следовательно, d(171) = 61. Диагональная функция сопоставляет числу 171 значение 61.

Во втором примере вычислим d(162), где 162 – это код "отделится на 18":

162 → соответствует «х делится на 18» → заменяем х на 162 → «162 делится на 18» → d(162) – это код «162 делится на 18».

Так как "162 делится на 18" имеет код 103, то d(162) = 103. Все шаги, определяющие диагональную функцию, могут быть вычислены алгоритмически, следовательно, ее определение можно выразить с помощью сумм, произведений и логических операций. Это обстоятельство дает нам право ввести числовую функцию d(x) в выражение пропозициональной функции, точно так же как в предыдущих примерах мы это делали с х² или х + 3. Таким образом мы можем рассмотреть выражение "d(x) – четное".

Предположим, что "d(x) – четное" соответствует код 423, и применим эту процедуру для вычисления d(423):

423 —> соответствует «d(x) – четное» -" заменяем х на 423 —" —" «d(423) – четное» —> d(423) – код «d(423) – четное».


ТЕОРЕМА ГУДСТЕЙНА

Возьмем любое натуральное число, например 25. На его основе построим последовательность чисел, называемую последовательностью Гудстейна для числа 25 (названа в честь Рубена Луиса Гудстейна (1912-1985), английского математика, который впервые ее определил). Для получения второго числа последовательности запишем 25 как сумму степеней числа 2 так, чтобы каждая степень появлялась ровно один раз (1 – это тоже степень числа 2, поскольку 20 = 1):

25 = 24+23+1.

И запишем также каждый показатель степени как сумму степеней числа 2:

25 = 2 +22+1 + 1.

Второй член последовательности получается, если заменить каждое 2 на 3 в выражении 222 + 22+1 +1 и затем вычесть 1:

+ З3+1 +1) – 1 = З + З3+1 = 7625597485068

Второе число последовательности Гудстейна для числа 25 – это 7625597485068. Для получения третьего числа заменяем каждое 3 на 4 в З + З3+1 и вычитаем 1. Получается 44⁴ + 44+1 – 1, операция, которая в результате дает число из 155 цифр. Прежде чем перейти к следующему шагу, надо записать 44⁴ + 44+1 – 1 как сумму степеней числа 4, в которой каждая степень появляется самое большое 3 раза и в которой показатели степени также являются суммой степеней числа 4. Заметьте, что 44⁴ + 44+1 – 1 не записано таким образом, поскольку присутствует вычитание. Правильная запись:

44⁴ + 44 + 44 + 44 + 41+1+1 + 41+1+1 + 41+1+1 + 41+1 + 41+1 + 41+1 + 4 + 4 + 4 + 1 + 1 + 1.

Чтобы получить четвертое число, заменим каждое 4 на 5 и вычтем 1. То есть:

55⁵ + 55 + 55 + 55 + 51+1+1 + 51+1+1 + 51+1+1 + 51+1 + 51+1 + 51+1 + 5 + 5 + 5 + 1 + 1.

Результат последнего вычисления состоит из более чем 2000 цифр. Для получения следующего числа заменим каждое 5 на 6 и вычтем 1, и так далее. Кажется, что последовательность растет до бесконечности. Однако в теореме Гудстейна, доказанной им около 1950 года, утверждается, что вне зависимости от исходного числа последовательность всегда за конечное количество шагов достигнет 0. В доказательстве Гудстейна были использованы понятия теории множеств и оставалась открытой возможность того, что оно неосуществимо на основе аксиом Пеано. Это было подтверждено в 1982 году Лори Кирби и Джеффом Пэрисом, которые доказали, что теорема Гудстейна действительно недоказуема на основе аксиом Пеано с помощью рассуждений, проверяемых алгоритмически.

Посмотрим внимательно на последний шаг: d(423) – это код «d(423) – четное». То есть «d(423) – четное число» может читаться как самореферентное высказывание, говорящее о своем собственном коде следующее: «мой код – четное число». Если бы у «d(423) – четное число» кодом было 503, то высказывание можно было бы записать как «503 – четное число» и в нем бы ложно утверждалось, что его собственный код – четное число.

Метод самореференции говорит, что эта процедура может применяться к любому арифметическому свойству Р Возьмем пропозициональную функцию "х выполняет свойство Р" и трансформируем ее в "d(x) выполняет свойство Р". Если код последнего выражения – число я, то "d(n) выполняет свойство Р" может быть прочитано посредством кодификации Гёделя как самореферентное высказывание, гласящее: "мой код выполняет свойство Р". Теперь посмотрим, как этот метод приведет нас в итоге к искомому высказыванию G.

Мы уже сказали, что "быть кодом доказуемого высказывания" – это свойство, которое можно выразить в терминах сумм, произведений и логических операций. Очевидно, что то же самое происходит и с его отрицанием. Следовательно, мы можем записать пропозициональную функцию:

"x: не является кодом доказуемого высказывания", что, как говорится в методе самореференции, превращается в: "d(x) не является кодом доказуемого высказывания". Если его код – число т, то:

G: "d(m) не является кодом доказуемого высказывания"

имеет в качестве кода число d(m) и может рассматриваться как самореферентное высказывание, говорящее о своем коде следующее: "мой собственный код не соответствует доказуемому высказыванию". Другими словами, в G говорится:

"G недоказуемо".

Как мы видели в начале доказательства, это высказывание является истинным и одновременно недоказуемым (вспомним, что "доказуемый" всегда означает "доказуемый на основе предложенных аксиом"). Мы доказали, что существует высказывание G, являющееся истинным и недоказуемым, и описали шаги, необходимые для того, чтобы записать его. Этим завершается доказательство первой теоремы Гёделя о неполноте.


ПАРАДОКС ЛЖЕЦА

Один из самых древних известных парадоксов – это так называемый парадокс лжеца. Он возникает, если поставить вопрос, является ли утверждение «это предложение ложное» истинным или ложным. Если утверждение истинно, то, судя по его смыслу, оно оказывается ложным. Но если оно ложно, то оно получается истинным. Так мы сталкиваемся с бессмыслицей, порочным кругом, который снова и снова приводит нас от истинности к ложности и от ложности к истинности. В своей статье 1931 года Гёдель объяснил, что его доказательство найдено под влиянием парадокса лжеца, только вместо того чтобы написать высказывание, говорящее о собственной ложности, Гёдель написал высказывание, говорящее о собственной недоказуемости. Высказывание «это предложение ложно» – парадоксальная бессмыслица. Но высказывание «это предложение недоказуемо на основе предложенных аксиом» – недоказуемая истина.

Важное пояснение: рассуждение, которое мы провели, на самом деле не является формальным доказательством первой теоремы Гёделя о неполноте. Это только введение, полезное для понимания основных идей, но не объясняющее специфических деталей того, как эти идеи применяются на практике. Если читателя заинтересовали детали, он может углубиться в технические работы по математической логике.

Как выглядело бы высказывание G в нашем гипотетическом примере? Вспомним, что в этом примере свойство, характеризующее коды доказуемых высказываний, – это "быть простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел". Возьмем пропозициональную функцию "х не является простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел" и трансформируем ее в "d(x) не является простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел". Предположим, что последнему выражению соответствует число 909.

Тогда высказывание G формулируется как

"d(909) не является простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел".

Также предположим, что d(909) – это число 43. Следовательно, G примет вид

"43 не является простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел".

Как уже было указано раньше, G имеет два уровня прочтения. На элементарном уровне это выражение арифметического свойства числа 43. Только когда мы смотрим на него через призму кодификации Гёделя, оно превращается в самореферентное и может читаться как говорящее о самом себе, что оно недоказуемо. Во второй главе мы увидим, что это замечание о различных уровнях прочтения позволяет преодолеть видимый парадокс, который возникает из анализа второй теоремы Гёделя.


НЕДОКАЗУЕМАЯ ИСТИНА

В связи с первой теоремой о неполноте обычно возникает вопрос: если G – недоказуемая истина, как мы можем быть уверены в ее истинности?

Ответ заключается в том, что «доказуемый» – относительное понятие. Если задано множество аксиом Л, существует истинное высказывание G, которое недоказуемо на основе этих аксиом (с использованием методов доказательства, принятых в программе Гильберта). Но ничто не мешает G быть доказуемым на основе других аксиом или с помощью других методов.

Хотя это пока точно не известно, последняя теорема Ферма может быть примером истины, недоказуемой на основе аксиом Пеано. В этой теореме, впервые предложенной Пьером

Ферма в 1637 году, утверждается, что если n > 2, то хn + уn + zn не имеет решений среди натуральных чисел. После многочисленных попыток теорема наконец была доказана Эндрю Уайлсом в 1996 году.

Однако доказательство Уайлса во многом выходит за пределы обычных методов или аксиом арифметики. Последняя теорема Ферма истинна (Уайлс доказал это), но доказуема ли она, например, на основе аксиом Пеано с помощью методов программы Гильберта? Сегодня ответ на этот вопрос неизвестен, но наиболее разумное предположение заключается в том, что последняя теорема Ферма недоказуема на основе аксиом Пеано посредством рассуждений, проверяемых алгоритмически.

Однако если G недоказуемо на основе множества A аксиом, вполне возможно добавить во множество А новую аксиому, так что G станет доказуемым на основе этой расширенной системы, которую обозначим А'. Конечно, для А также справедлива теорема Гёделя, и, следовательно, будет существовать арифметическое утверждение G', которое является недоказуемым на ее основе.

Мы можем добавить в А новую аксиому, которая позволит доказать G и так получим множество A", где G будет доказуемым. Но для А' существует новое недоказуемое высказывание G". Мы можем добавить новую аксиому в А", но тогда существует недоказуемое G""... И так до бесконечности...

A —> G недоказуемо.

А' = А + другая аксиома —> G доказуемо, но G' – нет.

А" = А' + другая аксиома —> G и G" доказуемы, но G" – нет.

А"' + другая аксиома —> G, G и G" доказуемы, но G'" – нет.

Добавляя аксиомы по одной, никогда не удастся достигнуть полноты (то есть возможности доказать все истины). Но можно ли добиться этого другими средствами? Обратимся к этому вопросу в следующей главе.


    Ваша оценка произведения:

Популярные книги за неделю