355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » «Открытия и гипотезы» №2, 2012 » Текст книги (страница 3)
«Открытия и гипотезы» №2, 2012
  • Текст добавлен: 12 октября 2016, 03:39

Текст книги "«Открытия и гипотезы» №2, 2012"


Автор книги: авторов Коллектив



сообщить о нарушении

Текущая страница: 3 (всего у книги 8 страниц)

Е. Котина
НАЙДЕНО НОВОЕ ПЛОТОЯДНОЕ РАСТЕНИЕ
*********************************************************************************************

Малоизученное растение, которое вообще не считалось плотоядным, на поверку оказалось наделенным уникальным механизмом питания. Чтобы раскрыть этот секрет, ученым потребовалось целое десятилетие.

Род Philcoxia, живущий в тропической саванне Бразилии, ученые впервые описали в 2000 году. Трем найденным видам дали названия бразильских штатов – Р. bahiensis, P. goiasensis и P. minensis. Ботаники отметили, что редкие растения предпочитают регионы с обилием солнца и песчаными почвами, в которых мало питательных веществ.

Новички сразу же приметились округлыми листьями с железами, которые производят липкое вещество. Особенности явно намекали на плотоядность растений, но никаких доказательств охоты первооткрыватели не обнаружили.

И вот, похоже, большую часть вопросов снимает статья, опубликованная в PNAS. В ней ученые не только приводят доказательства плотоядности Philcoxia, но и объясняют, почему эта особенность оставалась незадокументированной. Оказалось, P. minensis использует поразительный механизм – его липкие листья скрыты под песком и служат ловушкой для круглых червей нематод.

Это доказали лабораторные тесты, когда исследователи скормили Р. minensis нематод и удостоверились, что черви перевариваются с помощью ферментов и при этом выделяется характерный изотоп азота. Окончательным свидетельством стали повторные опыты с тем же, но «проголодавшимся» растением.

Комментируя открытие, эксперты сходятся во мнении, что нынешняя оценка, будто бы плотоядны лишь 0,2 % цветковых растений, может быть существенно заниженной, и вероятнее всего, нас окружает гораздо больше растений-убийц, чем мы думаем.


КАК ХОДЯТ НОСОРОГИ
*********************************************************************************************

Сотрудники Королевского ветеринарного колледжа (Великобритания) задались довольно странным и, как может показаться, праздным вопросом: как ходит носорог? Но стоит только присмотреться к виду носорожьей ноги, как тут же понимаешь, что могло привлечь внимание ученых мужей. От колена до бедра носорожья нога выглядит тонкой и хрупкой: внизу она переходит в довольно широкую стопу с подогнутыми пальцами. При этом вес носорога порой превышает 3,5 т. Как ноги животного во время ходьбы справляются с такой тяжестью?

Исследователи работали с тремя белыми носорогами, живущими в одном из британских зоопарков. Животных заставляли ходить по специальному покрытию, нашпигованному датчиками давления. Полученные данные позволили узнать кое-что новое о способе передвижения носорогов, но одновременно озадачили исследователей другими загадками. Оказалось, что пальцы на ногах носорога испытывают давление в 5,25 кг/cmI, а сама стопа – всего 1,05 кг/cmI. Если сравнить это с давлением, которое действует во время ходьбы на человеческую стопу, то окажется, что это величины одного порядка. Причем, исследователи подчеркивают, что это максимальные значения, взятые в отдельных точках стопы. Ученые не измеряли время, в течение которого каждая отдельная точка испытывает такое давление; также не проводился подробный анализ распределения веса по всей поверхности стопы. Тем не менее, очевидно, что свой колоссальный вес носороги умеют распределять более чем эффективно.

Авторы работы попробовали сравнить походку носорогов с походкой слонов, еще одних сухопутных гигантов, которым тоже приходится решать проблему веса тела. Оказалось, что носороги большую часть веса направляют на внутреннюю часть стопы, слоны – на внешнюю. Правда, как это происходит с точки зрения анатомии и физики, зоологи пока сказать не берутся.

ОПРЕДЕЛЕН ЦВЕТ МЛЕЧНОГО ПУТИ
*********************************************************************************************

Группа астрономов из Питтсбургского университета дала точное определение цвету Млечного Пути. Как выяснилось, название нашей Галактике дали весьма меткое. «Очень чистый белый, похож на цвет свежего весеннего снега ранним утром, вскоре после рассвета», – формулируют профессор Джефри Ньюман и аспирант Тимоти Ликиа.

Поскольку Солнечная система находится внутри Галактики, определить ее цвет не так-то легко – облака пыли и газа скрывают из поля зрения все, кроме ближайших к нам областей. Как отметил г-н Ньюман, это все равно что пытаться узнать, как какая погода на улице, сидя в доме без окон.

Ученые решили воспользоваться изображениями других галактик, полученными проектом Sloan Digital Sky Survey (SDSS), которому удалось «расцветить» уже примерно четверть неба и учесть около миллиона галактик. Столь большая выборка позволила лучше понять развитие Млечного Пути и найти параллели с прочими объектами.

Специалисты выделили около тысячи галактик, похожих на Млечный Путь количеством звезд и скоростью, с которой они создают новые светила. Оба параметра связаны с яркостью и цветом объектов. Вот так и удалось выяснить, что Млечный Путь должен быть сильно похож на самые белые галактики. Следует отметить, что во многих культурах название, дававшееся звездной полосе, хорошо видимой в ночном небе, связано с молоком – вероятно, наряду со снегом оно воспринимается человеческим зрением как самая белая вещь на свете.

Астрономы делят большинство галактик на две большие категории – красные (новые звезды там формируются очень редко) и голубые (в которых звездообразование идет полным ходом; кстати, самые яркие звезды – именно голубые, правда, они живут недолго по космическим меркам). Новое исследование помещает Млечный Путь близко к границе между этими группами.

Цвет Млечного Пути очень похож на цвет эталонного источника света D48.4, то есть лампу с цветовой температурой 4700–5000 К. Это примерно на полпути между светом старых ламп накаливания и стандартного белого цвета на экране телевизора.

Хотя Млечный Путь по-прежнему производит звезды, его ресурсы заканчиваются. «Через несколько миллиардов лет наша галактика поскучнеет: звезды среднего возраста будут медленно стареть и умирать, а на их место никто уже не придет», – описывает г-н Джефри Ньюман.


ЗВЕЗДЫ НАШЕЙ ГАЛАКТИКИ
*********************************************************************************************

Наш родной Млечный Путь содержит не менее 100 млрд. планет. К такому выводу пришла международная группа астрономов по итогам статистического исследования планет, которые лежат за пределами Солнечной системы.

Ученые считают, что в нашей Галактике каждая звезда имеет в среднем одну планету. Это значит, что в радиусе 50 световых лет от Земли насчитывается самое меньшее полторы тысячи экзопланет. Если же принять более смелую оценку – 1,6 планеты на звезду, получится, что в Галактике их 160 млрд.

В основе исследования – шестилетние наблюдения, выполненные коллаборацией PLANET.

Исследователи также делают вывод о том, что планет размером с Землю намного больше, чем миров, подобных Юпитеру. Специалисты «насчитали» в Галактике более 10 млрд. планет земной группы (они есть у двух третей звезд), тогда как планетой юпитерианской массы обладает лишь каждая шестая звезда, а «Нептуном» – каждая вторая.

На сегодня подтверждено существование более 700 экзопланет. Своей очереди ждут примерно 2300 кандидатов. Подавляющее большинство открыто с помощью транзитной фотометрии и измерения радиальной скорости. Космический телескоп «Кеплер», к примеру, пользуется транзитным методом: он следит за крошечным снижением яркости звезды, возникающим при прохождении планеты между светилом и наблюдателем. Метод радиальных скоростей ищет незначительные колебания в движении звезды, вызванные гравитацией планет.

Эти технологии доказали свою продуктивность, но у них есть существенный недостаток: они позволяют находить только те планеты, орбиты которых расположены сравнительно близко к звезде. Гравитационное микро-линзирование обходит это препятствие, замечая объекты, находящиеся примерно на орбите Сатурна (как, впрочем, и те, что расположены в районе орбиты Меркурия).

Стоит добавить, что отдельное исследование, проведенное под руководством Такахиро Суми из Университета Осаки тем же методом микролинзирования, показало, что в Галактике сотни миллиардов планет. В основном они лежат за пределами орбиты Сатурна или находятся в свободном плавании.

Подготовил Н. Колесник

СКАЗ О ПЕРВОМ ХАКЕРЕ
*********************************************************************************************

Все началось в 1887 году, когда Генрих Герц доказал существование электромагнитных волн, предсказанных Джеймсом Максвеллом в 1865-м. Разделив конденсатор на два электрода, Герц получил ионизированный воздух в зазоре между ними. Возникла искра. Каким-то чудом другая искра метнулась между электродами в нескольких метрах от первых: электромагнитная волна от первой искры индуцировала ток между второй парой электродов. Это означало, что длинными и короткими всплесками энергии («волнами Герца») можно представить точку и тире азбуки Морзе. Так родился беспроводной телеграф, и Маркони Гульельмо со своей компанией находился в авангарде новой индустрии. Он хвастался в печати, что его устройства позволяют отправлять сообщения на большие расстояния так, что никто, кроме адресата, не в состоянии их получить.

Но за несколько минут до того, как Флеминг должен был принять сообщение из Корнуолла, тишину нарушило тиканье проекционного фонаря театра, с помощью которого лектор показывал слайды.

Помощник демонстратора Артур Блок быстро понял, что проектор не просто мигает, а передает сообщения азбукой Морзе. Сомнений не было: кто-то поставлял в театр импульсы, которые оказались достаточно сильными, чтобы их смогла принять лампа проектора.

Повторялось слово «вздор». Затем поползли стишки, что-то вроде: «Один человек, итальянец, всех обманул, зас-…».

Поток брани прервался за несколько мгновений до поступления сигнала из Корнуолла. Демонстрация прошла нормально, но осадок остался. Все поняли, что беспроводная передача вовсе не так безопасна, как утверждал Маркони. Оказывается, сообщения можно подслушивать!

Маркони был уязвлен и разразился сердитым письмом в «Таймс». Ответ не пришлось долго ждать. Четыре дня спустя в «Таймс» появился ответ «хакера». Тот не скрывал своего ликования, объясняя выходку необходимостью продемонстрировать публике уязвимость системы. Автором послания был 39-летний Невил Маскелин, профессиональный фокусник.

Он появился на свет в семье изобретателей. Его отец придумал специальный замок для платных туалетов, который открывался, если в него бросить пенни. Ну а сын увлекся беспроводными технологиями. Он в совершенстве знал азбуку Морзе и применял ее в трюках по угадыванию мыслей: помощник скрытно от публики отправлял ему сообщения. Кроме того, он придумал, как с помощью передатчика искры поджечь порох, не прикасаясь к нему. В 1900 году Маскелин отправил несколько беспроводных сообщений между наземной станцией и воздушным шаром, находящимся на 16-километровой высоте. Увы, его амбициям пришлось смириться перед ворохом патентов, которые зарегистрировал ушлый итальянец. Вскоре, однако, представился случай отомстить.

От новой технологии больше остальных должен был пострадать проводной телеграф. В то время телеграфные компании владели огромными наземными и морскими кабельными сетями. Одним из пострадавших должна была оказаться Восточная телеграфная компания, управлявшая узлом коммуникаций

Британской империи в приморской деревушке Порткерно на западе Великобритании. Они то и попросила Маскелина немного пошпионить.

Фокусник воздвиг 50-метровую радиомачту на утесах к западу от Порткерно, дабы проверить, можно ли подслушать, какими сообщениями обмениваются берег и суда с помощью «сверх-конфиденциальной» системы Маркони. 7 ноября 1902 года в журнале Electrician Маскелин восторженно сообщил о том, что все прекрасно слышно. Проблема была не в том, чтобы уловить сигналы, а в том, чтобы разобраться в их огромном потоке.

Маркони запатентовал технологию настройки беспроводного передатчика на определенную частоту. Как ни смешно это выглядит сегодня, но тогда казалось, что тем самым можно оградить свои депеши от посторонних. Вероятно, именно г-н Маскелин первым показал, как обстоит дело в действительности.

Установив, что перехват возможен, Маскелин захотел привлечь больше внимания к недочетам технологии и показать публично, что в передачу можно вмешаться. Однажды он с комфортом разместился в близлежащем отцовском мюзик-холле с простым передатчиком и телеграфным ключом. Единственное, чему он тем самым причинил вред, – это самомнение Маркони и Флеминга.

Флеминг на протяжении нескольких недель распинался в печати, пытаясь представить поступок Маскелина преступлением против науки. Последний же парировал тем, что оппонент упускает из виду очевидные факты…

Сегодня ситуация немного другая. Хакеры действительно помогают обнаружить недостатки ПО, но в то же время наносят немалый ущерб.

И. Качурин
(Подготовлено по материалам NewScientist)
РУКА ПЕРЕУЧИВАЕТ МОЗГ
*********************************************************************************************

Известно, что у левшей мозг работает не так, как у правшей. А что если человеку вынужденно приходится временно стать левшой из-за травмы? Ученых заинтересовало, происходят ли в его мозгу какие-то изменения. Специалисты из клиники Университета Цюриха исследовали 10 праворуких добровольцев, у которых правая рука была сломана и находилась в лангете. Поэтому ее движения были сильно или совсем ограничены. Пациентам приходилось учиться выполнять все повседневные действия – есть, чистить зубы, писать – левой рукой.

Исследователи дважды сканировали мозг добровольцев в компьютерном томографе: через 48 часов после перелома и через 16 дней «обездвиживания» правой руки в лангете. На сканированных изображениях мозга они оценили состояние серого и белого вещества (то есть, скопления нейронов и проводящих волокон).

Специалисты вычислили толщину коры полушарий мозга и толщину кортикоспинального тракта, который связывает головной и спинной мозг.

Одновременно со сканированием мозга с помощью специальных тестов у испытуемых оценивали «умелость» левой руки.

Оказалось, что смена ведущей руки привела к реорганизации мозга. «За короткое время иммобилизация правой руки вызвала изменения в сенсорных и моторных областях мозга», – объясняет руководитель исследования Ники Лангер. Серое и белое вещество этих областей в левом полушарии, которое контролирует движения правой руки, уменьшилось, а в тех же областях правого полушария, которое контролирует движения левой руки – увеличилось. Все это произошло за 16 дней переучивания.

Ученые подчеркивают, что за это время двигательные навыки левой руки совершенствовались – она стала гораздо лучше справляться с повседневными обязанностями. Причем чем более умелой стала левая рука, тем большая масса серого и белого вещества мозга приросла в правом полушарии. То есть, левая рука для успешной работы привлекла дополнительные мозговые ресурсы.

Полученные результаты могут быть использованы для реабилитации больных после инсульта, подчеркивают исследователи. Так, если пациенту надо разработать одну руку, то его вторую руку будет полезно обездвижить. Тем самым в мозгу произойдет перераспределение ресурсов в нужную сторону.

МНОГОКЛЕТОЧНЫЕ ДРОЖЖИ
*********************************************************************************************

Уильям Ратклифф и его коллеги из университета штата Миннесота взяли одноклеточные грибы – хлебопекарные дрожжи (Saccharomyces cerevisiae) и поместили их в колбы с питательной средой, которая постоянно взбалтывалась на специальном устройстве.

Десять популяций дрожжей росли в таких условиях в течение двух месяцев, а затем исследователи посмотрели, что из этого получилось.

Оказалось, что во всех колбах большинство клеток дрожжей сгруппировалось в сообщества (наподобие снежинок), состоящие из нескольких сотен клеток. Такие «снежинки» стали преобладать над отдельными клетками. Биологи объясняют, что сообщества в данных условиях получают адаптивное преимущества перед отдельными клетками, так как они тяжелее и способны быстрее перемещаться в жидкости, получая больше кислорода.

Интересно, что клетки в сообществах приобрели некоторые черты, характерные для клеток многоклеточного организма. Они держались вместе, и «снежинки» не распадались после клеточного деления, а образовывали дочерние «веточки». Когда исследователи изменили режим взбалтывания, «снежинки» стали меняться, но делали это, как единые организмы, не распадаясь на клетки.

Посмотрев, как ведут себя отдельные клетки в сообществах, биологи увидели, что некоторые клетки погибали, и это можно было сравнить с запрограммированной клеточной смертью – апоптозом.

Погибающие клетки служили точками отрыва дочерних «снежинок» от материнских. Таким способом «снежинки» регулировали размер своего потомства.

Как считают авторы эксперимента, они продемонстрировали, что переход от одноклеточности к многоклеточности – важнейшая ступень эволюции, мог произойти много быстрее, чем считалось ранее.

Подготовил М. Стеценко
ЗАГАДКИ ВСЕЛЕННОЙ
*********************************************************************************************

Материю, которая невидима, не излучает и не поглощает свет, называют темной, она обнаруживается по создаваемой ею гравитации. Что представляет собой темная материя, до сих пор неизвестно. Возможно, это еще не открытые элементарные частицы или маломассивные черные дыры…

*********************************************************************************************

Природа темной материи – одна из величайших загадок современной космологии. Мысль о том, что может существовать материя, которую невозможно увидеть, владеет умами астрономов вот уже 85 лет. В настоящее время проблема темной материи представляет сущность всей астрофизики.

Первые идеи о том, что наша Галактика содержит, по меньшей мере, в два раза большую массу, чем та, которую можно отнести к светящейся материи (звезды, газ), провозгласили в 1922 году. Я.Каптейн и Дж. Джинс, а затем, позднее на десять лет, и Я. Оорт.

Ф.Цвикки первым в 1933 году указал на то, что сумма масс видимых галактик в скоплении галактик в созвездии Волос Вероники существенно меньше общей массы этого скопления, производящей гравитационное поле. Цвикки пришел к выводу о том, что либо это скопление гравитационно не связано и является молодым, либо видимая материя не надежный проводник на пути определения массы.

Несколько позже, в 1970 году, К.Фримэн пришел к заключению, что большие вращающиеся спиральные галактики окружены невидимыми дисковидными гало. В случае типичной спиральной галактики ее видимая часть простирается примерно на 50 тыс. св. лет от центра данной галактики. Однако облака атомного водорода движутся вокруг центра какой-либо галактики на расстоянии примерно 80 тыс. св. лет и более. Измерения показывают, что водородные облака движутся с очень большими скоростями вокруг центра галактики. Измерения скоростей облаков, находящихся на различных расстояниях от центра галактики, позволили сделать вывод о напряженности гравитационного поля на этих расстояниях и, следовательно, определить распределение масс, производящих такое поле. Поэтому мы вынуждены констатировать, что кроме светящегося ядра должно существовать темное гало из невидимой материи.

Позднее Я.Э.Эйнасто исследовал распределение невидимой материи вокруг галактик даже на больших расстояниях, используя измерения движений малых галактик-спутников вокруг больших галактик, и получил аналогичный вывод о невидимых гало. В то время возможная физическая природа темной (скрытой) материи была абсолютна неизвестна. Насколько же мы продвинулись за последние 30 лет?

Первый Симпозиум MAC, посвященный проблеме скрытой материи во Вселенной, состоялся в 1985 году. Дж. Корменди и Г.Кнапп в предисловии к трудам этого Симпозиума («Proceedings of the IAU Symposium № 117») отметили, что: «впервые Международный астрономический союз созвал симпозиум по объектам совершенно неизвестной природы». К сожалению, сегодня мы должны повторить, что природа темной материи все еще неизвестна.

30 или даже 20 лет тому назад астрономы думали, что масса темной материи, преобладающая во Вселенной, определяет динамику Вселенной и кривизну трехмерного пространства. Сегодня мы знаем гораздо больше о скрытом секторе Вселенной.

Наблюдение в пределах измерений температуры в космическом микроволновом фоновом излучении, информация о распространенности гелия и других легких элементов во Вселенной и образовании структуры во Вселенной указывают на то, что «нормальная» (то есть барионная) материя ответственна лишь за примерно 4 % материального содержания Космоса. Звезды, планеты, газ, пыль и мы сами – все это состоит из барионной материи. Остальные 96 % – «темный» сектор с примерно 23 % темной материи и примерно 73 % темной энергии. Мы знаем, что темная материя вызывает эффект гравитационного притяжения, как и обычная барионная материя. А темная энергия, реально преобладающая во Вселенной, вызывает эффект гравитационного отталкивания. Физическая природа темной энергии совершенно неизвестна.


На первый взгляд любая классификация, кроме хорошо известной барионной материи, напоминает пародию А. Аверченко: «История мадианитян затерялась во мраке веков и неизвестна; тем не менее, ученые различают в ней три отчетливых отдельных периода: первый, о котором ничего неизвестно, второй, о котором можно сказать то же самое, и третий, который следует за двумя первыми».

Один из самых простых вопросов, который можно задать о Вселенной, звучит так: «Из чего она сделана?» Этот вопрос приводит современных космологов в некоторое замешательство, и они отвечают на него, пожимая плечами. В масштабах столь малых, как наша Галактика, и столь больших, как видимая Вселенная, большая часть массы Вселенной является скрытой и невидимой.

Кроме методов исследования темной материи, названных выше, следует упомянуть также гравитационное влияние темной материи на распространение света от удаленных источников (гравитационное линзирование). Важные части информации поступают также из анализа КМФ-излучения и анализа процесса образования структуры Вселенной из малых начальных неоднородностей. Сила гравитации темной материи весьма существенна для процесса образования крупномасштабной структуры, то есть образования скоплений галактик и самих галактик. Развивая самосогласованный сценарий такого процесса, большинство космологов предпочитают тип темной материи, известный как холодная темная материя. Она называется холодной, так как в то время, когда гравитация темной материи становится важной для формирования структуры, скорости движения ее элементов были намного меньше скорости света.


Многие космологи убеждены в том, что холодная темная материя состоит из частиц, образовавшихся в раннем, горячем периоде эволюции Вселенной, но все еще существующих сегодня. Список возможных частиц-кандидатов, которые могут составлять темную материю, очень велик. Он состоит главным образом из гипотетических, все еще неведомых частиц, например аксионов или суперсимметричных реликтов. Сейчас начаты прямые и косвенные эксперименты по их поиску. Прямое обнаружение темной материи, вероятно, уже доступно. Однако! Мы должны повторить: относительно физической природы темной материи мы, к сожалению, все еще находимся в потемках.

Кроме гипотетических неизвестных частиц, которые так важны для физики, имеются и другие кандидаты на включение в список подозреваемых в том, что темная материя состоит из них. Некоторые из них даже более экзотичны, чем неизвестные частицы. Среди них – релятивистские темные тела: первичные черные дыры и первичные кротовые норы.

Гипотеза о существовании первичных черных дыр также имеет долгую историю. Чтобы быть кандидатами на включение в список подозреваемых в том, что они составляют темную материю, черные дыры должны обладать довольно малыми массами, не более 0,5 массы Солнца. Такие черные минидыры не образуются в нынешней Вселенной. Если же мы обратимся к прошлой истории Вселенной, то легко заметим, что условия в самом начале расширения Вселенной, около 13 млрд. лет назад, были благоприятны для образования черных минидыр. Действительно, вся материя тогда пребывала в состоянии ужасно высокой плотности, и никакого добавочного сжатия не требовалось. Фактически эта материя расширялась с очень высокой скоростью. Поэтому могла образоваться черная дыра, если скорость расширения в небольшом объеме была несколько ниже или если количество материи было несколько больше, чем в соседних объемах того же размера. Тогда гравитационные силы могли замедлить расширение в этом объеме и через некоторое время превратить его в сжатие, образуя черную мини-дыру.


В 1961 году Я.Б.Зельдович и я, а в 1971 году С. Хокинг указали на такую возможность. Таким образом, мы приходим к выводу, что на ранних стадиях во Вселенной могли существовать крошечные черные дыры и что их массы могли быть меньше масс звезд. Какова же судьба этих объектов?

Эволюция крошечных черных дыр зависит от величины их масс. Черные мини-дыры излучают энергию посредством квантового механизма. Этот процесс абсолютно пренебрежимо мал для черных дыр с массой порядка звездной массы. Чем меньше масса черной дыры, тем больше квантовый выход излучения и тем быстрее происходит процесс преобразования массы черной дыры в энергию излучения. Крайне медленный процесс потери энергии черной дырой из-за квантового излучения известен как квантовое испарение (хокинговское испарение).

Излучение энергии черными дырами с малой массой нельзя называть «испарением»: это весьма значительное свечение. Во время этого свечения масса таких черных дыр уменьшается с постоянно возрастающей скоростью. Когда их масса падает до одного миллиона тонн, процесс излучения превращается во взрыв. Последние тысячи тонн взрываются за одну десятую долю секунды, высвобождая энергию, равную выделяемой при взрыве одного миллиона мегатонных водородных бомб. Вычисления показывают, что все первичные черные дыры, начальные массы которых были менее миллиарда тонн, полностью «испарились» к нашему времени. Более массивные черные дыры сохранились до наших дней. Можно ли обнаружить их астрономическими средствами, предполагая, что они действительно существуют во Вселенной?

Чтобы найти достаточно малые черные дыры, необходимо искать излучение их жестких квантов. Наблюдения таких квантов, идущих из Космоса, могли бы помочь в отождествлении первичных черных дыр. До сих пор не обнаружена ни одна из них. Мы можем лишь заключить, что число черных дыр с массой около миллиарда тонн не превышает одной тысячи на кубический световой год. Если бы их было больше, можно было бы обнаружить их суммарное излучение. Квантовое излучение массивных первичных черных дыр пренебрежимо мало, их можно считать кандидатами в объекты, составляющие темную материю.

В 1994 году П. Иванов, П.Насельский и я в Центре теоретической астрофизики (Дания) указали на эту возможность. В то время поступило сообщение об обнаружении микролинзирования звезд в Большом Магеллановом Облаке массивными компактными гало-объектами (МАСНО) нашей Галактики с вероятными массами около 0,1 массы Солнца (МС). Среди других возможностей сделано предположение, что такими объектами могли быть черные дыры. Как мы подчеркнули выше, черные дыры с массами порядка 0,1 МС могут иметь только изначальное происхождение. Следовательно, новое открытие дало добавочные аргументы в пользу возможности того, что холодная темная материя состоит из первичных черных дыр. Для образования первичных черных дыр массой 0,1 МС необходимо существование флуктуаций гравитационного поля в ранней Вселенной. С другой стороны, флуктуации гравитационного поля на больших и меньших масштабах должны быть очень небольшими, чтобы соответствовать астрономическим наблюдениям. Согласно нашим вычислениям, такие условия возможны в начале расширения Вселенной. Холодная темная материя (или ее часть), вероятно, состоит из первичных черных дыр.


Теперь несколько слов о первичных кротовых норах. Согласно общей теории относительности, кротовая нора – сильно искривленное пространство в виде тоннеля, соединяющего две дыры (входа) в пространстве. Материя или излучение могут упасть в одну дыру, распространиться по тоннелю и выйти наружу из другой дыры, и наоборот. По одной из гипотез, первичные кротовые норы, вероятно, уже существовали в начале расширения Вселенной.

Возможно, первичные кротовые норы сохранились после первых стадий расширения Вселенной. Хокинговское квантовое испарение не действует в таких объектах, благодаря чему они могут сохраняться в течение космологических промежутков времени, если не подвержены другим неустойчивостям. Не исключено, что некоторая часть холодной темной материи состоит из первичных кротовых нор.

Итак, вполне возможно, что темные объекты – первичные черные дыры и первичные кротовые норы – могут разрешить загадку темной материи. Насколько хороши или плохи эти теории, мы узнаем лишь тогда, когда станут известны результаты следующего поколения наблюдений, направленных на изучение холодной темной материи (прежде всего, с помощью космической обсерватории «Планк»), а также других методов наблюдения. Будем надеяться, что наши гипотезы выдержат испытание временем.

И.Д. Новиков
член-корреспондент РАН «Земля и Вселенная»
ШУТОЧНЫЕ ЗАДАЧКИ

Загадки-шутки пригодятся в любой веселой компании, так как сложно догадаться какой же ответ, а над разгадкою будет смеяться каждый.

1. Человек попал под дождь, и ему негде и нечем было укрыться. Домой он пришел весь мокрый, но ни один волос на его голове не промок. Почему?

2. Когда сетка может вытянуть воду?

3. На полке рядом стоят два тома одного произведения. Сколько страниц находится между 1-й страницей 1-го тома и последней страницей 2-го тома, если в первом томе 320 страниц, а во втором 290 страниц?

4. С какой посуды нельзя ничего поесть?

5. Где вода стоит столбом?

6. Возможно ли такое: две головы, две руки и шесть ног, а в ходьбе только четыре?

7. Какое слово всегда звучит неверно?

8. Каким будет сивый конь, если его искупать?

9. Что такое: летит, шуршит, а не шуршавчик?

10. Два рога – не бык, шесть ног без копыт, когда летит – воет, сядет – землю роет.


    Ваша оценка произведения:

Популярные книги за неделю