355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Авинаш Диксит » Теория игр. Искусство стратегического мышления в бизнесе и жизни » Текст книги (страница 2)
Теория игр. Искусство стратегического мышления в бизнесе и жизни
  • Текст добавлен: 12 октября 2016, 05:58

Текст книги "Теория игр. Искусство стратегического мышления в бизнесе и жизни"


Автор книги: Авинаш Диксит


Соавторы: Барри Дж Нейлбафф
сообщить о нарушении

Текущая страница: 2 (всего у книги 43 страниц) [доступный отрывок для чтения: 10 страниц]

Часть I

Глава 1
Десять историй о стратегии

НАЧНЕМ КНИГУ с десяти историй о стратегии, взятых из разных сфер жизни. Они дают первое представление о том, что такое оптимальный образ действий. Многие из вас, несомненно, попадали в подобные ситуации в повседневной жизни и находили правильное решение либо с помощью размышлений, либо методом проб и ошибок. Для кого-то некоторые из предложенных решений могут оказаться неожиданными, но мы приводим здесь эти примеры не для того, чтобы вас удивить. Наша цель – показать, что такие ситуации встречаются часто, что все они сводятся к определенному набору взаимосвязанных вопросов и что системный анализ этих ситуаций может принести свои плоды.

В следующих главах предлагаем рекомендации по созданию эффективных стратегий, основанных на этих концепциях. Отнеситесь к этим историям как к закуске перед главным блюдом: они предназначены для того, чтобы только возбудить ваш аппетит, а не насытить.

История 1. Игра на угадывание числа

Хотите верьте, хотите нет, но мы предлагаем вам сыграть с нами в одну игру. Мы выбрали число от 1 до 110; ваша задача – угадать это число. Если вы правильно назовете его с первой попытки, мы заплатим вам 100 долларов.

Конечно же, мы вовсе не собираемся платить вам 100 долларов: это обошлось бы слишком дорого, особенно учитывая то, что мы намерены помочь вам с угадыванием числа. Но когда вы будете играть, мы хотим, чтобы вы думали, будто мы действительно заплатим вам эти деньги; а мы будем играть с вами на этих же условиях.

Вероятность угадать число с первой попытки достаточно низкая: один из ста. Для того чтобы повысить ваши шансы на выигрыш, дадим вам пять попыток, а после каждой попытки будем говорить, какое число вы назвали – большее или меньшее. Разумеется, чем быстрее вы назовете правильное число, тем большим будет вознаграждение. Если вы угадаете число со второй попытки, получите 80 долларов. На третьей попытке ваше вознаграждение сокращается до 60 долларов, на четвертой – до 40, и на пятой оно составит 20 долларов. Если вам понадобится больше пяти попыток, это значит, что игра закончена и вы не получите ничего.

Готовы играть? Мы тоже готовы. Скорее всего, вы задаете себе вопрос: как можно играть с книгой? Это действительно сложно, но все-таки возможно. При желании можете зайти на сайт artofstrategy.info и сыграть в интерактивном режиме. А здесь мы можем предположить, как вы будете вести игру, и делать соответствующие ответные ходы.

Ваша первая догадка 50? Это самое часто встречающееся предположение и, к сожалению для вас, слишком большое число.

Возможно, ваша вторая попытка – 25? Назвав первым число 50, вторым большинство людей выбирают 25. Очень жаль, но это число слишком маленькое. На следующем этапе большинство людей называют число 37. К сожалению, 37 – тоже слишком мало. Как насчет 42? Снова слишком мало.

Давайте сделаем паузу, взглянем на ситуацию со стороны и проанализируем ее. У вас осталась пятая попытка – последний шанс выиграть у нас деньги. Вы знаете, что нужное число больше 42 и меньше 50. У вас есть семь вариантов: 43, 44, 45, 46, 47, 48 и 49. Какое из этих чисел вы выберете?

До настоящего момента вы пытались угадать число, выбирая среднее значение из оставшегося интервала. Это идеальная стратегия для игры, в которой число было выбрано случайным образом{8}8
  Для обозначения такой стратегии поиска используется специальный термин: «минимизация энтропии».


[Закрыть]
. Вы получаете максимально возможную информацию из каждой своей догадки, поэтому сможете приблизиться к искомому числу за самое короткое время. Говорят, что генеральный директор Microsoft Стивен Балмер использовал эту игру в качестве испытания во время собеседований при приеме на работу. В понимании Балмера правильный ответ должен быть таким: 50, 25, 37, 42, …. Его в первую очередь интересовало, способен ли кандидат на вакантную должность решить эту задачу самым логичным и эффективным способом.

Мы предлагаем другое решение. В задаче Балмера число выбиралось произвольно, поэтому стратегия инженера «разделить совокупность на два и победить» была вполне уместной. Получение максимума информации из каждой догадки сводит к минимуму предполагаемое число догадок, а значит, позволяет выиграть наибольшее количество денег. Однако в нашем случае число выбиралось не в произвольном порядке. Помните, мы с самого начала предупредили, что будем играть так, как если бы действительно собирались платить вам деньги? Нам никто не возместит те суммы, которые гипотетически придется вам выплатить, значит, лучше сберечь их, чем отдавать вам. Поэтому мы сознательно выбрали число, которое вам будет трудно вычислить. Подумайте сами: разве было бы разумно с нашей стороны загадывать число 50? Это стоило бы нам целого состояния!

Главный урок теории игр заключается в том, что необходимо ставить себя на место другого игрока. Мы поставили себя на ваше место и предположили, что вы назовете сначала число 50, затем 25, затем 37 и 42. Понимание того, как вы будете играть, позволило существенно снизить вероятность того, что вы угадаете наше число, и тем самым сократить количество денег, которые нам пришлось бы выплачивать.

Объяснив это до завершения игры, мы дали вам фору. Теперь вы понимаете, в какую именно игру играете на самом деле. Каким будет ваше последнее предположение, за которое вы можете получить 20 долларов? Какое число вы выбираете?

Это число 49?

Поздравляем! Себя, а не вас. Вы снова попались в ловушку! Мы загадали число 48. На деле все эти рассуждения о выборе числа, которое трудно найти, выбирая среднее число из интервала, были направлены именно на то, чтобы ввести вас в заблуждение. Мы хотели, чтобы вы выбрали число 49, тем самым обезопасив наше число 48. Помните: наша задача – не отдать вам свои деньги.

Для того чтобы победить нас в этой игре, вы должны были опережать нас хотя бы на один шаг. Вам следовало размышлять так: «Они хотят, чтобы мы выбрали 49, значит, я выберу 48». Разумеется, если бы мы предположили, что вы настолько умны, мы выбрали бы число 47 или даже 49.

Смысл нашей с вами игры не в том, чтобы показать вам, какие мы хитрецы, а в том, чтобы наглядно проиллюстрировать, что именно делает любую ситуацию игрой: вы должны принимать во внимание цели и стратегии других игроков. Когда вы угадываете число, выбранное случайным образом, это число никто не пытается от вас спрятать. Следовательно, вы можете применить инженерный подход, выбрав среднее значение из интервала и тем самым получив самый лучший результат. Но если вы играете в реальную игру, нужно проанализировать, как будет действовать другой игрок и как его решения повлияют на вашу стратегию.

История 2. Победа ценой поражения

Должны признаться читателям в том, что смотрели реалити-шоу Survivor{9}9
  «Оставшийся в живых»; русский аналог – «Последний герой». Прим. пер.


[Закрыть]
. Мы ни за что не стали бы победителями на том острове. Если бы мы не сдались из-за мук голода, другие участники игры наверняка избавились бы от нас за то, что мы «умники». Однако нам было очень интересно попытаться предсказать, чем закончится игра. Для нас не стало неожиданностью, что невысокий нудист с плотным телосложением Ричард Хэтч перехитрил, обыграл и продержался дольше всех остальных участников, став первым победителем этого реалити-шоу на канале CBS и выиграв приз 1 миллион долларов. У него был особый дар: способность действовать стратегически и не выглядеть при этом стратегом.

Самый хитрый тактический ход Хэтч сделал в последнем эпизоде. В игре остались только три участника. Соперниками Ричарда были 72-летний бывший «морской котик» Руди Бош и 23-летний речной гид Келли Вигглсворт. Последнее испытание состояло в том, чтобы встать на опору и держаться рукой за идола иммунитета, стоящего в центре круга. Участник игры, простоявший дольше всех, выходил в финал. Важно и то, что победитель решал, кто из двух проигравших пройдет с ним в финал.

На первый взгляд может показаться, что в этом испытании главную роль играла физическая выносливость. Но давайте проанализируем ситуацию более внимательно. Все три игрока понимали, что наиболее вероятный победитель – Руди. Единственное, на что мог рассчитывать Ричард, – это выйти в финал вместе с Келли.

Существовали только две возможности добиться этого. Первая – Келли победит в этом испытании и выберет Ричарда. Вторая – Ричард победит и выберет Келли. Ричард мог рассчитывать на то, что Келли выберет именно его. Она осознавала, что Руди очень популярен среди участников игры и что для нее единственный шанс одержать победу состоит в том, чтобы выйти в финал с Ричардом.

Казалось, ситуация складывалась так, что кто бы ни выиграл в последнем испытании, Келли или Ричард, каждый из них выберет другого в качестве соперника. Следовательно, Ричард мог бы попытаться остаться в игре – по крайней мере до тех пор, пока Руди не сойдет с опоры. Единственная проблема состояла в том, что между Ричардом и Руди давно сложился союз. Если бы Ричард победил в испытании и не выбрал Руди, это восстановило бы Руди и всех его друзей против Ричарда. И это могло стоить Ричарду победы. Одна из характерных особенностей шоу Survivor состоит в том, что победителя определяют выбывшие из игры участники. Следовательно, каждый участник игры должен очень осмотрительно вести себя с соперниками.

С точки зрения Ричарда, последнее испытание могло развиваться по одному из трех сценариев.

• Побеждает Руди. Он выбирает Ричарда, но при этом у Руди больше шансов на победу.

• Побеждает Келли. Она достаточно умна, чтобы понимать: ее единственный шанс на победу – избавиться от Руди и бороться в финале с Ричардом.

• Побеждает Ричард. Если он выберет Руди, тот победит его в финале. Если он выберет Келли, она может победить его, поскольку Ричард потеряет поддержку Руди и его многочисленных друзей.

Сопоставив все возможные варианты развития событий, Ричард пришел к выводу, что для него лучше всего проиграть в данном испытании. Ему необходимо, чтобы Руди выбыл из игры, но будет лучше, если Келли сделает за него всю грязную работу. Самым умным шагом было бы сделать ставку на победу Келли в этом испытании. Она уже победила в трех из четырех предыдущих; кроме того, поскольку Келли, будучи гидом, проводила экскурсии на природе, она была в наилучшей физической форме.

В этой книге мы часто делаем отступления, которые называем «задачами для тренировки мышления». В таких отступлениях рассматриваются более сложные элементы игры, которые мы обошли молчанием в основном тексте. Например, в приведенном примере Ричард мог бы немного подождать, чтобы увидеть, кто выйдет из игры первым. Если бы первой сошла с опоры Келли, Ричарду было бы более выгодно победить Руди и выбрать Келли, чем позволить Руди выиграть и бороться с ним в финале. Кроме того, Ричард мог бы подумать и о том, что Келли достаточно находчива, чтобы просчитать те же варианты и тоже первой выйти из игры. В следующих главах вы узнаете о том, как использовать системный подход к поиску способов достижения победы в игре. Наша конечная цель – помочь вам изменить свой подход к оценке стратегических ситуаций и осознать тот факт, что у вас далеко не всегда будет время для анализа всех возможных вариантов развития событий.

Такой вариант развития событий давал Ричарду приятный бонус: отпадала необходимость стоять на опоре под жарким солнцем. В самом начале испытания ведущий шоу Джефф Пробст предложил ломтик апельсина тому, кто решит прекратить дальнейшую борьбу. Ричард сошел с опоры и получил апельсин.

Через 4 часа 11 минут Руди сделал неудачную попытку сменить положение, оторвался от идола иммунитета и проиграл испытание. Для участия в финале Келли выбрала Ричарда. Руди решил исход голосования, отдав свой голос в пользу Ричарда, и Ричард Хэтч оказался первым победителем реалити-шоу Survivor.

Если оценивать ситуацию в ретроспективе, этот расчет кажется достаточно простым. Но Ричард смог предвидеть все возможные варианты развития событий еще до того, как они произошли{10}10
  Ричарду пошло бы на пользу, если бы он подумал также о последствиях невыплаты налогов на выигранный им 1 миллион долларов. 16 мая 2006 года он был приговорен к 51 месяцу тюремного заключения за уклонение от уплаты налогов.


[Закрыть]
. В главе 2 вы найдете ряд инструментов, которые помогут вам прогнозировать ход игры и даже дадут возможность попробовать свои силы в очередном сезоне реалити-шоу.

История 3. Счастливая рука

Действительно ли у спортсменов бывает «счастливая рука»? Порой создается впечатление, что Яо Мин{11}11
  Яо Мин – китайский баскетболист. Прим. ред.


[Закрыть]
просто не способен не попасть мячом в корзину или что Сачин Тендулкар{12}12
  Сачин Тендулкар – индийский игрок в крикет. Прим. ред.


[Закрыть]
не может не выиграть сотню в крикете. Спортивные комментаторы, наблюдающие за такими длинными периодами непрерывных успехов некоторых спортсменов, утверждают, что у них «счастливая рука». Однако профессора психологии Томас Гилович, Роберт Валлоне и Амос Тверски считают, что этот вывод не соответствует реальному положению дел[1]1
  Об этом исследовании упоминается здесь: The Hot Hand in Basketball: On the Misperception of Random Sequences, Cognitive Psychology 17 (1985): 295–314.


[Закрыть]
. Они утверждают, что, если бросать монету достаточно долго, рано или поздно она много раз подряд выпадет «орлом» либо «решкой». По мнению этих психологов, комментаторы, которым порой не о чем говорить, просто выбирают из длинного игрового сезона периоды успешной игры. Они наступают точно так же, как после целой серии подбрасываний монета выпадает одной стороной несколько раз подряд. Эти психологи предлагают более точный, научно обоснованный тест на примере игры в баскетбол. Они подсчитывают все случаи, когда определенный игрок попадает мячом в корзину, после чего вычисляют процент тех эпизодов, когда следующий бросок тоже оказывается удачным. Такие же расчеты делаются и для тех случаев, когда за попаданием следует промах. Говорить о «счастливой руке» можно только тогда, когда после попадания в корзину далее чаще следует попадание, а не промах.

Психологи провели этот тест среди игроков баскетбольной команды Philadelphia 76ers. Полученные результаты опровергли теорию «счастливой руки». Когда игрок делал удачный бросок, в следующий раз он чаще всего промахивался; когда он промахивался, следующий бросок чаще оказывался удачным. Именно такая закономерность наблюдалась даже у Эндрю Тоуни, имевшего репутацию игрока, способного сделать серию удачных бросков. Значит ли это, что мы должны говорить здесь о руке, действующей по принципу стробоскопа, как в проблесковом маяке, в котором свет то включается, то выключается?

Теория игр предлагает другое объяснение. Статистические данные говорят об отсутствии у игроков способности делать длинные серии удачных бросков, однако они и не опровергают возможность того, что игроки со «счастливой рукой» действительно могут так или иначе «подогреть» игру. Различие между серией удачных бросков и «счастливой рукой» возникает в силу взаимодействия между стратегией нападения и стратегией защиты. Предположим, у Эндрю Тоуни действительно «счастливая рука». Разумеется, в таком случае игроки команды-соперника начнут оттеснять его от мяча, что может снизить процент попаданий мяча в корзину.

И это еще не все. Когда защитники соперника фокусируются на Тоуни, один из его товарищей по команде остается без опеки и его шансы забросить мяч в корзину повышаются. Иными словами, «счастливая рука» Тоуни обеспечивает повышение командной результативности, хотя индивидуальная результативность самого Тоуни может снизиться. Таким образом, чтобы проверить, есть ли «счастливые руки» у игроков команды, нужно проанализировать периоды успешной игры команды в целом.

Подобный феномен наблюдается во многих командных видах спорта. В американском футболе блестящий раннинбек помогает своим товарищам по команде делать пасы вперед, а талантливый ресивер – продвигать мяч вперед, поскольку противник вынужден «опекать» звездных игроков. В 1986 году в финале Чемпионата мира по футболу звезда аргентинской команды Диего Марадона не забил ни одного гола, но его передачи через кольцо защитников команды Западной Германии обеспечили Аргентине два гола. Ценность звездного игрока нельзя оценивать только по его личной результативности; его вклад в повышение результативности других членов команды играет важнейшую роль, а статистические данные о числе голевых передач позволяют этот вклад оценить. В хоккее индивидуальная результативность игроков определяется в равной степени числом как голевых передач, так и забитых шайб.

Игрок может помочь даже самому себе, когда одна его «счастливая рука» поддерживает другую. Звездный игрок команды Cleveland Cavaliers Леброн Джеймс ест и пишет левой рукой, но броски в корзину предпочитает делать правой (хотя левой рукой он по-прежнему бросает мяч точнее). Защитники знают, что Леброн правша, поэтому стараются защищать свою корзину от бросков правой рукой. Но они не могут сосредоточиться только на этом, поскольку броски Леброна левой рукой слишком эффективны, чтобы оставлять их без защиты.

Что произойдет, если в период между сезонами Леброн поработает над улучшением бросков левой рукой? Защитники команды-соперника отреагируют на это, уделяя больше внимания прикрытию его бросков слева. В результате у Леброна появится больше возможностей для бросков правой рукой. В этом примере левая рука не только знает, что делает правая, но и помогает ей.

В развитие этой темы в главе 5 мы показываем, что, если левая рука сильнее, ее можно использовать даже реже, чем правую. Многие из вас наверняка поняли это на собственном опыте во время игры в теннис. Если у вас удар слева слабее, чем удар справа, соперники узнают об этом и будут чаще играть против вашей левой руки, но благодаря такой практике ваш удар слева улучшится. Когда ваши удары слева и справа станут в равной степени эффективными, соперники больше не смогут воспользоваться слабостью вашей левой руки. Вы начнете чаще использовать удар справа – в этом и есть истинное преимущество отработки удара слева.

История 4. Быть или не быть лидером

После первых четырех заплывов в финале Кубка «Америки»{13}13
  Кубок «Америки» – всемирно известная парусная регата. Кубок назван в честь шхуны «Америка», которая выиграла престижную парусную гонку в 1851 году. Прим. пер.


[Закрыть]
яхта Liberty со шкипером Деннисом Коннером вела со счетом 3:1 в серии заплывов на определение лучшей из семи яхт. Утром в день пятого заплыва на причал, где должна была пришвартоваться яхта Liberty, доставили ящики с шампанским. На яхте для зрителей жены членов экипажа Liberty, одетые в майки и шорты в красных, белых и голубых тонах, уже предвкушали, как их всех будут фотографировать, когда их мужья в очередной раз выиграют кубок, обладателем которого на протяжении 132 лет подряд оказывались Соединенные Штаты Америки[2]2
  New York Times, September 22, 1983.


[Закрыть]
. Но этому не суждено было случиться.

На старте яхта Liberty получила 37 секунд преимущества, когда Australia II совершила фальстарт и поэтому вернулась на линию старта. Шкипер австралийской яхты Джон Бертран попытался наверстать упущенное, отклонившись от курса влево в надежде на удачную перемену ветра. Деннис Коннер решил оставить Liberty справа от курса. Но рискованный шаг Бертрана оправдал себя. Направление ветра сместилось на пять градусов в выгодную для Australia II сторону; в итоге эта яхта выиграла гонку, опередив Liberty на 1 минуту 47 секунд. Коннера раскритиковали за то, что он не последовал по тому же курсу, который взяла Australia II, это оказалось серьезной стратегической ошибкой. После еще двух заплывов яхта Australia II выиграла всю серию.

Парусная регата дает возможность проанализировать интересный обратный вариант стратегии следования за лидером. Как правило, лидирующий парусник копирует стратегию корабля, идущего вслед за ним. Когда отстающий парусник меняет курс, лидер делает то же самое. Лидер копирует действия отстающего, даже если его стратегия явно неэффективна. Почему? Потому что в парусном спорте – как и в бальных танцах – важна только победа. Если вы уже занимаете первое место, самый верный способ оставаться первым – имитировать действия тех, кто идет следом за вами{14}14
  Эта стратегия не работает, если в соревновании больше двух участников. Даже в случае, когда в заплыве принимают участие только три парусника, если один корабль смещает курс направо, а другой – налево, лидеру придется решать, какие действия повторить (и стоит ли вообще это делать).


[Закрыть]
.

Фондовые аналитики и составители экономических прогнозов тоже часто придерживаются стратегии подражания. Ведущие специалисты по составлению прогнозов заинтересованы в том, чтобы следовать за большинством и делать прогнозы, не противоречащие прогнозам других аналитиков: это снижает вероятность того, что люди изменят свое мнение о способностях этих специалистов. С другой стороны, новички часто применяют рискованные стратегии; они предсказывают либо резкий подъем, либо стремительное падение экономики. В большинстве случаев их выводы оказываются ошибочными, и о них все забывают. Тем не менее время от времени некоторые из них делают правильные прогнозы и благодаря этому становятся знаменитыми.

Конкуренция в сфере промышленности и технологий предлагает новые доказательства в пользу этой точки зрения. На рынке персональных компьютеров компания Dell известна скорее не своими инновациями, а способностью выводить унифицированные технологии на массовый рынок. В свое время большинство новых идей родились в Apple, Sun и других начинающих компаниях. Рискованные инновации – это их главный и, возможно, единственный шанс получить свою долю на рынке. Такая ситуация складывается не только на рынке высокотехнологичных продуктов. Компания Procter & Gamble, своего рода «Dell» на рынке подгузников, начала использовать на своих подгузниках изобретенные в Kimberly-Clark застежки-липучки и благодаря этому восстановила доминирующее положение на рынке.

Существует два способа двигаться вторым. Вы либо начинаете копировать действия лидера, как только он раскроет свой подход (как в парусной регате), либо ждете, когда станет ясно, успех или неудачу принесет этот подход (как в компьютерной сфере). В бизнесе ожидание – это более выгодный путь, поскольку в отличие от спорта конкуренция в бизнесе проходит не по принципу «победитель получает всё». Поэтому лидеры рынка не следуют за компаниями, неожиданно достигшими успеха, пока не убедятся в преимуществах их курса.


    Ваша оценка произведения:

Популярные книги за неделю