355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Аркадий Частиков » Архитекторы компьютерного мира » Текст книги (страница 5)
Архитекторы компьютерного мира
  • Текст добавлен: 20 сентября 2016, 19:36

Текст книги "Архитекторы компьютерного мира"


Автор книги: Аркадий Частиков



сообщить о нарушении

Текущая страница: 5 (всего у книги 30 страниц)

«Я собираюсь рассмотреть вопрос „Могут ли машины мыслить?“ – этими словами Тьюринг начинает статью, но вскоре он заменяет исходную постановку вопроса совершенно иной, в которой „мышление“ машины рассматривается в технических терминах. В качестве критерия оценки мыслительной деятельности машины Тьюринг предлагает использовать ее действия в процессе „игры в имитацию“ (Imitation game). Эта „игра“ в дальнейшем получила название теста Тьюринга.

В современном понимании тест Тьюринга интерпретируют следующим образом: если машина способна имитировать поведение, которое эксперт– экзаменатор не сможет отличить от поведения человека, обладающего мыслительными способностями (у Тьюринга испытуемые – человек и машина – отделены от эксперта-экзаменатора, задающего вопросы, стенами комнат и общаются посредством телеграфа), то машина также обладает этими способностями. С 50-х годов было опубликовано много работ по вопросу о том, как программно реализовать тест Тьюринга и что „можно надеяться получить из современного уровня эвристического программирования“. О своих надеждах и прогнозах А. Тьюринг писал в конце статьи: „Мы можем надеяться, что вычислительные машины в конечном счете смогут конкурировать с людьми во всех чисто интеллектуальных сферах деятельности. Но с какими машинами лучше всего начать двигаться к этой цели? Даже на этот вопрос ответить затруднительно. Многие люди думают, что лучше всего машина может выявить свои возможности в чрезвычайно абстрактной области, подобной игре в шахматы. Можно также утверждать, что лучше всего было бы снабдить машину наилучшими „органами чувств“ (датчиками) из числа тех, что можно купить, а затем учить эту машину понимать и говорить по-английски. Этот процесс может быть сходен с обычным обучением ребенка. То есть машине надо указать на тот или иной предмет, назвать его и т. п. Повторяю, что я не знаю, как правильно ответить на этот вопрос, но я думаю, что следует попытаться использовать два этих подхода.

Мы можем заглядывать вперед лишь на очень небольшое расстояние, но уже сейчас очевидно, что нам предстоит еще очень многое сделать в той области, которая была предметом настоящей статьи“.

О Тьюринге, как о личности с нетрадиционными взглядами, со странностями характера, вспоминают многие его коллеги. О его чудачествах ходили легенды. Живя в Кембридже, он никогда не ставил часы по сигналам точного времени, а вычислял время в уме, отмечая положение определенной звезды.

В Блетчли-парке в начале июня каждого года с ним происходили сильные приступы сенной лихорадки (аллергии), и тогда он приезжал на работу на велосипеде в противогазе, спасаясь от пыльцы. У его велосипеда был дефект: через регулярные промежутки времени спадала цепь. Вместо того чтобы починить его, он подсчитывал число оборотов педалей, чтобы вовремя слезть с велосипеда и поправить цепь. Он привязывал, как вспоминает И. Гуд, цепью свою кружку к радиатору отопления, чтобы ее не стащили.

Однажды Тьюринг, узнав о падении курса английского фунта, расплавил имеющиеся серебряные монеты и закопал слиток на территории парка, но затем забыл, где именно. Тьюринг был неплохим спортсменом. После войны, чувствуя необходимость в физической разрядке, он пробежал длинную дистанцию и нашел, что преуспел в этом. Затем он выиграл трехмильную и десятимильную дистанции своего клуба, оба раза в рекордное время, а в 1947 году занял пятое место в марафонском забеге.

Многие коллеги вспоминают его энтузиазм и волнение, с которыми он брался за любую идею, интересовавшую его, – от „говорящего“ зайца до трудной научной проблемы. На него смотрели с большим уважением, т. к. он выделялся своим интеллектом и оригинальностью мышления. Его характеризовали как врожденного учителя, способного решить и объяснить любую необычную задачу. Кроме того, „не последнее слово сказано о нем как об инженере“, – говорил У. Чандлер.

Кроме выдающихся успехов, которых он добился в области компьютерной науки и машинного интеллекта, в области „чистой“ математики Тьюринг получил ряд результатов в теории аппроксимации групп Ли, конечных групп и в вычислении дзета-функции Римана.

В конце жизни он занялся вопросами биологии, а именно разработкой химической теории морфогенеза, которая дала полный простор для его редкого сочетания способностей математика с точностью вычислительной машины и одаренного философа, полного смелых и оригинальных идей. Предварительный доклад 1952 года и отчет, который появился уже после его смерти, описывают только первые наброски этой теории.

Для восстановления здоровья Тьюринг обращался в большинстве случаев к домашним средствам. Он придумал игру под названием „Необитаемый остров“. Правила игры заключались в том, что все химические вещества (в том числе и лекарства) должны быть получены из бытовых продуктов. Так он получил цианистый калий и принял его. Утром 8 июня 1954 года его нашли в постели мертвым. Через несколько дней ему исполнилось бы 42 года.

Заслуги Алана Мэтисона Тьюринга в вычислительном мире велики. И, как свидетельство тому, известнейшая Ассоциация по вычислительной технике – ACM (Association for Computing Machnery, создана в 1947 году) учредила премию его имени. Первым лауреатом премии Тьюринга в 1966 году стал Алан Перлис (один из создателей АЛГОЛа) – первый президент ACM. В дальнейшем этой премии удостаивались такие виднейшие ученые, как Джон Бэкус (создатель Фортрана), Джон Маккарти (создатель ЛИСПа, первый, кто ввел в практику термин „искусственный интеллект“), Кеннет Айверсон (создатель АЛЛ), Герберт Саймон и Аллен Ньюэлл (создатели эвристического программирования) и др.

Многие языки программирования носят имена великих математиков: ЕВКЛИД, ПАСКАЛЬ, БЭББИДЖ и т. д. В 1982 году ученые университета в Торонто создали более мощный, чем ПАСКАЛЬ, язык программирования и назвали его ТЬЮРИНГ.

Клод Шеннон
Автор теории информации и практического воплощения булевой алгебры

В наше время идеи Шеннона играют важную роль почти во всех системах, хранящих, обрабатывающих или передающих информацию в цифровой форме, от лазерных дисков до компьютеров, от машин до автоматических космических станций…

Дж. Хорган

Клод Шеннон

В конце 1930-х годов Шеннон был первым, кто связал булеву алгебру с переключающими цепями, являющимися составной частью современных компьютеров. Благодаря этому открытию булева алгебра могла быть использована как способ организации внутренних операций компьютера, способ организации логической структуры компьютера. Таким образом, компьютерная промышленность многим обязана этому человеку, даже несмотря на то, что его интересы подчас находились далеко от компьютеров.

Клод Элвуд Шеннон родился 30 апреля 1916 года в небольшом городе Гайлорд на озере Мичиган.

Его отец был адвокатом и в течение некоторого времени судьей. Его мать преподавала иностранные языки и стала директором Еайлордской средней школы. Молодой Клод очень любил конструировать автоматические устройства. Он компоновал модели самолетов и радиоцепи, создал также радиоуправляемую лодку и телеграфную систему между своим домом и домом друга. Он исправил радиостанции для местного универмага. Томас Эдисон был одновременно его героем детства и дальним кузеном, хотя они ни разу не встречались. Позже Шеннон добавил Исаака Ньютона, Чарльза Дарвина, Альберта Эйнштейна и Джона фон Неймана в список своих героев. В 1932 году Шеннон был зачислен в Мичиганский университет. Клод Шеннон специализировался в электротехнике. Но математика также его увлекала, и он пытался посещать столько курсов, сколько было возможно. Один из тех математических курсов, по символической логике, сыграл большую роль в его карьере. Он получил степень бакалавра по электротехнике и математике. "Вот история моей жизни, – говорит Шеннон. – Взаимодействие между математикой и электротехникой".

В 1936 году Клод Шеннон стал аспирантом Массачусетского технологического института (MIT). Его руководитель Ванневар Буш, создатель дифференциального анализатора (аналогового компьютера) в качестве темы диссертации предложил описать логическую организацию анализатора.

Работая над диссертацией, Шеннон пришел к выводу, что булева алгебра может с успехом использоваться для анализа и синтеза переключателей и реле в электрических схемах. Шеннон писал: "Сложные математические операции возможно выполнить посредством релейных цепей. Числа могут быть представлены позициями реле и шаговыми переключателями. Соединив определенным образом наборы реле, можно производить различные математические операции". Таким образом, объяснял Шеннон, можно собрать релейную схему, выполняющую логические операции И, ИЛИ и НЕ. Также можно реализовать сравнения. С помощью таких цепей легко осуществить конструкцию "If… then…".

В 1937 году Шенноном написана диссертация под названием "Символический анализ релейных и переключательных цепей". Это была необычная диссертация, она расценивалась как одна из наиболее значимых во всей науке того времени: то, что сделал Шеннон, проложило путь к разработке цифровых компьютеров.

Работа Шеннона имела очень важное значение: теперь инженеры в своей повседневной практике, создавая аппаратуру и программы для компьютеров, сети телефонной связи и другие системы, постоянно пользуются булевой алгеброй. Шеннон преуменьшал свою заслугу в этом открытии. "Просто случилось так, что никто другой не был знаком с этими обеими областями (математика и электротехника. – А. Ч.) одновременно," – говорил он. И после заявлял: «Мне всегда нравилось это слово – булева».

Справедливости ради нужно заметить, что до Шеннона установлением связи между булевой алгеброй и переключательными цепями занимались в Америке Ч. Пирс, в России – П. С. Эренфест, В. И. Шестаков и др.

По совету Буша Шеннон решил добиваться докторской степени по математике в MIT. Идея его будущей диссертации родилась у него летом 1939 года, когда он работал в Cold Spring Habor в Нью-Йорке. Буш был назначен президентом Carnegie Institution в округе Вашингтон и предложил Шеннону провести там немного времени: работа, которую делала Барбара Беркс по генетике, могла послужить предметом, для которого Шеннон применит свою алгебраическую теорию. Если Шеннон смог организовать переключение цепей, то почему он не сможет сделать то же в генетике? Докторская диссертация Шеннона, получившая название "Алгебра для теоретической генетики", была завершена весной 1940 года. Шеннон получает докторскую степень по математике и степень магистра по электротехнике. Т. Фрай, директор отделения математики в Bell Laboritories, был впечатлен работой Шеннона в области символической логики и его математическим мышлением. Летом 1940 года он приглашает Шеннона работать в Bell. Там Шеннон, исследуя переключающие цепи, обнаружил новый метод их организации, позволяющий уменьшить количество контактов реле, необходимых для реализации какой-либо сложной логической функции. Он опубликовал доклад, названный "Организация двухполюсных переключающих цепей". В конце 1940 года Шеннон получил Национальную научно-исследовательскую премию. Весной 1941 года он вернулся в Bell Laboratories. С началом войны Т. Фрай возглавил работу над программой для систем управления огнем для противовоздушной обороны. Шеннон присоединился к этой группе и работал над устройствами, которые засекали вражеские самолеты и нацеливали зенитные установки.

AT&T, владелец Bell Laboratories, была ведущей фирмой мира в области связи и естественно, что в лабораториях Bell также велись работы по системам связи. На этот раз Шеннон заинтересовался электронной передачей сообщений. Мало, что было понятно ему в этой области, но он верил, что математика знала ответы на большинство вопросов.

Сначала Шеннон задался простой целью: улучшить процесс передачи информации по телеграфному или телефонному каналу, находящемуся под воздействием электрических возмущений или шума. Он пришел к выводу, что наилучшее решение заключается не в техническом усовершенствовании линий связи, а в более эффективной упаковке информации.

Что такое информация? Оставляя в стороне вопрос о содержании этого понятия, Шеннон показал, что это измеримая величина: количество информации, содержащейся в данном сообщении, есть функция вероятности, что из всех возможных сообщений будет выбрано данное. Он назвал общий потенциал информации в системе сообщений как ее "энтропию". В термодинамике это понятие означает степень случайности (или, если угодно, "перемешанности") системы. (Однажды Шеннон сказал, что понятием энтропии ему посоветовал воспользоваться математик Джон фон Нейман, указавший, что, т. к. никто не знает, что это такое, у Шеннона всегда будет преимущество в спорах, касающихся его теории.)

Шеннон определил основную единицу количества информации, названную потом битом, как сообщение, представляющее один из двух вариантов: например, "орел" – "решка", или "да" – "нет". Бит можно представить как 1 или 0, или как присутствие или отсутствие тока в цепи.

На этом математическом фундаменте Шеннон затем показал, что любой канал связи имеет свою максимальную пропускную способность для надежной передачи информации. В действительности он доказал, что, хотя можно приблизиться к этому максимуму за счет искусного кодирования, достичь его невозможно. Этот максимум получил известность как предел Шеннона.

Каким образом можно приблизиться к пределу Шеннона? Первый шаг заключается в том, чтобы воспользоваться избыточностью кода. Подобно тому как влюбленный мог бы лаконично написать в своей любовной записке "я лбл в", путем эффективного кодирования можно сжать информацию, представив ее в наиболее компактной форме. С помощью специальных методов кодирования, позволяющих проводить коррекцию ошибок, можно гарантировать, что сообщение не будет искажено шумом.

Идеи Шеннона были слишком провидческими, чтобы иметь немедленный практический эффект. Схемы на вакуумных электронных лампах просто не могли еще вычислять сложные коды, требовавшиеся для того, чтобы приблизиться к пределу Шеннона. На самом деле только в начале 70-х годов с появлением быстродействующих интегральных микросхем инженеры начали в полной мере пользоваться теорией информации.

Все свои мысли и идеи, связанные с новой наукой – теорией информации, Клод Шеннон изложил в монографии "Математическая теория связи", опубликованной в 1948 году.

Теория информации, помимо связи, проникла также и в другие области, в том числе в лингвистику, психологию, экономику, биологию и даже в искусство. В подтверждение приведем, например, факт: в начале 70-х годов в журнале "IEEE Transactions on Information Theory" была опубликована редакционная статья под названием "Теория информации, фотосинтез и религия". С точки зрения самого Шеннона применение информационной теории к биологическим системам вовсе не является таким уж неуместным, поскольку, по его мнению, в основе механических и живых систем лежат общие принципы. Когда его спрашивают, может ли машина мыслить, он отвечает: "Конечно, да. Я машина и вы машина, и мы оба мыслим, не так ли?"

В действительности Шеннон был одним из первых инженеров, высказавших мысль о том, что машины можно запрограммировать так, чтобы они могли играть в карты и решать другие сложные задачи.

В 1948 году он публикует работу "Программирование компьютера для игры в шахматы". Ранее подобных публикаций на эту тему не было, причем созданная Шенноном шахматная программа явилась основой для последующих разработок и первым достижением в области искусственного интеллекта. В 1950 году он изобрел механическую мышь Тесей, которая, будучи управляема магнитом и сложной электрической схемой, скрытой под полом, могла найти выход из лабиринта.

Он построил машину, "читающую мысли" и играющую в "монетку" – игру, в которой один из играющих пытается угадать, что выбрал другой играющий, "орел" или "решку". Коллега Шеннона, также работавший в Bell Laboratories, Дэвид У. Хейджелбарджер построил опытный образец; машина запоминала и анализировала последовательность прошлых выборов оппонента, пытаясь отыскать в них закономерность и на ее основе предсказать следующий выбор.

Клод Шеннон был одним из организаторов первой конференции по искусственному интеллекту, состоявшейся в 1956 году в Дартмупте. В 1965 году он побывал по приглашению в Советском Союзе, где прочитал ряд лекций по искусственному интеллекту.

В 1958 году Шеннон покинул Bell Laboratories, став профессором в Массачусетском технологическом институте. После того как в 1978 году он официально ушел на пенсию, его величайшим увлечением стало жонглирование. Он построил несколько жонглирующих машин и разработал то, что можно было бы назвать объединенной теорией поля для жонглирования.

С конца 50-х годов Шеннон опубликовал очень мало работ по теории информации. Некоторые из его бывших коллег поговаривали, что Шеннон "перегорел" и ему надоела созданная им самим теория, но Шеннон отрицал это. "Большинство великих математиков писали свои лучшие работы, когда были еще молодыми", – говорил он.

В 1985 году Шеннон и его жена внезапно решили посетить Международный симпозиум по теории информации, состоявшийся в английском городе Брайтоне. В течение многих лет он не принимал участия в конференциях, и сначала его никто не заметил. Затем участники симпозиума стали перешептываться: скромный седоволосый джентльмен, который то приходил, то уходил из залов, где слушались доклады, это – Клод Шеннон. На банкете Шеннон сказал несколько слов, немножко пожонглировал тремя мячами и подписал множество автографов инженерам, выстроившимся в длинную очередь. Как вспоминал один из участников, "это воспринималось так, как будто Ньютон появился на конференции, посвященной проблемам физики".

В начале марта 2001 года, в возрасте 84 лет, после продолжительной болезни Клод Шеннон скончался. Как писали вездесущие журналисты – скончался человек, который придумал бит.

ГЛАВА 2
Первые изобретатели

Конрад Цузе
Создатель первого программируемого цифрового компьютера

Первым, хорошо работающим прибором, была модель Z-3, чья конструкция была закончена в Берлине, в 1941 году, и которую я мог представить специалистам… Сегодня мы знаем, что эта модель была первым действительно действующим компьютером.

Конрад Цузе

Конрад Цузе

Один из мифов, касающийся начального периода истории компьютеров, обычно связывался с исследованиями и разработкой американских ученых и инженеров. Этот миф был разрушен в 1969 году, когда информация относительно компьютеров Цузе стала доступной в США и других странах.

Конрад Цузе родился 22 июня 1910 года в Берлине.

Его отец, Эмиль Цузе, был почтовым чиновником, зарабатывал немного, но вместе с женой Марией Цузе, и сестрой Конрада – Лизелоттой, делал все, что мог, чтобы поддержать интерес сына к конструированию вычислительных машин. Надо сказать, что еще в детстве Конрад сконструировал действующую модель машины для размена монет. В 1935 году он окончил высшую техническую школу (Technische Hochschule) по специальности "гражданское строительство" и начал работать аналитиком в авиакомпании Henschel. Работая в этой компании, Цузе столкнулся с многочисленными нудными вычислениями, связанными с проектированием самолетов. В 1936 году, в возрасте 26 лет, он решил проектировать вычислительный прибор (компьютер), имея для этого накопившиеся идеи и квартиру родителей в качестве "мастерской".

Он собирался построить серию компьютеров, первоначально названных Versuchsmodell (экспериментальная модель). Первый Versuchsmodell, V-1, построенный в 1938 году, был полностью механическим, на 16 машинных слов и занимал площадь 4 кв. метра (восстановленная версия V-1 находится в музее Verker und Technik в Берлине). Серию Versuchsmodell Цузе рассматривал в качестве рабочего инструмента для инженеров и ученых, которые имели дело со сложными аэродинамическими вычислениями.

В начале войны, в 1939 году, Цузе был завербован в армию, но вскоре он и многие инженеры, подобные ему, были освобождены от военной службы и приписаны к инженерным проектам, поддерживающим военную немецкую мощь. Цузе направили в Германский авиационный исследовательский институт в Берлине.

Вернувшись в свой родной город, ученый продолжил совершенствовать серию Versuchsmodell в доме своих родителей, и в большей степени за счет своих собственных средств, хотя он работал в институте, который конструировал военные самолеты для Luftwaffe. Гельмут Шрейер, который сотрудничал с Цузе при создании компьютеров, предложил использовать электромагнитные реле для второго Versuchsmodell, V-2. Шрейер показал Цузе, как эти реле могут быть применены в структуре цифрового механического компьютера, разработанного Цузе. Шрейер, уехавший после войны в Бразилию, также рассматривал возможность применения вакуумных ламп для создания компьютеров, и в конечном счете им была разработана разновидность "триггерной схемы", сейчас широко используемой в компьютерной логике.

V-2 был, конечно, очень ненадежен, но один из редких случаев его нормальной работы случился тогда, когда Альфред Тейхман, ведущий ученый из Германского авиационного института, посетил дом Цузе, по его приглашению. Тейхман был специалистом по важнейшей проблеме самолетостроения – вибрации крыла. Он сразу понял, что машина, подобная V-2, может помочь инженерам решить эту проблему. Проблема вибрации "исчезла под нажатием пальца", позднее вспоминал Цузе.

Тейхман помог Цузе достать денег для его работ по созданию компьютеров, но Цузе продолжал работать в доме своих родителей и никогда не нанимал посторонний штат ассистентов. При помощи Шрейера Цузе завершил первый в мире полностью функциональный, программно-управляемый компьютер в конце 1941 года.

Этот третий Versuchsmodell получил название V-3. Он имел 1400 электромагнитных реле в памяти, 600 реле для управления вычислениями и еще 600 реле для других целей. Компьютер работал в двоичной системе счисления, числа представлялись в форме с плавающей запятой, длина машинного слова составляла 22 бита, объем памяти – 64 бита.

На операцию умножения V-3 затрачивал от трех до пяти секунд. Проблемой, наиболее часто решаемой V-3, было вычисление определителя матрицы (т. е. решение системы уравнений с несколькими переменными). V-3, очевидно, был первым компьютером, который использовал для записи арифметических выражений обратную польскую запись. Изобретение этой системы записи приписывается польскому логику Яну Лукасевичу, но Цузе не знал о вкладе Лукасевича, он просто заново изобрел "колесо", подобно многим другим ученым.

В период Второй мировой войны Цузе переименовал свои первые три компьютера в Z-l, Z-2, Z-3, соответственно, чтобы избежать путаницы с ракетами V-1 и V-2, разрабатываемыми Вернером фон Брауном для войны против Англии. Цузе всегда хотел сделать свои компьютеры серии Z для обшего назначения, но все-таки один компьютер стал специализированным – S-1, вариант Z-3, который, вероятно, поддерживал немецкую военную мощь.

Компьютер Z-3

Этот специализированный компьютер, S-1, помогал Henschel Aircraft Company производить летающие бомбы, известные как HS-293. Не так хорошо известная и широко используемая бомба фон Брауна HS-293 представляла собой беспилотный аэроплан, носимый наверху бомбардировщика. Пилот бомбардировщика ловил цель в поле своего зрения и сбрасывал HS-293, а экипаж бомбардировщика по радио управлял ее планированием к цели. HS-293 взрывала корабли войск союзников после августа 1943 года, а также разрушала мосты в Польше при отступлении немцев в 1945 году.

Компьютер S-1 надежно работал с 1942 по 1944 год на заводе Henschel в Берлине, рассчитывал размеры крыла и поворота руля высоты, важных для HS-293. Рабочие измеряли истинные размеры крыльев и рулей высоты; результаты этих измерений помещались в S-1, который затем вычислял угол отклонения HS-293 от прямой траектории, если эти части будут правильно собраны. Цузе развивал методы программирования своего компьютера, которые не требовали от программиста детального понимания внутренней организации компьютера. Он старался решить проблему, которую можно было назвать нехваткой ведущих мировых программистов, потому что война истощала людские ресурсы. Он попросил общество слепых выслать ему список слепых людей, которые проявили способности в математике. Из списка Цузе выбрал некоего Августа Фоста, который затем стал профессионалом в программировании.

Теперь, когда Z-3 получил признание, Цузе захотел построить еще более мощный компьютер. Он представлял его с большим объемом памяти на 500 чисел и с 32-битным машинным словом. Z-4 был наиболее сложным компьютером Цузе. Он мог складывать, умножать, делить или находить квадратный корень за 3 сек. В это время Цузе уже имел поддержку немецкого военного командования для строительства компьютеров общего назначения, хотя министерство авиации, которое заказывало компьютер, было заинтересовано в компьютере только для вычислений, связанных с проектированием самолетов. К 1942 году Цузе основал фирму "Zuse Apparatebau". Большую часть войны он работал один, но к концу войны под его руководством трудились 20 сотрудников. После немецкого поражения в феврале 1943 года под Сталинградом Цузе стал убежденным сторонником того, чтобы война закончилась. Его компьютеры могли бы пригодиться для мирных целей. Но жизнь была неустойчива, и он не мог быть уверен – останутся ли его машины "в живых". Союзники бомбили Берлин каждый день. Z-3 был разрушен, a Z-4 перед побегом из Берлина в марте 1945 году Цузе пришлось перевозить три раза по городу, чтобы избежать бомбардировок, что нарушило работоспособность прибора.

Цузе позволили покинуть Берлин в последние месяцы войны. В марте 1945 года он и его ассистент перевезли демонтированный Z-4 поездом до Геттингена, 100 миль на запад. По приказу правительства его оборудование следовало отвезти в подземные фабрики около Нортхейма, но после первого посещения концлагерей Цузе отказался. Он поселился возле гор, в мирной баварской деревне. Цузе предлагали уехать из Германии и переехать в Англию или в США. Тогда он мог бы строить компьютеры для англичан в течение послевоенных лет. Но он остался в Германии. Он жил в Хинтерштейне до 1946 года, причем его оборудование было спрятано в подвале фермы.

В 1946 году Цузе переехал в другую альпийскую деревню, Хопферау, около австрийской границы. Там он прожил три года. Было время подумать. Разработка аппаратного обеспечения после войны приостановилась, и Цузе вернулся к программированию.

В 1945 году он разработал то, что назвал первым языком программирования для компьютеров. Систему программирования он назвал Plankalkul ("исчисление планов"). Цузе написал небольшое эссе, где рассказал о своем творении и возможности его использования для решения таких задач, как сортировка чисел и выполнение операций в двоичной арифметике. Научившись играть в шахматы, Цузе написал несколько фрагментов программ на Plankalkul, которые позволяли компьютеру оценивать шахматные позиции.

Многие идеи языка Plankalkul остались неизвестными целому поколению программистов. Только в 1972 году работа Цузе была издана целиком, и эта публикация заставила специалистов задуматься над тем, какое влияние мог бы оказать Plankalkul, будь он известен раньше. "Видимо, все могло обернуться совсем иначе, а мы живем не в лучшем из миров", – заметил по этому поводу один ученый, критикуя языки программирования, появившиеся позднее.

В 1948 году профессор Е. Стейфил из технического университета в Цюрихе заказал у Цузе компьютер Z-4 для своей лаборатории. А в 1949 году Цузе основал маленькую компанию, названную ZUSE KG, которая должна была разрабатывать компьютеры для научных целей. Она просуществовала до 1966 года, когда ее приобрела фирма Siemens AG, но Цузе остался в новой фирме внештатным консультантом. В 50–60 годах Цузе были созданы новые компьютеры на реле Z-5 и Z-11, затем вместе с Фроммом и Гюнчем он создает Z-22 на электронных лампах и Z-23 – на транзисторах. Одной из последних его разработок были компьютеры Z-25 и Z-31, а также графомограф Z-64 для автоматического построения чертежей и карт. Он написал книгу "History of Computing", изданную на немецком и английском языках.

В последние годы Цузе жил в деревне Хессиан в нескольких часах езды от Франкфурта и любимым его занятием стала живопись, в основном абстрактная. Его работы демонстрировались на многочисленных выставках. Некоторые из своих картин он подписывал псевдонимом "KONE SEE".

18 декабря 1995 года Конрада Цузе не стало. Его заслуги, как одного из родоначальников компьютерной эры, неоспоримы.


    Ваша оценка произведения:

Популярные книги за неделю