355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Аркадий Частиков » Архитекторы компьютерного мира » Текст книги (страница 11)
Архитекторы компьютерного мира
  • Текст добавлен: 20 сентября 2016, 19:36

Текст книги "Архитекторы компьютерного мира"


Автор книги: Аркадий Частиков



сообщить о нарушении

Текущая страница: 11 (всего у книги 30 страниц)

Машина М-2, вообще говоря, осталась в единственном экземпляре, ее попробовали повторить в Китае, но сведений о том, что она там заработала, у нас не было. Но это была машина серьезная. На ней велись очень большие и очень важные расчеты. Собственно говоря, в течение нескольких лет в Советском Союзе было две работающих машины: наша М-2 и машина БЭСМ Института точной механики и вычислительной техники АН СССР. Большие расчеты вел Сергей Львович Соболев для Курчатова. Считались задачи для фирмы Акселя Ивановича Берга. Нам были поручены (специальным распоряжением правительства) расчеты прочности плотин строившихся тогда Куйбышевской и Волжской гидроэлектростанций. Эти расчеты вел Институт механики Академии наук. Считали на нашей машине свои задачи М. А. Михеев (Институт теоретической и экспериментальной физики А. И. Алиханова, тогда он назывался Теплотехнической лабораторией Академии наук) и многие-многие другие".

Вычислительная машина М-2

Машина М-2 не была запущена в серию, несмотря на ее превосходные характеристики и отличное конструктивное исполнение. Время подтвердило ее высокие качества: в Энергетическом институте АН СССР она бессменно проработала 15 лет, обеспечив решение множества задач в различных областях науки и техники. В отличие от малой ЭВМ М-1, машина М-2 имела ту же производительность, что и ЭВМ «Стрела» (2000 операций в секунду) и БЭСМ в первый период эксплуатации.

Когда М-2 еще находилась на стадии отладки, в лаборатории Брука началось проектирование малой электронной вычислительной машины М-3. Главным конструктором был назначен Н. Я. Матюхин.

Как и предыдущие машины М-1 и М-2, машина М-3 также осталась бы в единственном экземпляре, если бы не проявил к ней заинтересованность директор ВНИИЭМа – А. Г. Иосифьян. На завершающем этапе разработки была создана совместная группа: Матюхин и Белынский (лаборатория Брука), Коган, Долкарт и Лопато (ВНИИЭМ). В 1956 году первый образец М-3 был предъявлен Государственной комиссии.

На торжественном заседании, посвященном 90-летию И. С. Брука, Б. М. Коган рассказал о судьбе машины М-3: "Поскольку работа по созданию ЭВМ М-3 была инициативной и не входила в какие-либо планы, Государственная комиссия во главе с академиком Н. Г. Бруевичем с участием М. Р. Шуры-Буры проявила характер и не хотела принимать машину: мол, родилась незаконно. Но все же приняли. И два года не удавалось по-государственному решить вопрос – запустить ее в серийное производство. В это время организовался Ереванский институт математических машин, и по нашей документации на ЭВМ М-3 этот институт построил свои первые ЭВМ. В те же годы построили завод в Минске, но оказалось, что делать ему нечего. Минчане узнали, что есть машина у Иосифьяна, которую никто не соглашается поставить на серию. И только тогда было принято решение передать документацию на М-3 из ВНИИЭМ на этот завод. Так работа по созданию ЭВМ М-3 стала основой для развития математического машиностроения в Ереване и Минске.

Хочу также отметить, что и в Китае и в Венгрии по нашей документации были построены первые машины. Во ВНИИЭМ эти работы явились толчком к дальнейшему интенсивному развитию комплекса крупномасштабных исследований и конструкторских работ, связанных с созданием управляющих вычислительных машин и систем".

В 1956 году И. С. Брук выступил с докладом на сессии Академии наук СССР по автоматизации, где изложил главные направления промышленного применения ЭВМ. В 1958 году под его руководством была разработана проблемная записка "Разработка теории, принципов построения и применения специализированных вычислительных и управляющих машин".

Проблемная записка И. С. Брука явилась толчком к организации в стране ряда научно-исследовательских и конструкторских бюро по управляющим машинам и системам.

На базе лаборатории электросистем ЭНИНа в 1956 году была создана Лаборатория управляющих машин и систем (ЛУМС) АН СССР, а в 1958 году – Институт электронных управляющих машин (ИНЭУМ) АН СССР, первым директором которого стал И. С. Брук. В это же время Брук был утвержден Президиумом АН СССР научным руководителем по проблеме "Разработка теории, принципов построения и применения управляющих машин".

В ИНЭУМ АН СССР под руководством Брука были созданы управляющие машины: М-4 (1957–1960) для решения специальных задач в системах Радиотехнического института АН СССР (главный конструктор – М. А. Карцев); М-5 (1959–1960) – для решения экономических задач, планирования и управления народным хозяйством (главный конструктор – В. В. Белынский); М-7-200 и М-7-800 (1966–1969) – для задач управления мощными энергоблоками (Конаковская ГРЭС, Славянская ГРЭС) и технологическими процессами (главный конструктор – Н. Н. Ленов).

Будучи директором института, И. С. Брук уделял" много внимания нуждам растущего института, созданию здорового работоспособного коллектива, воспитанию высокой научной требовательности у своих учеников. Выйдя на пенсию в 1964 году, Исаак Семенович оставался научным консультантом и руководителем научно-технического совета ИНЭУМ.

О некоторых чертах его характера вспоминает В. Ф. Дорфман: "Брук, как и Бэббидж, был неуживчив, едок и язвителен и умел одним словом дать уничтожающую характеристику явлению. Например, когда я почему-то стал оправдывать руководителей, стремящихся к ведению нескольких параллельных тем ради запаса прочности, Брук заметил коротко: "Понимаю, многоножки". Подобные и более сильные образы "стреляли" из него, как искры в поле высокого напряжения, эти разряды, кажется, чувствовались уже вблизи его кабинета, и если биополя действительно существуют, Брук был их сильнейшим генератором.

Брука сильно раздражала жизненная и административная суета, и если для Бэббиджа главным раздражителем были уличные музыканты, то Брука порой выводил из себя острый запах духов, которыми без чувства меры пользовались некоторые сотрудницы. Из запахов он больше всего любил "аромат" машинного масла и редкий день обходил стороной механическую мастерскую".

За последние пять лет жизни он получил 16 авторских свидетельств, а всего в списке публикаций – более 100 научных работу 50 изобретений.

Он умер 6 октября 1974 года, через три месяца после кончины С. А. Лебедева.

Николай Петрович Брусенцов
Архитектор первого в мире троичного компьютера

О достоинствах этого кода (троичного) я, конечно, знал из книг, в которых ему уделяли тогда значительное внимание. Впоследствии я узнал, что небезызвестный американский ученый Грош («закон Гроша») интересовался троичной системой представления чисел, но до создания ЭВМ в Америке дело не дошло.

Н. П Брусенцов

Николай Петрович Брусенцов

Да, Николай Петрович Брусенцов впервые в мире создал троичный компьютер «Сетунь», который, к тому же, серийно выпускался нашей промышленностью.

В 50-е годы XX века много писалось статей о тех или иных системах счисления и их использовании в вычислительной технике.

Причем для их оценки рассматривались различные критериальные подходы. Один из критериев связан с экономичностью системы счисления. Под этим понимается тот запас чисел, которые можно записать в данной системе с помощью определенного количества знаков. Математически было доказано, что самой экономичной системой счисления является система с основанием е = 2,71… (основание натурального логарифма). Ближайшим к этому иррациональному числу является число 3, т. е. троичная система – самая экономичная. Но "главное преимущество, – как писал в те годы Брусенцов, – троичного представления чисел перед принятым в современных компьютерах двоичным состоит не в иллюзорной экономичности троичного кода, а в том, что с тремя цифрами возможен натуральный код чисел со знаком, а с двумя невозможен. Несовершенство двоичной арифметики и реализующих ее цифровых машин обусловлено именно тем, что двоичным кодом естественно представимы либо только неотрицательные числа, либо только неположительные, а для представления всей необходимой для арифметики совокупности – положительных, отрицательных и нуля – приходится пользоваться искусственными приемами типа прямого, обратного или дополнительного кода, системой с отрицательным основанием или цифрами + 1, —1 и другими ухищрениями".

И все же, несмотря на положительные качества троичной системы счисления, не следует забывать, что ее применение в вычислительной технике вместо двоичной влечет некоторые конструктивные трудности: элементы, на которых строится машина, должны иметь не два устойчивых состояния, а три.

Необходимые для реализации троичной системы три устойчивых состояния Н. П. Брусенцов получил с помощью пары магнитных усилителей.

Николай Петрович Брусенцов родился на Украине в городе Днепродзержинске 7 февраля 1925 года. Его отец, Петр Николаевич, участвовал в строительстве, а затем работал на коксохимическом заводе, а мать, Мария Дмитриевна, заведовала детским садом при заводе.

Во время войны вместе с заводом семья была эвакуирована в Оренбургскую область.

В феврале 1943 года, когда Николаю исполнилось 18 лет, его призвали в армию и послали в Свердловск на курсы радистов, по окончании которых его отправили на фронт. Он воевал в Белоруссии, Прибалтике и Восточной Пруссии, день Победы встретил под Кенигсбергом.

После демобилизации Николай Брусенцов закончил десятый класс школы рабочей молодежи в г. Калинине (ныне Тверь) и в 1948 году поступил на радиотехнический факультет Московского энергетического института. Он учился в институте вместе с М. А. Карцевым, который впоследствии также стал одним из выдающихся конструкторов вычислительных систем.

Как исследователь, Брусенцов проявил себя уже при написании дипломного проекта – он рассчитал и составил таблицы дифракции на эллиптическом цилиндре, известные как таблицы Брусенцова.

По окончании института в 1953 году Брусенцова направили на работу в СКБ при Московском университете. В тот год бывший сокурсник М. А. Карцев познакомил его с машиной М-2, только что разработанной им в бруковской лаборатории, и это определило дальнейшую судьбу Николая Брусенцова.

В конце прошлого столетия газета "Computerworld Россия" опубликовала серию статей, посвященных развитию компьютерной отрасли в мире за последние 50 лет. Одна из статей называлась "Первая и единственная" и была посвящена машине "Сетунь". Наш дальнейший рассказ о Николае Петровиче Брусенцове построен на материалах статьи и на воспоминаниях Бориса Николаевича Малиновского.

Возглавлявший в те годы кафедру вычислительной математики мехмата МГУ Сергей Львович Соболев намеревался заполучить М-2 в университет. Но по стечению обстоятельств машина в МГУ не попала. Соболев же загорелся идеей разработки малой ЭВМ специально для использования в учебных заведениях. Для этого при организующемся ВЦ МГУ была открыта специальная проблемная лаборатория, а при ней – семинар, где первые университетские программисты (Шура-Бура, Семендяев, Жоголев и, конечно, сам Соболев) искали пути к созданию малогабаритной, надежной, простой в использовании и недорогой машины. Брусенцов, который также по инициативе Соболева был переведен на мехмат, включился в работу семинара.

Один из основных обсуждавшихся вопросов – на какой элементной базе строить машину. Ламповые машины уже тогда казались громоздкими и энергоемкими. Транзисторы только начали появляться и были слишком ненадежны. Остановились на магнитных элементах. 23 апреля 1956 года состоялось заседание семинара, участники которого приняли окончательное решение о разработке малой цифровой машины на магнитных логических элементах (пока речь идет о машине с двоичным представлением данных), сформулированы технические требования и назначен руководитель разработки – Брусенцов. Он же и единственный исполнитель.

К этому времени уже существовала машина, полностью выполненная на магнитных элементах, – в ИТМиВТ, в лаборатории Гутенмахера. За несколько лет до того именно Гутенмахер должен был стать основным разработчиком ЭВМ в СКБ-245, причем планировалось делать машину на разработанных им феррит-диодных элементах. Однако с приходом в СКБ Рамеева работа была переориентирована на электронные лампы, в результате чего появилась ЭВМ "Стрела". Гутенмахер же закончил свою машину в ИТМиВТ, где она и работала. Машина была низкой производительности, с большим количеством недостатков. Поскольку новую универсальную ЭВМ решено было строить на магнитных элементах, Брусенцова по протекции Соболева допустили в окутанную атмосферой секретности лабораторию Гутенмахера на стажировку.

Размышления о том, как устранить многочисленные проблемы этой машины, неожиданно привели его к мысли об использовании троичной системы счисления. Вот что он пишет: "Оказалось, что эти элементы не только весьма удобны для построения троичных цифровых устройств. Троичные устройства получаются существенно более быстрыми и структурно более простыми, чем двоичные устройства, реализованные на тех же элементах".

Соболев поддержал замысел Брусенцова – создать троичную ЭВМ. Штат лаборатории увеличился до 20 человек, которые изготовили опытный образец машины (он эксплуатировался в МГУ 15 лет). Наладка была выполнена очень быстро – за десять дней. Назвать новую машину решили по имени речки, протекавшей недалеко от университета – "Сетунь".

Наверно, такая необычная машина могла родиться только в университетских стенах. Своей простотой и практичностью "Сетунь" обязана представлению чисел и команд в симметричном коде – (—1, 0, 1). По существу, у университетских разработчиков получился первый RISC-компьютер: длина машинного слова – 9 тритов, всего 24 команды, при этом ей удавалось с большой эффективностью реализовать разнообразные алгоритмы. На «Сетуни» решались задачи математического моделирования в физике и химии, оптимизации управления производством, краткосрочных прогнозов погоды, конструкторских расчетов, компьютерного обучения, обработки экспериментальных данных и т. д.

Троичный компьютер "Сетунь"

Еще одной особенностью машины была страничная двухуровневая организация памяти. Магнитный барабан, позаимствованный у ЭВМ «Урал», был связан с быстрой оперативной памятью постраничным обменом. Таким образом, получался своего рода кэш, который способствовал повышению производительности машины.

Серийное производство "Сетуни" было поручено Казанскому заводу математических машин. Завод производил 15–20 машин в год, всего было выпущено 50 машин, 30 из которых работали в вузах страны.

В 1961–1968 годах Брусенцов вместе с Жоголевым разработал новую машину, впоследствии названную "Сетунь-70". Действующий образец прошел испытания в апреле 1970 года. Но, к сожалению, после завершения работ по "Сетуни-70" лаборатория Брусенцова была вынуждена по указанию нового начальства прекратить разработки машин. "Сетунь-70" стали использовать и в системе компьютерного обучения "Наставник".

"Мне, конечно, было горько от того, что нас не поняли, но затем я увидел, что это нормальное положение в человеческом обществе, и что я еще легко отделался, – с горьким юмором писал Брусенцов. – А вот Уильям Оккам, проповедовавший трехзначную логику в XIII веке, с большим трудом избежал костра и всю жизнь прожил изгоем. Другой пример – Льюис Кэрролл, которому только под личиной детской сказки удалось внедрить его замечательные находки в логике, а ведь эта наука до сих пор их замалчивает и делает вид, что никакого Кэрролла не было и нет". И далее он продолжает: "Все же главным применением трехзначной логики стали теперь силлогистика и модальная логика Аристотеля. Арифметические и машинные достоинства троичности в достаточной степени были освоены нами уже в "Сетуни-70" – операции со словами варьируемой длины, оптимальный интервал значений мантиссы нормализованного числа, единый натуральный код чисел, адресов и операций, идеально естественное округление при простом усечении длины числа, алгебраические четырехвходные сумматоры и реверсивные счетчики, экономия соединительных проводов и контактов за счет передачи по каждому проводу двух несовместимых двузначных сигналов (т. е. одного трехзначного). Короче говоря, все, о чем мечтает Д. Кнут в "Искусстве программирования для ЭВМ", мы уже осуществили. Адекватное отображение логики Аристотеля в трехзначной системе откроет выход компьютерам на те проблемы, которые он в свое время исследовал, которые сегодня, по-моему, актуальнее вычислительной математики, электронной почты и тем более одуряющих компьютерных игр".

Основные устройства компьютера "Сетунь": 1 – телетайп – CTA2M; 2 – фотовывод (2 шт.); 3 – электронно-вычислительное устройство с пультом управления; 4 – ЭУМ-46; 5 – перфоратор ленточный; 6 – перфоратор ручной; 7 – устройство перемотки ленты; 8 – стенд проверки блочков

Отдельные примеры алгебраизации аристотелевской логики Н. П. Брусенцов изложил в статьях «Диаграммы Льюиса Кэрролла и аристотелева силлогистика» и «Полная система категорических силлогизмов Аристотеля», опубликованных в конце 70-х – начале 80-х годов XX века.

Всего им опубликовано более 100 научных работ, в том числе монографии "Малая цифровая вычислительная машина "Сетунь", "Миникомпьютеры", "Микрокомпьютеры", а также получено 11 авторских свидетельств на изобретения.

Американцы до сих пор интересуются троичным компьютером "Сетунь" и его создателем Николаем Петровичем Брусенцовым.

ГЛАВА 3
Выдающиеся конструкторы

Джин Амдал
Гениальный создатель мэйнфреймов

Новые концепции в разработке компьютерных систем преследуют цель сделать их еще более полными, эффективными и гибкими средствами, несмотря на схемную сложность и многообразие применений.

Джин Амдал

Джин Амдал

Он был главным конструктором и разработчиком таких легендарных компьютеров, как IBM 704, 709, 7030, 7090 и архитектором компьютерного семейства третьего поколения IBM/360. Когда он не сумел заставить руководство фирмы IBM следовать его намерениям и новациям, то бросил вызов этому компьютерному гиганту, организовав собственную фирму Amdahl Согр. с целью создания сверхбыстродействующих мэйнфреймов, способных работать с программным обеспечением фирмы IBM. Создание таких машин увенчалось полным успехом.

Джина Амдала считают величайшим проектировщиком компьютерных систем XX века. Часто его сравнивали с Сеймуром Креем, создателем суперкомпьютеров: оба хотели изменить принцип конструирования больших компьютеров, оба обладали выдающимися способностями предвидения и оба оказали огромное влияние на компьютерную промышленность.

Но в то время как Крей – человек, которым Амдал восхищался, но никогда не был с ним знаком – сосредоточился на проектировании суперкомпьютеров, имеющих небольшой рынок. Джин Амдал создавал машины общего назначения (мэйнфреймы), предназначенные охватить большой сегмент рынка.

Амдал родился 16 ноября 1922 года в Фландро, штат Южная Дакота. Он поступил в колледж штата Южная Дакота (позднее университет Южная Дакота) осенью 1941 года и учился здесь до весны 1943 года. Затем он изучал физику и электронику по специальной учебной программе армии США, с середины 1944 года до 1946 года. Осенью 1946 года он вернулся в колледж штата Южная Дакота и два года спустя получил степень бакалавра по инженерной физике.

Амдал написал дипломную работу по теоретической физике в Висконсинском университете. В 1950 году он получил задание от профессора поработать вместе с двумя другими выпускниками над исследованием: может ли внутриядерная сила частиц отразить предельное состояние между тремя простейшими ядерными частицами. В течение 30 дней Амдал и два его коллеги работали с калькулятором и логарифмической линейкой, чтобы получить две наиболее значимых цифры и вычислить самый низкий энергетический уровень для любой величины параметров. Они были расстроены, когда обнаружили, что существует почти предельное состояние, но не само предельное состояние. Короче говоря, предполагаемая внутриядерная сила не могла адекватно отразить состояние ядра. Амдал понял, что для коротких расчетов необходимы более совершенные вычислительные устройства.

Он решил построить компьютер. Один из компьютеров, который он собрал, был назван – VI ЗС (Висконсинский интегрально синхронизированный компьютер). Амдал вспоминает его как "действительно довольно интересный компьютер". Его докторская диссертация была отчетом о проекте и конструкции этого компьютера.

В феврале 1952 года он получил степень доктора философии по теоретической физике в Висконсинском университете. В июне того же года он поступил в IBM, сначала работал над проведением модельных исследований и проектированием машин для распознавания символов. Он переехал на завод IBM в Поукипси, штат Нью-Йорк, где заканчивались последние работы над оборонным компьютером IBM 701. Фирма уже продала 19 таких машин и хотя они были модернизированы, компания хотела создать что-то более мощное.

Промышленный электронный компьютер IBM 701 был выпущен в 1952 году. Он представлял собой синхронную машину параллельного действия, содержащую 4000 электронных ламп и 1200 кремниевых диодов. Усовершенствованный вариант IBM 701 был введен в эксплуатацию в январе 1956 года.

В ноябре 1953 года Амдал назначается главным проектировщиком компьютера IBM 704. IBM 704 отличалась высокой скоростью работы, в ней использовались индексные регистры и данные представлялись в форме с плавающей запятой. IBM 704 – первый компьютер, в котором был реализован первый язык программирования высокого уровня FORTRAN.

После IBM 704 Джин Амдал становится главным разработчиком следующей машины – IBM 709. Компьютер IBM 709 в архитектурном плане приближался к машинам второго и третьего поколения. В этой машине впервые была применена косвенная адресация и впервые появились каналы ввода-вывода.

В 1956 году фирмой IBM были разработаны плавающие магнитные головки на воздушной подушке. Это изобретение позволило создать новый тип памяти – дисковые ЗУ, значимость которых была в полной мере оценена в последующие десятилетия развития вычислительной техники. Первые ЗУ на дисках появились в машинах IBM 305 и RAMAC-650.

После ламповых машин IBM 701 и 704 фирма выпускает компьютеры IBM 7090 и IBM 7094. Эти машины представляли собой полупроводниковый аналог компьютеров IBM 704 и IBM 709, в которых в архитектурном плане уже были заложены основные черты компьютеров третьего поколения, в частности аппаратные средства для выполнения операций с плавающей запятой, и процессоры (каналы) ввода-вывода.

Компьютер Stretch

Из-за разногласий с руководством Амдал (в это время он проектировал систему Stretch) уходит из фирмы IBM. С 1956 года он был руководителем работ по технике обработки данных в фирмах Thomson Ramo Wooldridge и Aeronutronic Systems. В 1960 году он вернулся в исследовательский центр фирмы IBM в Йорктаун-Хайтс, штат Нью-Йорк, где стал директором отдела экспериментальных вычислительных машин и руководителем работ по созданию мэйнфреймов третьего поколения IBM/360.

В начале апреля 1964 года фирма IBM объявила о выпуске шести моделей своего семейства IBM/360 (System 360). Президент фирмы Г. Уотсон назвал это событие самым важным в истории фирмы, практика окончательно закрепила этот факт как знаменательный в развитии вычислительной техники. Семейство машин IBM/360 возвестило о появлении компьютеров третьего поколения.

Кроме моделей 30, 40, 50, 60, 62, 70, фирма выпустила 19 новых систем памяти и 26 устройств ввода-вывода. IBM/360 – это первое семейство, в котором применено микропрограммирование. Благодаря такому новшеству машины семейства, несколько отличающиеся своими аппаратными средствами, могли работать с одним и тем же составом команд. Семейство перекрывало производительность от нескольких десятков тысяч до нескольких миллионов операций в секунду. За 6 лет существования семейства фирма IBM выпустила более 33 тыс. машин.

До конца 60-х годов фирма IBM в общей сложности выпустила более 20 моделей семейства IBM/360. Модель 85 стала первой машиной, в которой для повышения скорости доступа к памяти была применена кэш-память (от французского слова cache – «тайник»). А модель 195 – первая машина, в которой применялись монолитные интегральные схемы.

Компьютер семейства IBM/360

Создание моделей семейства IBM/360 оказало огромное влияние на весь ход развития вычислительной техники. Структура и архитектура этих вычислительных машин с теми или другими изменениями в элементной базе были воспроизведены в компьютерных семействах многих стран.

В годы работы над проектом IBM/360 Амдал написал основополагающую статью "Новые концепции в разработке вычислительных систем", в которой он определял четыре направления в области проектирования вычислительных систем:

□ "развитие техники программирования и компилирования для увеличения эффективности и гибкости вычислительных устройств;

□ повышение быстродействия вычислительных машин с целью увеличения производительности и снижения стоимости выполняемых операций;

□ мультипрограммирование (разделение во времени) и мультиобработка (разделение вычислений) для увеличения количества одновременно используемого оборудования вычислительной системы;

□ развитие системы обмена результатами вычислений для большей гибкости в составе и размещении устройств вычислительной системы".

В феврале 1965 года он был принят в члены научного общества IBM, ему было разрешено работать следующие 5 лет над любыми проектами, которые ему нравятся. Он стал директором новой организации, которую ему помогли основать – IBM, лаборатория перспективных компьютерных систем в Менло-Парк, Калифорния. Но в 1969 году Амдал и IBM поссорились из-за стратегии по созданию больших компьютеров. IBM устанавливала цены на свои машины, исходя из их мощности, а не из затрат на их производство. Это заставляло компанию отклонять любое предложение по созданию большого компьютера, поскольку его высокая цена сократит рынок и не оправдает усилий. Амдал продолжал работу над большой машиной в надежде, что он сможет убедить IBM отойти от своей стратегии. Летом 1969 года он попросил о встрече с тремя руководителями IBM. "Они изобразили графически на доске, почему IBM была права, что компьютер, который я хочу построить, обойдется им очень дорого". Амдал ничего не мог сделать. Система 360, которую разработал Амдал, хорошо продавалась, и IBM не имело причин вмешиваться в сбыт. "В основном, я ушел из IBM во второй раз, потому что я хотел работать с большими компьютерами. В случае если бы я остался в IBM, я должен был изменить свою карьеру, не получая личного удовлетворения от работы".

Случай, происшедший летом 1970 года, придал Амдалу решимости для ухода. В течение последних 5 лет он был директором консультационной фирмы Compata, основанной его отцом. До этого лета у IBM не было возражений. Но затем там узнали, что некая компания Compata разработала миникомпьютер, что являлось со стороны Амдала нарушением закона IBM о столкновении интересов. Когда в IBM узнали, что данная фирма не имеет ничего общего с фирмой Амдала, перед ним извинились, но настаивали на его уходе из Compata. В это время Compata переживала финансовые трудности и Амдал чувствовал, что он должен остаться. Он решил уйти из IBM и основать свою собственную фирму Amdahl Соrр. При подаче заявления об отставке у него была еще одна встреча с руководством IBM. Один из вице– президентов подошел к нему во время перерыва и посоветовал не заниматься бизнесом больших компьютерных систем. Он не принесет денег. Несмотря на это, Амдал основал этой же осенью свою фирму.

Идеи приходили в седовласую голову создателя компьютеров в любой час дня или ночи. "Иногда я просыпался в середине ночи и шел со скоростью 60 миль/час к решению проблемы. Я мысленно видел картину того, что нужно сделать в машине, и обрабатывал эту идею в голове. Иногда в середине какого-либо разговора мелькала блестящая идея, и на какое-то время я забывал об этом разговоре. Когда я наконец понимал, что происходит, я должен был подавать реплики, чтобы собеседник думал, что я слушаю, даже когда я пропустил большую часть сказанного". Как он объясняет свой успех? "Для меня было загадкой то, что всегда существовало много людей с хорошими компьютерными идеями, но так или иначе мне всегда выпадал шанс стать единственным, кому удавалось разработать лучший проект". Джин Амдал является автором или соавтором многочисленных патентов по различным компьютерным разработкам, включая IBM/360.

Основывая Amdahl Соrр. в октябре 1970 года, Джин Амдал решил создать мэйнфреймы, совместимые по разъему с IBM, – т. е. компьютеры, сконструированные таким образом, чтобы они могли работать с оборудованием и системами, созданными другими изготовителями. Если эти новые мэйнфреймы действительно станут ответом на серию Big Blue, как на это надеялся Амдал, то почему не сделать знаком своей собственной фирмы Big Red. На машинах Амдала и на офисных телефонах стоял красный знак "Amdahl", и не оставалось никаких сомнений в том, что он хотел этим сказать. В течение 15 лет мэйнфреймы изготавливались совместимыми по разъему с компьютерами IBM. Амдал обиделся, когда его обвинили в том, что он забрал с собой из IBM всю техническую команду: на самом деле он взял только молодого финансиста и двух секретарей.

Основание Amdahl Соrр. было предметом гордости для Джина Амдала. Ему было очень приятно "закончить создание новых компьютеров и делать их отличными от других, видеть, что они полностью разрушают контроль IBM над рынком".

Унес ли с собой Джин Амдал секреты IBM? Некоторые думают, что да. Но он с яростью защищает себя. По его мнению, IBM просто не решила проблему высокой эффективности, а он решил. В любом случае IBM никогда не обвиняла его в использовании ее секретов.

С конца 1971 года Джин Амдал приступил к проектированию и разработке своего первого семейства Amdahl 470.

Первая машина семейства Amdahl 470 V/6 появилась в середине 1975 года и сразу же произвела "фурор" среди компьютерных разработчиков и заказчиков. Это был первый в мире компьютер четвертого поколения, построенный полностью на БИС, обладающий высокой производительностью (5,4 млн. операций в секунду), которая достигалась посредством конвейерной обработки команд. Исполнение команд делилось на 12 подопераций, для которых применялось 10 отдельных схем. В случае беспрепятственного потока новая команда могла выбираться через два тактовых периода (64 нс), следовательно, до шести команд одновременно могли находиться в различных фазах исполнения (в параллельной обработке). Применение в компьютере Amdahl 470 V/6 быстродействующей биполярной кэш-памяти емкостью 16 Кбайт позволило улучшить эффективное время обращения к основной памяти (емкостью 8 Мбайт), реализованной на МОП-структурах. Вообще, надо признать, что все новшества Джина Амдала и его фирмы Amdahl Соrр. стали значительной вехой в развитии компьютерной техники и параллелизма.


    Ваша оценка произведения:

Популярные книги за неделю