355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Антонио Лизана » Если бы числа могли говорить. Гаусс. Теория чисел » Текст книги (страница 9)
Если бы числа могли говорить. Гаусс. Теория чисел
  • Текст добавлен: 5 октября 2016, 21:55

Текст книги "Если бы числа могли говорить. Гаусс. Теория чисел"


Автор книги: Антонио Лизана


Жанры:

   

Математика

,

сообщить о нарушении

Текущая страница: 9 (всего у книги 9 страниц)

Список рекомендуемой литературы

Bell, Е.Т., Los grandes matematicos, Buenos Aires, Losada, 2010.

Boyer, C., Historia de la matemdtica, Madrid, Alianza Editorial, 2007.

Kehlmann, D., La medicion del mundo, Madrid, Maeva Ediciones, 2006.

Sautoy, M., La milsica de los niimeros primos, Barcelona, Acantilado, 2007.

Stewart, I., Historia de las matemdticas, Madrid, Critica, 2008.

Villa, R.; Aranda, A. et al., Un paseo entre las matemdticas у la realidad, Sevilla, Secretariado de Publicaciones del Vicerrectorado de Investigacion de la Universidad de Sevilla, 2010.

Указатель

Академия наук

Парижская 55,102,103, 105, 120

Петербургская 82, 104 алгебра 22, 35,47,48, 50, 51, 53, 62, 97, 155,156, 160

арифметика 21, 23, 35, 47, 48, 51, 52,58,59, 86,95, 97, 98,106, 156, 160

арифметическая прогрессия 23

«Арифметические исследования» 28,31,36,40, 45, 56-64, 101

астрономия 33, 54, 65, 75, 77, 80, 81,90,92,94,97,103,130,135, 136,146,160

бином Ньютона 22, 60

Брауншвейг 19, 20, 29, 30, 32, 33, 35,40,56, 57, 64,65, 67, 68, 125

вариационное исчисление 142, 144

взаимно простое число 59 вычеты 60, 84

гелиотроп 132

геодезическая линия 140

геодезия 123, 129-134, 150

геомагнетизм 129,147

геометрия 22, 32, 35, 36, 38, 56, 86, 103, 123, 134-141, 155, 159-160

гимназия св. Катарины 29 гипотеза 28, 29, 41, 60, 70, 71, 87, 101, 102, 104, 106, 109, 112, 119, 120, 121

вторая о простых числах 112, 121

Гольдбаха 28, 29 первая о простых числах 119

Римана 113-115,119,120

дискриминант 62 задачи

с помощью линейки и циркуля 35-43, 63, 97, 101

биссектриса 39

восьмиугольник 42

девятиугольник 42

квадрат 42, 49, 50, 84, 135, 160

квадратура круга 43

пятиугольник 40, 42

семиугольник 42

17-угольник 36, 40, 56

треугольник 26, 27, 39, 42, 50,133, 135

трисекция угла 43 удвоение куба 43

шестиугольник 39, 42

тысячелетия 118

закон взаимности квадратичный 15, 60,61

Тициуса – Боде 75-77

интегральный логарифм 111, 121

квадратичные формы 62, 63

квадратичный вычет 60

Коллегия Карла 30, 32, 56, 136

кратность повторения 59

кривизна Гаусса 138, 139

логарифмы 54, 106, 107,109,110, 111

малая теорема Ферма 60

математический анализ 22, 65, 87, 138, 160

математический дневник 9, 27

метод наименьших квадратов 36, 80-86, 88-94, 111, 132,145, 159, 160

многочлен 11, 48, 49, 50, 55, 62, 63, 118

обсерватория астрономическая 67, 82, 90, 143

Гёттингенская 30, 48, 82, 147

Палермская 77 оптика 94, 150

орбита 73, 75-94,100, 104,159, 160

плотное множество 51

последняя теорема Ферма 41, 69, 103

правильный многоугольник 35– 42,63, 64, 101

принцип индукции 24, 25

наименьшего принуждения 144, 145

регрессионная прямая 88-90

решение в радикалах 55

решето Эратосфена 98

сравнения по модулю 58-61, 63

статистика 30, 87-91, 156, 160

сумма рядов 24, 65

телеграф 143, 148, 149

теорема 27-29, 35, 36, 41, 42, 48, 50,51,53-55, 60-63, 65,70,90, 102, 135, 138

Гаусса – Маркова 11, 90

о простых числах 112, 121

основная алгебры 15, 48, 50, 62, 156

основная о сравнениях 60 Egregium 15, 138, 139

теория Галуа 55, 56

относительности 81, 141, 161

«Теория движения небесных тел, обращающихся вокруг Солнца по коническим сечениям» 85, 90, 94

триангуляция 129-133

тригонометрия 131,133

университет Берлинский 113

Гёттингенский 32,33, 55, 56, 64,68, 70, 82, 113, 125, 143, 156

Казанский 22

Хельмштедский 15, 32, 34, 47

уравнения 35, 49-53, 55, 56, 59, 83, 88,89,93,119,133,139,141, 155,160

физика 12, 13, 15, 30, 87, 123, 129, 135,142-146,154

функция дзета 114, 115, 117, 119

Эйлера 59

π 109, 112, 114, 120

числа Ферма 41, 101

число действительное 51, 52, 115, 139

иррациональное 107

комплексное 52,114,118

натуральное 22-25, 28, 39, 42, 97,101, 107,144

простое 40, 59-61, 63, 69-71, 87, 97-121

рациональное 49, 51

сочетаний 22

треугольное 25-28

факториальное 22,107

Филдсовская премия 64, 66,119, 160


При жизни Карл Фридрих Гаусс получил титул короля математиков. Личность этого ученого можно сравнить с личностью другого его гениального современника и соотечественника – Вольфганга Амадея Моцарта. Оба были вундеркиндами, которым покровительствовали и помогали получить образование представители власти. Но в отличие от композитора. Гауссу повезло прожить долгую и спокойную жизнь. Он сделал много открытий в таких научных областях, как геометрия, астрономия, физика и статистика.


    Ваша оценка произведения:

Популярные книги за неделю