355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Антонио Лизана » Если бы числа могли говорить. Гаусс. Теория чисел » Текст книги (страница 8)
Если бы числа могли говорить. Гаусс. Теория чисел
  • Текст добавлен: 5 октября 2016, 21:55

Текст книги "Если бы числа могли говорить. Гаусс. Теория чисел"


Автор книги: Антонио Лизана


Жанры:

   

Математика

,

сообщить о нарушении

Текущая страница: 8 (всего у книги 9 страниц)

ВИЛЬГЕЛЬМ ВЕБЕР

Вильгельм Вебер (1804-1891) – немецкий физик первой половины XIX века. Получил образование в Университете.Галле и остался в нем преподавать до 1831 года, когда перешел в Гёттингенский университет. Там ученый подружился с Гауссом, с которым сотрудничал в исследованиях по электричеству и магнетизму.

В 1833 году они изобрели новый тип телеграфа – зеркальный гальванометр Гаусса – Вебера. Позже физика исключили из Гёттингенского университета за оппозицию к властям.

В 1843 году он начал преподавать в Лейпцигском университете и остался там до 1849 года, затем вернулся в Гёттинген и через некоторое время был назначен директором астрономической обсерватории этого города – на должность, которую до него занимал Гаусс. Вебер работал над установлением абсолютных единиц измерения электрического тока и посвятил последние годы жизни изучению электродинамики, разработав ее основы для последующего создания электромагнитной теории света.


Рассмотрим простой пример. Булочник каждый день печет один вид буханок хлеба. С одной стороны, он хочет удовлетворить своих клиентов и испечь достаточно хлеба, а с другой – он не хочет создать избыток товара, который не найдет покупателя в этот же день. Сделав исследования спроса и предложения, мы можем найти решение, которое принесет булочнику наибольшую прибыль, и вполне можно предположить, что решение будет натуральным числом. Если он печет несколько видов хлеба, например ржаной, кукурузный и пшеничный, решение будет не одним числом, а множеством из трех чисел, которое укажет, сколько буханок каждого типа ему нужно выпечь. Решение будет вектором.

Теперь подумаем о другом примере оптимизации. Мы на улице, и кто-то спрашивает нас, как быстрее попасть на автобусную остановку. Ответ не может быть числом и даже списком чисел. Логичным ответом было бы объяснение дороги: куда надо идти, где повернуть и так далее. Этот тип ответа лучше всего привести к математическому описанию с помощью функции, которая дает тому, кто пользуется ею, критерий к действию в зависимости от места, в котором он находится в каждый момент пути. Задачи на оптимизацию, в которых решение – это функция, известны как вариационные проблемы, и они очень широко применяются в физике.

В 1829 году появилась короткая публикация Гаусса о проблеме вариационного исчисления в механике, в которой он ввел понятие принципа наименьшего принуждения. Под принуждением к движению Гаусс понимал ограничения, которым подвержено движение в любой физической системе. Ученый утверждал, что природа стремится сделать принуждение минимальным:

«Очень заметно, что свободные движения, когда они не могут сосуществовать с необходимыми условиями, модифицируются при родой точно так же, как математик, согласно методу наименьших квадратов, приводит к согласию наблюдения, связанные между собой необходимыми зависимостями. Можно продолжить эту аналогию, но это не является сейчас моей целью».

Идея состоит в том, что природа действует наиболее свободным способом из тех, которые возможны при наложенных ограничениях. Как видно, здесь снова появляется отсылка к одному из главных открытий Гаусса – методу наименьших квадратов.

Ученый сделал многое для того, чтобы математика могла сочетаться с физикой. В своей работе Principia generalia theoriae figurae fluidorum in statu aequilibrii («Общие принципы теоретической схемы жидкостей в состоянии равновесия») 1830 года он вновь рассмотрел вариационную задачу, связанную с определением рисунка равновесия поверхности жидкости при учете гравитации и сил капиллярности и адгезии:

«В результате деликатного и сложного исследования мы получаем состояние равновесия, которое доступно здравому смыслу и показывает адаптацию под несколько превалирующих сил в конфликте».

Снова та же самая идея принципа наименьшего принуждения, в этот раз примененного к механике жидкостей.

В рамках идей того же порядка Гаусс работал с формализацией и математическими свойствами ньютоновского притяжения, создав так называемую теорию потенциала. Именно в этом контексте появляется знаменитый закон Гаусса: «Поток в гравитационном поле через произвольно выбранную замкнутую поверхность пропорционален общей массе, заключенной в этой поверхности», где гравитационное поле – это множество сил, которые представляют гравитацию. Этот результат сокращает до элементарных вычислений работу, которая раньше требовала специально разработанных методов.

Нельзя сказать, что на момент приезда Вебера Гаусс был далек от физики, но благодаря ему математик занялся физическими проблемами гораздо более решительно и усердно. Теперь он стремился найти ответы на вопросы техники и инженерного дела.

В 1832 году, параллельно с интересом к электричеству, Гаусс начал исследования в области земного магнетизма. Следует заметить, что сегодняшнее представление об электричестве и магнетизме как двух аспектах одного и того же явления тогда было далеко не очевидным. Инициатива участия Гаусса в изучении магнетизма принадлежала Александру фон Гумбольдту, который искал сотрудничества с ним, чтобы установить сеть точек наблюдения земного магнитного поля во всем мире. Речь идет о первой в истории попытке начать крупномасштабное наблюдение с новыми требованиями: установление общих стандартов, техник измерения, требований к точности и достоверности. Цели программы состояли в изучении распределения земного магнетизма, изменений его интенсивности со временем, склонения и наклонения, а также, что довольно амбициозно, в определении происхождения магнитного поля Земли. Уже в 1832 году Гаусс опубликовал важную работу об абсолютном измерении магнитного поля Земли под названием Intensitas vis magneticae terrestris ad mensuram absolutam revocata («Измерение абсолютной интенсивности магнитного поля Земли»).


АЛЕКСАНДР ФОН ГУМБОЛЬДТ

Александр фон Гумбольдт (1769– 1859) – немецкий географ, натуралист и исследователь, младший брат лингвиста и министра образования Вильгельма фон Гумбольдта. Его называют отцом современной всеобщей географии. Гумбольдт был чрезвычайно разносторонним натуралистом. Путешествия вели исследователя из Европы в Южную Америку, на территорию современной Мексики, США, на Канарские острова, в Центральную Азию. Он специализировался в самых разных областях науки, таких как этнография, антропология, физика, зоология, орнитология, климатология, океанография, астрономия, география, геология, минералогия, ботаника, вулканология и гуманизм. Гумбольдт сотрудничал с Гауссом при разработке «Атласа геомагнетизма».


Далее следуют другие важные работы 1830 года, среди которых выделяются Allgemeine Theorie Erdmagnetismus («Общая теория земного магнетизма») и «Атлас геомагнетизма», опубликованный в 1840 году совместно Гауссом, Вебером и Бенджамином Голдшмидтом, помощником Гаусса в Гёттингенской обсерватории. Содержание этих работ вызывает огромный интерес. Гаусс впервые определил магнитное поле как нечто связанное с силой притяжения магнита, но все же он говорит и о «магнитном потоке», ответственном за эти явления. Ученый смог доказать, что на Земле может быть только два магнитных полюса, и конкретизировал расположение Южного магнитного полюса (рядом с географическим Северным полюсом). Этот прогноз был очень точно подтвержден экспедицией капитана Уилкса в 1841 году. Более того, Гаусс ввел ряд новых отношений между горизонтальной и вертикальной составляющими магнитного поля в различных точках (хотя Гумбольдт довольно долго отказывался признавать их правильность).

Сотрудничество Гумбольдта и Гаусса привело к заметным результатам в изучении земного магнетизма, которые до этого были абсолютно неизвестны. Например, ученые установили, что магнитное поле со временем меняется, причем вариации значительны (до 10% в относительных величинах) и, кроме того, они происходят одновременно по всей Земле (магнитные бури). Механизм этих явлений не объяснен должным образом до сих пор. Работа 1840 года – это собрание новых исследований. Гаусс рассуждал об определении магнитного поля с помощью магнитометра – аппарата, изобретенного Гауссом и Вебером для определения горизонтальной составляющей магнитной силы. Он доказал, что определение интенсивности горизонтальной составляющей магнитной силы вместе с углом наклонения полностью определяет магнитное поле. Речь идет о первом абсолютном измерении силы, которую оказывает магнитное поле Земли на компас, – это очень слабая сила, измерение которой потребовало чрезвычайных мер предосторожности.

Место эксперимента должно было быть свободным от магнитных колебаний, из-за чего пришлось построить лабораторию, в которой не было железа и других магнитных материалов, в ней также не должно было быть ни малейшего потока воздуха. Лаборатория была сделана из дерева с помощью медных гвоздей. Гаусс изменил методы, разработанные Гумбольдтом, сократив необходимое время наблюдения и увеличив точность, что вызвало спор между учеными, поскольку Гумбольдт не был уверен в том, что Гаусс предпринял необходимые меры предосторожности, и сомневался в справедливости результатов.

Другим практическим следствием изучения Гауссом и Вебером электричества стала разработка модели телеграфа, длившаяся с 1833 по 1838 год. Сигналы регистрировались на приемнике посредством отклонения магнитной иглы (компаса) вправо или влево в зависимости от напряжения, примененного к передатчику. Ученые разработали код и установили телеграф между лабораторией Вебера и астрономической обсерваторией, расстояние между которыми было около 1500 метров. Телеграф работал (хотя приходилось чинить часто обрывающийся провод), пока систему не разрушила молния. Похоже, Гаусс осознавал возможности, которые открывали электрические коммуникации: он предложил, чтобы в железнодорожных линиях (которые тогда только начинали распространяться) рельсы использовались как проводники для обеспечения связи на длинные дистанции. Изобретение Гаусса и Вебера не было первой попыткой электрической связи на расстоянии, и оно не получило распространения, в отличие от системы Сэмюэля Морзе, который запатентовал ее через девять лет после исследований Гаусса и Вебера. Известно, что некоторые коллеги считали их эксперименты пустым и ненаучным занятием. Однако Вебер в 1835 году пророчествовал:

«Когда земной шар будет покрыт сетью железных дорог и телеграфных проводов, эта сеть будет предоставлять услуги, сравнимые с тем, какую роль играет нервная система в человеческом теле, частично как транспортное средство, частично как средство для распространения идей и сенсаций со скоростью света».


Портреты Гаусса и Вильгельма Вебера. Они сотрудничали в течение многих лет в сфере электричества и магнетизма. Результатом их совместной работы является, например, изобретение телеграфа нового типа, известного как зеркальный гальванометр Гаусса – Вебера (внизу).

После окончательного отъезда Вебера из Гёттингена из-за знаменитого дела с письмом Гёттингенской семерки и жесткой реакции короля интенсивность научных исследований Гаусса резко снизилась. Ученый работал над астрономическими исследованиями, занимался диоптрикой, теорией потенциала и геодезией, но все это работы меньшего значения, чем раньше.

Диоптрика, изучающая форму, расположение, конструкцию и дефекты линз, а также их внутренние ограничения, безусловно, является наиболее специализированной областью эмпирических исследований Гаусса. Этот интерес был связан с астрономическими наблюдениями: в 1807 году Репсольд, известный производитель инструментов, консультировался с Гауссом о двойном ахроматическом объективе. С этого и началось их долгое сотрудничество. Гаусс, среди прочего, интересовался уменьшением хроматической аберрации системы линз. Со временем благодаря вкладу Гаусса в Германии стало возможным промышленное развитие оптики: Рейхенбах (1772– 1826), Фраунгофер (1787-1826) и Штейнгейль (1801-1870) были предшественниками Карла Цейса (1816-1888), основавшего фабрику линз. Ее научным директором стал Эрнст Карл Аббе (1840-1905), известный тем, что установил предел разрешающей способности оптического микроскопа. Гаусс даже в периоды сильной стесненности в средствах покупал для своей обсерватории оптические инструменты. С этим были связаны большинство путешествий ученого – разумеется, кроме поездок, необходимых для геодезических исследований. Наиболее важная работа Гаусса в этой области – это Dioptrische Untersuchungen («Диоптрические исследования») 1840 года, где он изучает траекторию света с помощью системы линз в так называемом параксиальном приближении, когда предполагается, что линзы бесконечно тонкие, а лучи бесконечно близки к оптической оси. В этом приближении любая система эквивалентна одной эффективной линзе. В работе речь идет о базовых этапах конструирования оптических систем, но ее результат довольно элементарен с точки зрения математики, и поэтому Гаусс даже сомневался в целесообразности публикации исследования.

ГЛАВА 6
Наследие короля математиков

Из-за отъезда Вильгельма Вебера, близкого друга и источника вдохновения Гаусса, научная деятельность ученого в последние годы жизни была не такой интенсивной, как ранее. Несмотря на это он активно преподавал и по-прежнему пользовался всеобщим признанием в научном мире.

Отъезд Вебера из университета обозначил начало последнего этапа в жизни Гаусса – эпоху, когда рядом с ним не было коллег, с которыми он мог бы поделиться научными заботами. Кроме Вебера, из-за того же противостояния с королем вынужден был уехать и Эвальд, помощник Гаусса и муж его дочери Минны, которая отправилась в изгнание вместе с ним.

Годы после отъезда Вебера из Гёттингена были особенно грустными и тяжелыми для ученого. В 1839 году умерла его уже престарелая мать, что было тяжелым ударом для любящего сына. Через несколько месяцев, в 1840 году, умерла Минна, его старшая и любимая дочь. Большой друг Гаусса Ольберс, который был его партнером во многих астрономических исследованиях, также умер в 1840 году.

Из второй семьи рядом с математиком осталась только дочь Тереза. Она так и не вышла замуж и после смерти своей матери занималась всеми вопросами, связанными с ведением хозяйства. Хотя Гаусс очень зависел от Терезы, кажется, что между отцом и дочерью было немного общего – кроме, разумеется, взаимного уважения, вызванного благодарностью со стороны отца и восхищением со стороны дочери.

На этом этапе Гаусс выступает в новой роли – как талантливый преподаватель, и это говорит о том, что в этот период пожилой профессор получал намного больше удовольствия от общения со студентами, чем в годы своей молодости. Гаусс, без сомнения, был очень компетентным преподавателем. Но причина этого не только в том, что он стал более терпелив к не очень ярким студентам, но и в том, что теперь его окружала гораздо лучше подготовленная и более мотивированная молодежь. Образовательная реформа, осуществленная министром Гумбольдтом, положительно сказалась на новых поколениях студентов. В число последних учеников Гаусса входили такие светила, как Георг Кантор и Рихард Дедекинд.

Дедекинд оставил нам о Гауссе-преподавателе такое свидетельство:

«Обычно он сидел в удобной позе, смотрел вниз, слегка согнувшись, с переплетенными руками на коленях. Он говорил довольно свободно, очень ясно, просто и без церемоний, но когда хотел сделать акцент на новой точке зрения [...], поднимал голову, поворачивался к кому-нибудь из тех, кто сидел рядом с ним, и смотрел на него своими красивыми проникновенными голубыми глазами во время своей высокопарной речи. [...] Если речь шла об объяснении принципов для вывода математических формул, он вставал и в гордой, величественной позе писал прекрасным почерком на доске; у него это всегда очень хорошо получалось. Для числовых примеров, аккуратному обращению с которыми он придавал особое значение, у него были с собой необходимые данные, написанные на маленьких листках бумаги».

Гаусс по-прежнему проводил магнитные и астрономические наблюдения, результатами которых потом делился с другими учеными. Он также посвящал себя теоретическим проблемам математики, однако более элементарного характера нежели те, что занимали ученого в предыдущие годы. Гаусс также увлекся некоторыми задачами комбинаторики, которые ставил перед ним его друг Шумахер, и некоторыми проблемами теоретической и прикладной физики. Также он уделял время изучению новых языков.


КАНТОР И ДЕДЕКИНД

Ученики Гаусса Георг Кантор (1845– 1918) и Юлиус Вильгельм Рихард Дедекинд (1831-1916), а также Готлоб Фреге (1848-1925) были создателями теории множеств – области математики, которая лежит в основе значительной части математической науки. Благодаря смелым и дерзким исследованиям Кантор был первым, кто формализовал понятие бесконечности. Так, он открыл, что не все бесконечные множества имеют одинаковый размер. Так, множество рациональных чисел счетно, то есть можно установить связь его элементов с натуральными числами, в то время как множество иррациональных чисел несчетно. Кантор страдал от депрессии, частично вызванной суровой критикой, особенно со стороны его коллеги Леопольда Кронекера (1823-1891), который называл Кантора «ренегатом», «шарлатаном» и даже «развратителем обучающейся молодежи». Сегодня все математическое сообщество полностью согласно с тем, что работа Кантора была важным качественным скачком в логических рассуждениях. В свою очередь, Рихард Дедекинд сильно повлиял на развитие в области алгебры и теории алгебраических чисел. Говорят, что он первый давал в университете занятия по теории Галуа. Кроме того, Дедекинд первым понял фундаментальное значение понятий группы и идеала для алгебры, теории чисел и алгебраической геометрии.

Георг Кантор.

Юлиус Вильгельм Рихард Дедекинд.


В 1849 году, в связи с 50-летием своей докторской диссертации, Гаусс прочел знаменитую лекцию, где представил четвертое доказательство основной теоремы алгебры, уже открыто включив в него комплексные коэффициенты, которые не хотел показывать в своих первых работах. Это вызвало всеобщий энтузиазм в немецкой и европейской науке.

Одна из самых любопытных работ Гаусса в эти годы была посвящена пенсионному фонду для вдов преподавателей Гёттингенского университета. Ученый хотел проверить, можно ли долгосрочно поддерживать уровень обеспечения. Он пользовался таблицами смертности и другой информацией, полученной в страховых компаниях. Для своих первых вычислений Гаусс воспользовался всеми реальными данными, которые были в его распоряжении. Он представил заключение в 1851 году, после шести лет работы, и оно было довольно удивительным: деятельность пенсионного фонда была организована рационально и даже позволяла увеличить выплачиваемые суммы. Гаусс так заинтересовался этой темой в том числе и потому, что она позволила ему применить знания практической экономики. В отличие от Ньютона, Гаусса никогда не привлекали государственные должности, хотя его острый ум и проницательность во всех вопросах, связанных с изучением статистики, страхования и политической арифметики, сделали бы из него отличного государственного деятеля. В своей книге Gauss zum Gedachtniss («Мемуары о Гауссе») Сарториус фон Вальтерсгаузен (1809-1876), близкий друг ученого, написал, что тот вполне мог бы заниматься государственным бюджетом. Действительно, более чем средний достаток ученого был результатом его успешных вложений в акции компаний и ценные бумаги, причем не только немецкие. И это несмотря на его разорительное вложение в железнодорожную линию на севере Гессена, когда из-за национализации Гаусс потерял 90% инвестиций.

В последние годы жизни он был похож на идеального буржуа, консервативного представителя среднего класса. Что касается религиозных убеждений ученого, то его нельзя было считать атеистом, скорее его можно назвать деистом, поскольку он принимал разумом существование Бога. Подобные представления выглядели инакомыслием в эпоху Гаусса. Он был противником либеральных идей протестантской церкви Германии, и важной частью картины мира ученого была вера в гармонию и целостность великой идеи сотворения. Самые личные письма Гаусса подтверждают, что он свято верил в бессмертие души и существование жизни после смерти, но не совсем так, как об этом говорило христианство.

Жизнь предстает передо мной как вечная весна в новых, ярчайших красках.

Карл Фридрих Гаусс

Ученого сильно привлекала английская литература, и особенно исторические романы сэра Вальтера Скотта. Еще в молодости Гаусс проявил удивительные лингвистические способности, и легкость, с которой он овладевал новыми языками, сохранилась у него до последних дней. Это стало для него настоящим развлечением. Уже в пожилом возрасте Гаусс захотел проверить гибкость своего ума, выучив новый язык. Он считал, что это поможет ему поддерживать разум молодым, а кроме того, ученый хотел читать новые работы Лобачевского, не дожидаясь перевода. И вот в 68 лет без чьей-либо помощи Гаусс начал изучать русский язык. Через два года он уже с легкостью читал на русском языке прозу и стихи и составлял письма своим друзьям-ученым в Санкт-Петербург. По мнению гостей из России, которые навещали Гаусса в Гёттингене, говорил он также прекрасно. Сам Гаусс отмечал, что русская литература доставляет ему такое же удовольствие, как и английская.

Словом, никак нельзя сказать, что в конце жизни ученый замкнулся в своем собственном мире. Гаусса интересовала мировая политика – ей он посвящал один час в день; исследователь регулярно ходил в библиотеку и был в курсе последних новостей, читая все газеты, которые получал, от лондонской «Таймс» до местных журналов.

В политике он был явным консерватором, но не реакционером: ученый не противился реформам, но требовал очень стротого логического обоснования их необходимости. Прогрессивные друзья объясняли консерватизм Гаусса замкнутым образом жизни, который предполагала его работа. Возможно, частично это так. За последние 27 лет своей жизни ученый только один раз ночевал не в обсерватории – в этот день он по просьбе Александра фон Гумбольдта присутствовал на научной конференции в Берлине.

Ничто не могло бы мне так льстиво и так безошибочно доказать, что привлекательность этой науки, которая наполнила мою жизнь такой радостью, это не призрак, как то, что Вы сочли за честь выбрать ее в качестве своего предпочтения.

Гаусс, в ответе Софи Жермен после того, как она открыла ему свое НАСТОЯЩЕЕ ИМЯ

Эпоха, в которую протекала жизнь математика, была бурной, наполненной войнами и революциями. Власть толпы и акты политической жестокости приводили Гаусса в неописуемый ужас. Парижский переворот 1848 года, который привел к власти Коммуну, был для него настоящим кошмаром.

В целом ученый презирал демагогов, которые вели за собой массы. Поскольку сам он родился в бедной семье, то хорошо знал, что невежественными людьми очень легко манипулировать. В старости он думал, что единственное благо для страны составляют мир и обычный достаток. Гаусс говорил, что если бы в Германии произошла гражданская война, то он бы просто умер. Перевороты, подобные наполеоновскому, казались ему необъяснимым безумством, и он, помня о разрушительных последствиях тех войн, навсегда сохранил некоторую неприязнь ко всему французскому.

Гаусс был крепким стариком, который с пылом защищал свое мнение. Одна из причин присущего ему душевного равновесия состояла в научном спокойствии и отсутствии личных амбиций. Все его амбиции ограничивались прогрессом в математике. Но при всей своей холодности в печатных трудах, Гаусс проявлял теплоту в личной корреспонденции и научных контактах. Как мы уже знаем, он вел переписку с Софи Жермен, чья математическая проницательность вызывала у него восхищение.

О последних годах его жизни, посвященных в основном чтению, причем не только научной литературы и газет, известно немного. В июне 1854 года Гаусс прошел полное медицинское обследование. У него обнаружили увеличение сердца, и это было неблагоприятным прогнозом. Последним академическим актом ученого было исполнение в июне 1854 года роли председателя комиссии по присуждению Риману должности профессора математики. По просьбе председателя комиссии Риман прочел свое знаменитое изложение «О гипотезах, лежащих в основании геометрии», которое, без сомнения, основывалось на трудах Гаусса, посвященных неевклидовым геометриям, первооткрывателем которых был этот великий математик. В начале августа здоровье Гаусса ухудшилось, а в декабре он даже думал, что пришел его последний час. Сердце Гаусса, страдающего от водянки, перестало биться на рассвете 23 февраля 1855 года, когда ученый спокойно спал. Ему было 77 лет, 10 месяцев и 22 дня. Гаусс оставил после себя самую грандиозную математическую работу в истории. Не случайно сам король Ганновера Георг V приказал отчеканить медаль в честь Гаусса, на которой было выгравировано почетное звание Mathematicorum Princeps – «Король математиков».

Гаусс был ученым, получившим широкое признание при жизни. Он достиг славы международного уровня еще до 25 лет – за открытие метода наименьших квадратов и его применение при вычислении орбиты Цереры. И несмотря на эти достижения, как писал Сарториус в своих мемуарах,

«Гаусс был простым и ненапыщенным человеком с молодости и до дня своей смерти. Маленький кабинет, стол с зеленой скатертью для работы, парта белого цвета, узкий диван, а после семидесяти лет – кресло, абажур, проветренная спальня, простая еда, халат и бархатная шапка были всеми его потребностями».

Последующие поколения сумели признать величие ученого. В 2002 году совместно Международным математическим союзом (IMU) и Deutsche Mathematiker-Vereinigung (Немецким математическим обществом, DMV) была учреждена математическая премия, носящая имя Гаусса. Награда вручается каждые четыре года тем, кто внес «значительный вклад в математику со значительным применением вне ее». Денежная часть награды – 10000 евро, и, в отличие от Филдсовской премии, нет ограничений по возрасту. Первые две награды получили Киёси Ито (1915-2008) в 2006 году за работы в области стохастических интегралов и стохастических дифференциальных уравнений и Ив Мейер (р. 1939) в 2010 году за исследования теории всплесков. На лицевой стороне медали изображены орбита Цереры и квадрат, символизирующий метод, созданный Гауссом для вычисления этой орбиты.

На его родине, в Германии, гению ученого воздают должное на почтовых марках, а до введения евро многим немцам было хорошо знакомо лицо Гаусса, хотя, возможно, они и не знали, чье оно: в течение нескольких лет портрет пожилого Гаусса в бархатной шляпе украшал банкноту 10 марок, на ней же был изображен колокол, который носит имя ученого.

Как говорилось во введении к этой книге, все математики независимо от специализации могут считать Гаусса одним из своих. Его фундаментальные заключения используются практически во всех областях этой науки: алгебре, математическом анализе, геометрии, статистике, теории чисел, арифметике, астрономии и прикладной математике. Вклад Гаусса в любую из этих дисциплин гарантировал бы ему вхождение в историю в качестве великого математика, и тот факт, что он достиг значительных успехов в каждой из них, представляет собой настоящий научный подвиг.

Идеи Гаусса изменили математику его времени, и его влияние сохраняется даже сегодня. Без мнимых чисел нельзя было бы решить уравнения, позволяющие ракетам оторваться от Земли. Без неевклидовой геометрии Эйнштейн не имел бы необходимых инструментов для разработки теории относительности. Без метода наименьших квадратов было бы невозможно решение проблем нахождения функций и оценки на основе набора данных.

Конечно, без Гаусса многие эти открытия сделали бы и другие математики, поскольку они были необходимы для прогресса науки, но на это определенно ушли бы десятилетия. И можно даже не сомневаться, что этот прогресс был бы результатом деятельности не одного человека. Иногда рождаются особые люди, благодаря которым медленное накопление знаний, составляющих человеческую культуру, ускоряется многократно, при этом они добиваются результатов, для которых потребовалось бы несколько поколений. Этим людям даны гениальность и особые способности, они пользуются любой возможностью для развития своего таланта. Гаусс был одним из этих немногочисленных избранных.


    Ваша оценка произведения:

Популярные книги за неделю