355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Антонио Лизана » Если бы числа могли говорить. Гаусс. Теория чисел » Текст книги (страница 1)
Если бы числа могли говорить. Гаусс. Теория чисел
  • Текст добавлен: 5 октября 2016, 21:55

Текст книги "Если бы числа могли говорить. Гаусс. Теория чисел"


Автор книги: Антонио Лизана


Жанры:

   

Математика

,

сообщить о нарушении

Текущая страница: 1 (всего у книги 9 страниц)

Antonio Rufian Lizana
Если бы числа могли говорить. Гаусс. Теория чисел

Наука. Величайшие теории Выпуск № 8, 2015

Если бы числа могли говорить. Гаусс. Теория чисел.

Еженедельное издание

Пер. с исп. – М.: Де Агостини, 2015. – 168 с.

ISSN 2409-0069

© Antonio Rufian Lizana, 2012 (текст)

© RBA Collecionables S.A., 2012

© ООО «Де Агостини», 2014-2015

Введение

Если бы среди профессиональных математиков был проведен опрос, в котором попросили бы составить список из десяти самых выдающихся и влиятельных математиков в истории, мы уверены, что почти все они включили бы в него Карла Фридриха Гаусса. Эта гипотеза (как мы увидим далее, выдвигать гипотезы – метод работы, очень характерный для математики) основана на двух причинах. Первая – огромная важность его вклада в науку. Вторая причина – это широта тем, к которым Гаусс с огромным успехом проявил свой интерес. Сегодня математика – настолько обширная наука, что те, кто посвящает себя ей, глубоко знают только часть, близкую к области их специализации. Однако гений Гаусса позволил ему продвинуться почти во всех сферах математики. Следовательно, специалисты как по математическому, так и по числовому анализу, как геометры, так и алгебраисты, статистики или даже специалисты по математической физике видят в Гауссе «одного из своих».

Мы очень часто пользуемся такими определениями, как «вундеркинд» или «математический гений». Мало кто из математиков мог бы возразить против того факта, что эти эпитеты применимы к Гауссу. Число новых идей и открытий, к которым пришел этот немецкий математик еще до того, как ему исполнилось 25 лет, кажется необъяснимым.

Гауссу, сыну бедных родителей, удалось воспользоваться своим математическим талантом. Он родился в эпоху, когда математика еще была привилегированной сферой деятельности, которую финансировали придворные и меценаты или которой в свободное время занимались любители, такие как Пьер Ферма. Покровителем Гаусса был Карл Вильгельм Фердинанд, герцог Брауншвейгский, что позволило ученому посвятить себя призванию без необходимости зарабатывать на жизнь другим, более экономически выгодным делом. В качестве благодарности Гаусс посвятил покровителю свою первую книгу, «Арифметические исследования» (1801), и таким образом имя герцога оказалось связанным с одним из основных трудов в истории математики.

Гаусс жил в эпоху необычайных политических и социальных потрясений. Отрочество математика совпало с Великой французской революцией – ему было 12 лет, когда была взята Бастилия. Он пережил подъем Наполеона в молодости и его разгром при Ватерлоо в 38 лет. Он застал Мартовскую революцию в Германии в 1848 году в возрасте более 70 лет. В это время произошла первая индустриальная революция, которая оказала очень сильное воздействие на политическую и социальную жизнь Европы. Развитие промышленности позволило осуществить эксперименты, невозможные до этого времени, с телескопами и другими оптическими инструментами. Как мы увидим, все эти события повлияют на жизнь Гаусса.

К счастью, коллекция его трудов сохранилась в достаточно полном виде; многие из важных писем математика были опубликованы. Однако Гаусс трепетно относился к своему первенству в математических открытиях и даже использовал шифр, чтобы защитить их. По мнению некоторых исследователей, нераспространенность его работ вызвала отставание в развитии науки на целых полвека: если бы Гаусс позаботился о том, чтобы опубликовать хотя бы половину своих результатов, и не шифровал бы так тщательно свои объяснения, возможно, математика развивалась бы быстрее. Математический дневник Гаусса, хранившийся в его семье, стал доступен публике только в 1898 году. Его изучение подтвердило, что ученый доказал, не публикуя, многие результаты, которые другие математики пытались получить в течение всего XIX века. Гаусс всегда утверждал, что математика – это как архитектурное произведение: архитектор никогда не оставит строительные леса, чтобы люди не видели, как было построено здание. Естественно, такой взгляд на науку не способствовал лучшему пониманию его трудов коллегами-современниками.

Логическая структура подхода к математическим проблемам, предложенная Гауссом, в которой сначала формулируют результаты или теоремы, затем переходят к их доказательству и завершают выводами или следствиями, до сих пор остается обычным способом представления математических доказательств. Немецкий математик отказывался публиковать недоказанные результаты, и эта позиция определила переломный момент в подходе математиков к их науке. Хотя идея важности доказательства как необходимая составляющая научного процесса появилась еще в Древней Греции, до эпохи Гаусса всех намного больше интересовало применение научных открытий: если математика работала, никто особо не заботился о том, чтобы в строгой форме изложить, почему так происходит.

Когда Гаусс занялся арифметикой и теорией чисел, эти дисциплины состояли из множества разрозненных результатов, никак не связанных между собой. Ученый собрал существующие знания и объединил их в общую систему, указав на имеющиеся ошибки и исправив их. Он возвел математику XIX века на уровень, которого невозможно было достичь несколько лет назад, и поднял арифметику на вершину математики. Говоря его словами, «Математика – царица наук, а арифметика – царица математики».

Первым огромным результатом, полученным еще до того, как Гауссу исполнилось 19 лет, было открытие метода построения с помощью линейки и циркуля многоугольника с 17 сторонами (17-угольника). Построение правильных многоугольников волновало математиков со времен классической Греции, при этом результаты были нерегулярными, поэтому некоторые многоугольники (например, многоугольник с семью сторонами, или семиугольник) невозможно было построить точно: линейки и циркуля было недостаточно, а более совершенных приборов не существовало. Как писал сам Гаусс, который очень гордился этим открытием в течение всей жизни, «это абсолютно не связано со случайностью, поскольку это был плод усиленных размышлений. Еще не встав с кровати, я увидел очень четко всю эту связь, так что я тут же применил к 17-угольнику соответствующее числовое утверждение». Гаусс не только решил эту задачу, но и нашел общий способ разрешения вопроса, может ли многоугольник быть построен с помощью линейки и циркуля. В своем завещании Гаусс попросил, чтобы на его могильной плите выгравировали многоугольник с 17 сторонами, построенный по его методу. Однако этого не было сделано: резчик счел задачу слишком сложной.

Без сомнения, результат, который принес ученому славу среди его современников, – это вычисление орбиты Цереры, карликовой планеты, открытой в 1801 году Джузеппе Пиацци из Палермской обсерватории. Общее признание побудило Гаусса углубиться в астрономию, и он стал директором Гёттингенской обсерватории. Скорее всего, астрономические наблюдения отвлекли ученого от работы в области чистой математики, где было сложнее найти славу. Для математики определение орбиты Цереры может быть анекдотическим фактом, но метод, использованный для ее вычисления, существенно подтолкнул развитие науки. Это был метод наименьших квадратов. В этом случае большую важность имеет процесс, использованный для достижения результата, чем сам результат. Приписывание авторства этого метода Гауссу вызвало некоторую полемику, поскольку Адриен Мари Лежандр, который был на 25 лет старше Гаусса, также оспаривал первенство этого открытия. Соперничество с Лежандром длилось много лет и распространилось на многие области математики. Очень часто оказывалось, что если Лежандр утверждал, что открыл новую математическую истину, Гаусс опровергал это, аргументируя, что он знает ее и уже использовал этот результат. В письме Гаусса от 30 июля 1806 года коллеге-астроному по фамилии Шумахер, с которым их связывала большая дружба, ученый сетовал: «Похоже, что мне предназначено совпадать с Лежандром почти во всех своих теоретических работах». Такое соперничество встречалось очень часто и объяснялось методами работы и распространения результатов у ученых того времени. В течение всей своей жизни Гаусс упорно вступал в открытую борьбу за первенство своих открытий. И только после его смерти, когда были изучены все дневники и письма, стало ясно, что правда была на стороне Гаусса. В чем нет никаких сомнений, так это в том, что метод наименьших квадратов оказался очень полезным инструментом для разрешения многих проблем, в которых речь идет об установлении функции, наилучшим образом приближающейся к множеству данных с критерием минимизации. Наиболее важные примеры применения этого метода находятся в области статистики, где они достигают вершины в оценке параметров населения с помощью модели, построенной благодаря такому известному заключению, как теорема Гаусса – Маркова. Любопытно, что имя Гаусса в области статистики обычно связывают со знаменитым «гауссовым колоколом», однако на самом деле открытием нормального распределения мы обязаны Абрахаму де Муавру.

Гаусс очень рано подступился к так называемой основной теореме алгебры, в которой установлено, что у многочлена столько корней (то есть значений, при которых многочлен равен нулю), сколько показывает его степень. Эта проблема была темой диссертации ученого. В течение жизни он представил несколько доказательств этого результата, каждый раз все более утонченных и понятных. Как и в случае с открытием орбиты Цереры, во время поиска доказательств Гаусс выявил новые и очень полезные математические конструкции, такие как комплексные числа. В 1799 году ученый доказал, что основываясь на таком особом числе, как корень из -1 (или числе i), математики могут решить любое полиномиальное уравнение.

Числовой анализ и особенно изучение простых чисел, возможно, самая известная часть работы Гаусса, которой он посвятил больше всего времени. В молодости ученый получил в качестве подарка таблицу с несколькими миллиардами простых чисел. На его взгляд, эти числа шли беспорядочно. Когда Гаусс смотрел в числовые таблицы, он не мог определить никакого правила, которое показывало бы ему, на сколько единиц нужно продвинуться вперед, чтобы найти следующее простое число. Казалось, такого правила не существует. Гаусс не мог принять подобную идею: первичная потребность в жизни математика – это находить упорядоченные структуры, описывать и объяснять правила, лежащие в основе природы, и предвидеть, что произойдет в дальнейшем. Эта мысль, которая стала для него навязчивой, привела к формулировке некоторых великих гипотез распределения простых чисел и их нахождения с помощью математических процедур. Проблема нахождения простых чисел очень актуальна сегодня, поскольку на их свойствах основаны многие процессы шифрования информации.

С 1818 по 1832 год Гаусс руководил обширным проектом топографирования королевства Ганновер. Речь шла об огромной работе, включавшей, кроме научных, политические и военные составляющие. Гаусс не только являлся директором, но и участвовал в полевых работах, что отняло у него очень много времени, которое можно было посвятить математическим исследованиям более теоретического характера. С другой стороны, эта работа позволила Гауссу обнаружить новые типы геометрии, не основанные на аксиомах Евклида, и придать форму идеям, которые он вынашивал еще в студенческие годы. Работы по измерению Земли в рамках геодезии также дали ему возможность внести большой вклад в дифференциальную геометрию. В последние годы своей жизни, благодаря сотрудничеству с Вебером, ученый заинтересовался проблемами физики, особенно в области оптики, механики и электричества.

Влияние Гаусса на других математиков огромно: достаточно указать, что он был учителем Бернхарда Римана и Юлиуса Вильгельма Рихарда Дедекинда – великих математиков XIX века. Как уже было сказано ранее, он сделал значительный вклад во все области математики, как чистой, так и прикладной.

Кроме того, Гаусс занимает почетное место и среди физиков, поскольку его работы по магнетизму, оптике и геодезии входят в число самых значимых научных трудов той эпохи.

Все это свидетельствует о том, что титул короля математиков, полученный Гауссом посмертно и увековеченный по приказанию короля Георга V Ганноверского на памятной медали, не является преувеличением. По мнению математика и историка этой науки Эрика Темпла Белла, разделяемому большинством его коллег, Гаусс занимает на пьедестале великих математиков место рядом с Архимедом и Ньютоном.

1777 В Брауншвейге, Германия, родился Карл Фридрих Гаусс, единственный сын Гебхарда Дитриха Гаусса и Доротеи Бенце.

1784 Гаусс поступает в начальную школу в Брауншвейге. Его учителями становятся Бюттнер и Мартин Бартельс, которые видят способности мальчика и подвигают его их развивать.

1791 Гаусс представлен герцогу Брауншвейгскому, который станет в дальнейшем его покровителем.

1795 Гаусс оставляет Брауншвейг и поступает в Гёттингенский университет.

1796 Открывает метод построения многоугольника с 17 сторонами с помощью линейки и циркуля. После этого успеха решает посвятить себя математике как основному занятию.

1799 Представляет докторскую диссертацию в Хельмштедтском университете. В этой работе Гаусс предлагает первое доказательство основной теоремы алгебры.

1801 Публикует «Арифметические исследования» – свой самый большой вклад в теорию чисел. В этой работе ученый собирает исследования прошлых лет, в том числе связанные с модульной арифметикой, посвященные комплексным числам и квадратичному закону взаимности. Определяет орбиту Цереры методом наименьших квадратов.

1805 Женится на Иоганне Остгоф. В этом браке родится трое детей: Иосиф, Минна и Луи, умерший в возрасте несколько месяцев.

1809 Умирает первая жена Гаусса. Ученый публикует свою самую важную работу по астрономии – «Теорию движения небесных тел».

1810 Гаусс заключает второй брак, с Минной Вальдек, в котором также родится трое детей: Ойген, Вильгельм и Тереза. Этот брак длится до смерти Минны в 1831 году.

1818 Правительство Ганновера поручает Гауссу триангуляцию и измерение королевства. Ученый посвящает несколько лет геодезии.

1827 Публикует «Общие исследования о кривых поверхностях» – свою основную работу по дифференциальной геометрии, в которую включена Theorema egregium – основная теорема теории поверхностей.

1831 В Гёттинген переезжает Вебер, и начинается его плодотворное сотрудничество с Гауссом в области физики.

1849 Гаусс представляет новое доказательство основной теоремы алгебры в связи с 50-летием своей докторской диссертации.

1855 Ученый умирает во сне на рассвете, 23 февраля, в возрасте 77 лет.

ГЛАВА 1
Первые озарения гения чисел

Гаусс с самого юного возраста проявлял выдающиеся способности, привлекавшие внимание тех людей, которые помогли ему их развить. С самого начала своей научной карьеры он интересовался почти всеми областями математики. Однако его вклад в науку связан не только с великими открытиями, но и с самим понятием научной дисциплины, основанной на строгости доказательств.

Нам мало известно о детстве и юности Гаусса. Главный источник информации об этом периоде – сам ученый, рассказывавший истории о своем детстве студентам и друзьям.

Иоганн Фридрих Карл Гаусс родился в Брауншвейге, главном городе герцогства Брауншвейг-Вольфенбюттель, 30 апреля 1777 года. Он был единственным сыном Гебхарда Дитриха Гаусса, родившегося в 1744 году, и Доротеи Бенце. У его отца уже был сын от предыдущего брака. Гаусс никогда не использовал своего первого имени Иоганн и поменял местами следующие два: свои работы он подписывал как Карл Фридрих Гаусс и под этим именем и стал известен позже.

Дом Гауссов стоял на маленькой улице под названием Верденграбен. Позже его семья переехала в дом номер 30 по Вильгельмштрассе – улице, находившейся рядом с городским каналом, с которым связана одна из самых известных историй из детства математика. Когда ему было три или четыре года, мальчик упал в воду канала, но, к счастью, был сразу же спасен проходившим мимо крестьянином. Математическая наука в неоценимом долгу перед этим неизвестным человеком.

Родственники со стороны отца Гаусса были мелкими фермерами и переехали в Брауншвейг около 1740 года. Для семьи это означало надежду на процветание и лучшее будущее в то время, когда старый немецкий феодализм сменялся новым абсолютистским правительством. Однако процветание давалось нелегко: гильдии, которые с эпохи Средневековья контролировали деятельность ремесленников, сохранили свою власть и не допускали чужаков к активному предпринимательству Отец Гаусса поначалу был вынужден зарабатывать на жизнь как садовник, уличный мясник и бухгалтер в похоронном бюро. Семья поставила себе задачу приобрести собственный дом в черте города, что дало бы им доступ ко всем гражданским правам. Своей цели Гауссы достигли, однако через некоторое время после этого их мир перевернулся с ног на голову, и обычный уклад вновь был нарушен: Брауншвейг был завоеван войсками Наполеона.

Известно, что отец Гаусса был человеком резким, чрезвычайно порядочным, его строгость по отношению к сыну часто граничила с грубостью. Порядочность и упорство позволили Гауссу-старшему добиться некоторого бытового комфорта, но жизнь семьи не была легкой. Родитель не поддерживал стремление сына заниматься наукой и даже не понимал, как важно для него было получить образование, соответствующее способностям мальчика. Если бы мнение отца возобладало, талантливый юноша занялся бы одной из семейных профессий, и только ряд счастливых совпадений спас будущего математика от участи простого садовника или каменщика. В детстве Карл Фридрих был очень послушным. Он никогда не критиковал своего отца, но вполне ожидаемо, что и настоящей привязанности к нему не чувствовал. Гебхард Гаусс умер в 1806 году.

Семья матери ученого происходила из Фельпке, маленького города в Нижней Саксонии, рядом с Брауншвейгом. Доротея Бенце отличалась живым, веселым и сильным характером. Она умерла в очень почтенном возрасте – 97 лет, и последние 20 лет своей жизни прожила вместе с заботливым сыном в Гёттингене. Доротея всегда поддерживала сына в учебе и очень гордилась его научными достижениями. Рассказывают, что когда Вольфганг Бойяи (1775-1856), один из лучших друзей ученого, уверил ее, что Карл Фридрих войдет в историю как один из самых великих математиков, женщина расплакалась от радости.

Ни один из родителей ученого не получил более или менее приличного образования: отец едва умел читать и писать и немного знал элементарную арифметику. В старости Гаусс хвалился тем, что считать научился раньше, чем писать, а чтение освоил самостоятельно, разбирая по буквам письма от родственников и друзей семьи. Он сам рассказывал историю, которая говорит о его ранних математических способностях.

В три года, наблюдая за тем, как отец рассчитывает зарплату наемным работникам, мальчик заметил ошибку и сказал, каким должен быть результат. Гебхард пересчитал цифры и обнаружил, что сын прав. Это тем более удивительно, учитывая, что малыша никто не учил числам и тем более сложению. Мать Гаусса с трудом читала, а писать не умела вовсе, но при этом ученый никогда не чувствовал особой близости к отцу и всю жизнь утверждал, что унаследовал свои способности от матери.

Не знание, а процесс обучения, и не обладание, а ощущение того, что ты пришел к чему-то, доставляют наибольшее наслаждение.

Карл Фридрих Гаусс

Наиболее достоверная информация о немецком математике начинается с 1784 года, когда юный Карл поступил в начальную школу. В те времена это не было обычным занятием для детей, но в городе встречалось все же чаще, чем в селах, так что в этом смысле Гауссу очень повезло. Повезло ему и в другом: мальчик встретил необычайно талантливого учителя, который опекал его в первые годы обучения. Заслуга Бюттнера в том, что он вовремя заметил огромный талант Гаусса и выделял его среди более чем 50 одноклассников. В 1786 году учитель за свой счет даже запросил из Гамбурга специальные арифметические тексты для выдающегося воспитанника. Ассистентом Бюттнера в те годы работал Мартин Бартельс (1769-1836), который был всего на восемь лет старше Карла Фридриха. Позже Бартельс стал преподавателем математики в Казанском университете. Он также быстро заметил гениальность Гаусса и уделял мальчику пристальное внимание. Можно сказать, что они учились вместе, помогая друг другу расшифровывать учебники по алгебре и элементарному анализу. В те годы и начали зарождаться некоторые идеи и способы видения математики, ставшие позже характерными для Гаусса. Из учебников Бартельса юноша узнал о биноме Ньютона для нецелых показателей и бесконечных рядах, в эти же годы он сделал первые шаги в математическом анализе. Любопытно, что в Казанском университете Бартельс преподавал Николаю Лобачевскому (1792-1856), который впоследствии занялся разработкой неевклидовой геометрии – области, основоположником которой был именно Гаусс.


УЛУЧШАЯ РЕЗУЛЬТАТЫ НЬЮТОНА

В сотрудничестве со своим учителем Мартином Бартельсом молодой Гаусс получил новое доказательство бинома Ньютона с натуральными коэффициентами, то есть формулу, которая позволяет вычислить степень двучлена:

где

Это число сочетаний n по k, а n! = Πni-1i называется факториалом числа, и он равен произведению этого числа на все натуральные числа меньше него.



АРИФМЕТИКА С САМЫХ РАННИХ ЛЕТ

Известна история, из которой видно, насколько легко давались Гауссу арифметические вычисления. Когда мальчику было девять лет, учитель Бюттнер предложил своим ученикам сложить сто первых натуральных чисел, будучи уверенным в том, что это займет класс достаточно долго, а он в это время сможет отдохнуть. Обычно ученики, решив задачу, вставали и клали доску с решением перед учителем. И вот в то время как остальные ученики едва приступили к заданию, Гаусс уже положил свою доску на стол учителя, воскликнув: Ligget se! («Вот оно!»). Бюттнер подумал, что Гаусс просто дерзит ему, но когда он посмотрел на доску, то обнаружил, что на ней записан правильный ответ – 5050, причем не было приведено ни одного этапа вычислений. Учитель подумал, что каким-то образом проговорился об ответе, но тут юный Карл объяснил ход своих рассуждений. Гаусс не стал решать проблему в лоб, просто складывая слагаемые (к тому же при этом легко было допустить ошибку), а предпочел нестандартный подход. Он быстро понял, что первое число (1) и последнее (100) в сумме дают то же самое значение (101), что второе число и предпоследнее, и это рассуждение можно продолжить, то есть 1 + 100 = 2 + 99 = 3 + 98 = ... = 50 + 51 = 101. Образовались 50 пар чисел, которые в сумме давали 101 и произведение которых было равно 5050.

Гаусс, сам того не понимая, применил формулу суммы членов арифметической прогрессии. Арифметическая прогрессия – это ряд таких чисел, в котором разность между двумя любыми последовательными членами является постоянной, и эта величина называется разностью прогрессии, просто разностью или шагом. В проблеме, предложенной Гауссу, разность была равна 1. Выражение суммы арифметической прогрессии довольное простое: если члены нашей последовательности – это a1 а2,..., аn, то сумма Sn равна:

Для суммы n первых натуральных чисел Tn равно:

Если мы подставим в предыдущую формулу n= 100, то получим 5050, чего и следовало ожидать.

Доказательство формулы можно получить разными методами, одни из них интуитивны, например использование пар чисел с одинаковой суммой, как это сделал Гаусс, но в более формальном доказательстве обычно используется принцип индукции. Этот метод заключается в том, чтобы доказать, что натуральное число п обладает определенными свойствами, а затем обосновать, что если ими обладает любое натуральное число, то же происходит и со следующим.

Сила математического доказательства в том, что мы можем утверждать: эта формула верна для суммы любого ряда натуральных чисел. Если бы мы использовали для вычислений самые быстрые современные компьютеры и увидели бы, что формула выполняется, это не дало бы нам абсолютной уверенности: всегда можно было бы подумать, что остались числа, для которых наше утверждение не проверено, и с ними оно может не выполняться. В этом и заключается один из главных вкладов Гаусса в науку: утверждения должны иметь строгое доказательство. До его работ в математике было много созерцательного, утверждения основывались на конкретных примерах, существовали понятийные белые пятна и неполные доказательства. Однако Гаусс не публиковал свои работы, пока не получал как можно более строгого доказательства, при этом в своих записях он обычно не приводил полный ход рассуждений и этим затруднял их понимание для современников. Представление ученого о математических трудах требовало доведения их до совершенства, при этом он считал, что приведение подробных доказательств делает его работу не такой безупречной, ведь ее можно сравнить с демонстрацией готового здания, рядом с которым все еще стоят строительные леса, необходимые только на этапе строительства.


ПРИНЦИП ИНДУКЦИИ

Принцип индукции, примененный к доказательству формулы суммы л натуральных чисел, имеет три следующие базовые предпосылки:

a) проверяем справедливость нашей гипотезы для n = 1;

b) предполагаем, что она верна для n – 1;

c) основываясь на «а» и «b», доказываем это для n.

Если нам удастся доказать «с», пользуясь «а» и «b», то утверждение верно для всех натуральных чисел. Идея состоит в том, что если утверждение справедливо для любого выбранного числа, то оно справедливо и для следующего, большего на единицу. Применим принцип индукции к формуле суммы первых n натуральных чисел:

Tn = n(n=1)/2.

a) Для n = 1 получается:

T1 = 1(1=1)/2 = 1

Утверждение верно.

b) Предположим, что для n – 1 сумма равна:

Tn-1 = (n-1)/2.

c) Сумма Тn = Тn-1 + n, так что, применяя «b», получаем:

Tn = (n-1)n/2 + n = (n-1)n/2 + 2n/2 = ((n-1)n + 2n)/2 = (n²-n+2n)/2 = (n²+n)/2 = n(n+1)/2.

что завершает доказательство.



ТРЕУГОЛЬНЫЕ ЧИСЛА

История о сумме 100 первых натуральных чисел и общая формула, которую мы доказали, необходимы для введения в тему, которой Гаусс посвятил много времени в молодости. Итак, поговорим о треугольных числах. Британский математик Маркус дю Сотой включил в свою книгу «Музыка простых чисел» (2003) новое доказательство способа, которым Гаусс получил результат 5050, используя треугольные числа.

Треугольное число – это число, количество единиц которого может быть представлено в форме равностороннего треугольника (по умолчанию было решено, что первое треугольное число – 1). Понятие треугольного числа было введено Пифагором, который изучил некоторые их свойства (пифагорейцев очень интересовали эстетические свойства чисел). На рисунке показаны шесть первых треугольных чисел.

Если внимательно посмотреть на первые треугольные числа, можно увидеть, что они совпадают со значением ряда Tn суммы п первых натуральных чисел. Очевидно, что это не случайность, поскольку при построении треугольного числа в каждом ряду на один элемент больше, чем в предыдущем, и первый ряд начинается с 1. Следовательно, узнать, является ли какое-либо число треугольным, равносильно тому, чтобы проверить, совпадает ли это число со значением Tn для некоторого n. Итак, каждое треугольное число Tn определяется следующей формулой:

Tn = n(n+1)/2.


Треугольное число – это число,которое можно представить в виде треугольника. Здесь указаны шесть первых таких чисел. Гаусс открыл, что любое целое положительное число может быть представлено в виде суммы, самое большее, трех треугольных чисел.

Проблема суммы, предложенная Гауссу, была равносильной тому, чтобы вычислить треугольное число, ряд основания которого был бы равен 100. Лучший способ сделать это, не вдаваясь в математические дебри, это взять другой равный треугольник, перевернуть его и поместить рядом с первым. В этом случае у нас получится прямоугольник в 100 единиц длиной и 101 шириной. Чтобы трансформация была понятной, предварительно нужно заменить равносторонние треугольники прямоугольными, просто передвинув ряды. Когда мы получили прямоугольник, вычислить общее число единиц очень просто, поскольку речь идет о произведении его сторон: 100 х 101 = 10100. Следовательно, один треугольник содержит половину единиц, то есть 5050. Следующий рисунок помогает понять построение прямоугольника на основе двух равных треугольных чисел. Ради компактности будем работать с Т3 вместо Т100, поскольку это не влияет на ход рассуждений. Обозначим через X единицы первого треугольного числа и через Z – единицы второго.

Как мы видим, получается прямоугольник 4x3, что и следовало ожидать. В целом сумма двух треугольных чисел Tn порождает прямоугольник n · (n + 1), так что для того, чтобы узнать число элементов Tn, достаточно разделить его на 2 – то есть снова получить, уже в результате других рассуждений, формулу построения треугольных чисел:

Tn = n(n+1)/2.

Сложно сказать точно, какое из этих двух рассуждений применил юный Гаусс. Мальчик с раннего возраста проявлял интерес к треугольным числам и их свойствам, поэтому, возможно, он понял, что требуется вычислить треугольное число с основанием в 100 единиц. Так, в его математическом дневнике есть запись от 18 июля 1796 года: «Эврика! num = Δ + Δ + Δ», что в переводе с зашифрованного языка Гаусса означает одну из его самых известных теорем, в которой утверждается, что любое целое положительное число может быть представлено в виде суммы самое большее трех треугольных чисел. Следует обратить внимание: эта теорема не предполагает, что треугольные числа должны быть разными и что их обязательно должно быть три (например, 20 = 10 + 10). Три – это лишь максимальное число треугольных чисел, но может быть достаточно и двух, а если искомое число само треугольное, то для его представления достаточно одного числа – его самого. Радость от открытия была более чем оправданной. Молодой Гаусс ответил на один из вызовов старого Ферма (1601-1665). И это был не просто вызов... Даже великий Леонард Эйлер (1707-1783) не смог справиться с этой задачей. Далее мы поговорим о Ферма и Эйлере более подробно, потому что в их работах снова появятся связи с трудами Гаусса – первого человека в истории, который ответил на одну из знаменитых гипотез Ферма. В математике гипотеза – это просто результат, который, похоже, является верным, но который не удалось доказать в строгом аналитическом виде, и при этом для него не был найден и опровергающий контрпример.


    Ваша оценка произведения:

Популярные книги за неделю