355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Антонио Лизана » Если бы числа могли говорить. Гаусс. Теория чисел » Текст книги (страница 4)
Если бы числа могли говорить. Гаусс. Теория чисел
  • Текст добавлен: 5 октября 2016, 21:55

Текст книги "Если бы числа могли говорить. Гаусс. Теория чисел"


Автор книги: Антонио Лизана


Жанры:

   

Математика

,

сообщить о нарушении

Текущая страница: 4 (всего у книги 9 страниц)

Если вспомнить, что все изложенные в книге результаты были получены Гауссом в возрасте до 30 лет, остается только удивляться его таланту. Очень вероятно, что именно в память о Гауссе Филдсовская премия – важнейшая награда, которую может получить математик, – вручается только ученым до 40 лет. В отличие от Нобелевской премии, которая обычно вручается ученым, приближающимся к концу карьеры, медали Филдса оставлены для молодых.


СЕМЕЙНАЯ ЖИЗНЬ

В конце 1798 года ученый вернулся в Брауншвейг, где жил до 1807 года. Очевидно, что этот период был критическим для его карьеры. Сначала Гаусс, закончив обучение в Гёттингенском университете, боялся потерять расположение герцога, но в январе 1799 года математик рассказывал Вольфгангу Бойяи, что герцог продолжает выплачивать стипендию, и это позволяет ему жить, посвящая себя исследованиям. Очевидно, что в это время Гаусс был вполне удовлетворен своим математическим прогрессом и с избытком оправдывал ожидания, возложенные на него: он не только блестяще завершил обучение в Гёттингенском университете, но и решил проблему построения правильного многоугольника с 17 сторонами. Во время этого второго периода в Брауншвейге можно заметить расширение научных интересов Гаусса; он впервые посвятил себя вопросам математики, специфически применимым к теоретической и практической астрономии.


ИОГАНН ПЕТЕР ГУСТАВ ЛЕЖЁН ДИРИХЛЕ

Дирихле (1805-1859) – немецкий математик XIX века. Он получил образование в Германии, а затем во Франции, где учился у многих самых известных математиков своего времени, таких как Фурье. После выпуска работал преподавателем в университетах Бреслау (1826-1828),

Берлина (1828-1855) и Гёттингена, где получил кафедру, оставленную Гауссом после его смерти. Многие свои работы Дирихле посвятил тому, чтобы дополнить труд Гаусса, приводя полные доказательства его результатов, чтобы они стали более доступными будущим поколениям математиков. Его самый значительный вклад сделан в теорию чисел, где он уделил особое внимание изучению рядов и развил теорию рядов Фурье. Первая публикация ученого включала в себя частичное доказательство теоремы Ферма для случая n = 5, которое также нашел Адриен Мари Лежандр, один из рецензентов. Дирихле нашел свое доказательство почти одновременно с Лежандром, а потом успешно продолжил его для п = 14. Математик применил аналитические функции к вычислению арифметических задач и установил критерии сходимости рядов. В области математического анализа он усовершенствовал определение и понятие функции. Дирихле приписывают современное понимание функции в математике.

Его личная жизнь в это время также изменилась, поскольку здесь Гаусс начал ухаживать за Иоганной Осггоф, на которой и женился в 1805 году. Дочь кожевника, Иоганна была на три года младше Гаусса, ее семья хорошо знала мать математика, которая работала на семью Остгофов. В детстве Карл Фридрих сам часто бывал в доме родственников своей будущей жены и после возвращения в Брауншвейг возобновил общение с ними. Так он познакомился с Иоганной.


НОБЕЛЕВСКИЕ ПРЕМИИ ПО МАТЕМАТИКЕ

Филдсовская премия – это высший знак отличия, который может получить математик. Она вручается Международным математическим союзом раз в четыре года и по значимости сопоставима с Нобелевской премией. Дело в том, что Нобелевской премии по математике не существует. Альфред Нобель исключил эту дисциплину из списка наук, за которые присуждается премия его имени. И хотя Нобелевский фонд имеет полномочия включать в список новые области (например, существует Нобелевская премия по экономике, учрежденная в 1969 году), он не может учредить премию по математике. Возможно, воля Нобеля связана с тем, что он не считал математику прикладной наукой. Однако существуют и другие объяснения: якобы это связано с обидой, которую учредитель премий испытывал к математическому сообществу, поскольку его супруга изменила ему со шведским математиком Густавом Миттаг-Леффлером (1846-1927). Эта версия очень распространена, но вряд ли она имеет под собой реальные основания, прежде всего потому, что Нобель никогда не был женат. Первая медаль Филдса была вручена в 1936 году, но из-за начала Второй мировой войны следующее награждение состоялось только в 1950 году. Официальное название премии – Международная медаль за выдающиеся открытия в математике (хотя она намного более известна как медаль Филдса). Награда названа так в честь математика Джона Чарльза Филдса (1863– 1932), который развил эту идею.

Только молодым

Главная особенность этой награды – требование, чтобы лауреат-математик был не старше 40 лет. Вручение происходит раз в четыре года. К медали прилагается денежная премия в размере около 10 тысяч евро, и это очень далеко от сумм Нобелевской премии. Лауреатов математической награды может быть до четырех, но так бывает очень редко. Медаль изготовлена из золота, ее эскиз был разработан Робертом Маккензи в 1933 году. На аверсе выгравирована голова древнегреческого математика Архимеда и надпись Transire suum pectus mundoque potiri («Превзойти человеческую ограниченность и покорить Вселенную»). На реверсе можно увидеть шар, вписанный в цилиндр, и надпись Congregati ex toto orbe mathematici ob scrita insignia tribuere («Математики, собравшиеся со всего света, вручили эту награду за выдающиеся труды»).

Нам мало что известно о жизни пары, поскольку Гаусс упоминает супругу только в письмах друзьям. Не осталось даже ее портрета, известно лишь, что дочь математика, Минна, была очень похожа на мать. В 1806 году в письме Вольфгангу Бойяи Гаусс описывает свою супругу как умную и нежную женщину, но получившую довольно скудное образование.

У четы Гауссов родилось двое детей: Иосиф и Минна, и ничто не нарушало их идиллию. Однако в конце 1809 года, менее чем через два года после переезда в Гёттинген, где Гаусс занял пост директора обсерватории, Иоганна родила третьего ребенка и через месяц после родов умерла. Мальчик – бедный Луи, как называл его отец, – через несколько месяцев последовал за своей матерью, и безутешный Гаусс погрузился в депрессию. Ученый был довольно счастлив в первом браке; за год до смерти Иоганны он так описывал свою семейную жизнь в письме к Бойяи:

«Дни счастливо бегут однообразным ходом нашей домашней жизни: когда у девочки вылезает новый зуб или мальчик выучивает новые слова, это важнее, чем открытие новой звезды или новой математической истины».

Гаусс был не очень практичным человеком и в положении вдовца столкнулся с рядом бытовых проблем. Так что через несколько месяцев после смерти Луи он заключил брак с Вильгельминой (Минной) Вальдек, дочерью преподавателя права в университете. Минна Вальдек была подругой Иоганны Гаусс, но насколько тесной была эта дружба, неизвестно. Гаусс сделал Минне предложение через некоторое время после того, как она по неизвестным причинам расторгла свой брак. Свадьба состоялась довольно быстро, но семейная жизнь не была безоблачной. Супруги не испытывали друг к другу особой привязанности, и этот союз скорее был продиктован желанием Гаусса забыть о смерти Иоганны и подыскать для детей новую мать. Этот скоропалительный второй брак не очень нравился самому математику, который чувствовал себя неловко. Дошедшие до нас письма, которыми обменивались супруги, довольно холодны и безэмоциональны.

Свою долю сложностей вносило и разное социальное положение супругов: семья невесты не была довольна тем, что Минна, дочь университетского преподавателя, выходит замуж за небогатого Гаусса. В послании, которое ученый пишет своей будущей супруге по поводу поездки в Брауншвейг, чтобы познакомиться с его матерью, он предупреждает Минну:

«И еще одно, причина, но которой я не написал моей матери, в том, что я хотел сделать ей сюрприз, а также потому что моя мать не может прочитать кое-что из того, что я ей пишу, а Вы, я думаю, не хотите, чтобы ей пришлось беспокоить чужих людей».

В августе 1910 года Гаусс стал зятем именитого преподавателя и члена Тайного государственного совета Иоганна Петера Вальдека, и у двоих его детей от первого брака появилась новая мать. В 1811 году у ученого родился сын Ойген, а в 1813-м – Вильгельм. В 1816 году на свет появилась младшая дочь Тереза, которая будет заботиться об отце до самой его смерти.

Благодаря второму браку Гаусс познакомился с Александром фон Гумбольдтом, одним из лидеров возрождения Пруссии после падения Наполеона.

Работая в Гёттингене, ученый получал приглашения из других университетов, в частности из России и Берлина. Однако от предложения поработать в России Гаусс отказался, потому что ему не нравился климат этой страны. Естественно, что на жизнь Гаусса очень повлиял период наполеоновских войн. В 1808 году, после разгрома Наполеоном Пруссии в битвах за Аустерлиц и Йену, французское правительство потребовало от противника огромную денежную компенсацию военных расходов, как это было принято делать после заключения мира. Гаусс также должен был внести 2 тысячи франков, а это было значительной суммой для молодого преподавателя, который еще не получал регулярного жалованья. При этом из-за своей гордости он не обращался ни к кому за помощью, и даже когда Лаплас из Парижа и Ольберс из Бремена предложили внести деньги за него, Гаусс отказался их принимать. В конце концов контрибуция была выплачена анонимно, и лишь через несколько лет стало известно, что за Гаусса заплатил епископ из Франкфурта – туда также дошла слава о великом математике. Уже в старости ученый рассказывал, что Наполеон воздержался от бомбардировки Гёттингена, чтобы не подвергать опасности его жизнь, однако это кажется некоторым преувеличением. Что действительно подтверждено документами, так это ходатайство французского математика Софи Жермен перед Наполеоном, которая просила обеспечить безопасность великого ученого в годы военных потрясений.

В 1810 году, всего через два года, Гаусс получил награду Парижской академии наук, однако он отказался от прилагавшейся денежной премии, в том числе и потому, что испытывал неприязнь к французам, которые к тому времени покорили его родину и уже несколько лет вели войну. Впрочем, ученый принял астрономические часы, выбраные для него Софи Жермен, с которой он поддерживал переписку. В XIX веке женщины крайне редко посвящали себя математике. Из опасений столкнуться с предубежденным отношением Софи Жермен также вела переписку с Гауссом под мужским именем. Эта женщина открыла отдельный тип простых чисел, связанных с последней теоремой Ферма (на то время еще гипотезой), которые сегодня носят название простых чисел Жермен. Гаусс был очень впечатлен письмами, которые он получал от некоего месье Ле Блана, и крайне удивился, когда после долгой переписки узнал, что на самом деле это не месье, а мадемуазель. Ученый не только не выказал никакого предубеждения, но наоборот, оценил заслуги Жермен и написал ей:

«Редок вкус к загадкам чисел. Привлекательность этой возвышенной науки открывается во всей красоте только тем, кто имеет смелость углубиться в нее. Женщина из-за своего пола и наших предрассудков встречается со значительно более трудными препятствиями, чем мужчина, постигая сложные научные проблемы. Но когда она преодолевает эти барьеры и проникает в тайны мироздания, она несомненно проявляет благородную смелость, исключительный талант и высшую гениальность».

Математик даже пытался убедить Гёттингенский университет сделать Софи почетным доктором, но она умерла до того, как ученый достиг своей цели.

Больше всего об уважении к Гауссу со стороны его современников говорит тот факт, что правительство Вестфалии, находясь в руках французских захватчиков, пыталось выполнить свое обещание и построить для исследователя новую обсерваторию. Для этой цели были выделены огромные средства, и к 1814 году, когда королевство Вестфалия перестало существовать, работы находились в самом разгаре – и это несмотря на огромные экономические трудности, связанные с разгромом Пруссии. Гаусс всегда мог получать материал, необходимый ему для исследований. Работая в университете, ученый добился назначения стипендий наиболее талантливым студентам, среди которых были Христиан Людвиг Герлинг (1788-1864) и Август Мёбиус (1790-1868). Первый стал известным физиком, а второй – признанным астрономом и математиком, создателем знаменитой ленты Мёбиуса.

Однако коллеги Гаусса отмечали, что он был не слишком привержен преподавательской деятельности и направлял гораздо большие усилия на исследования. Но такое обобщение неверно. Следует учитывать, что в этот университет многие студенты поступали скорее благодаря родственным связям, чем интеллектуальным заслугам. Большинство из них сами были не слишком заинтересованы в учебе: им не хватало как мотивации, так и элементарных знаний. Гаусс в письме, адресованном в 1810 году своему близкому другу астроному и математику Фридриху Вильгельму Бесселю (1784-1846), утверждал:


МАРИ СОФИ ЖЕРМЕН

Софи Жермен (1776-1831) – женщина-математик из Франции, внесшая значительный вклад в теорию чисел, в частности в изучение чисел, которые позже были названы простыми числами Жермен (простые числа, которые при увеличении вдвое и добавлении единицы также дают простое число), например 11 и 23. Жермен очень интересовалась учебой у Жозефа-Луи Лагранжа и под псевдонимом «месье Ле Блан» (это имя принадлежало одному из бывших студентов Лагранжа) посылала ему некоторые статьи.

Французский математик был под таким впечатлением от этих статей, что попросил у Ле Блана встречи, и Жермен пришлось открыть ему свою личность.

Лагранж смог победить свои предрассудки и признал математический талант Софи, решив стать ее наставником. Ту же стратегию Жермен использовала для переписки с Гауссом. Одно из наибольших ее достижений в теории чисел – математическое доказательство предложений, которые позволяли значительно сузить поле поиска доказательства знаменитой гипотезы Ферма. Некоторые из этих результатов были впервые представлены в письмах Гауссу.


«Этой зимой я читаю два курса лекций трем студентам, из которых один регулярно готов, другой – гораздо менее регулярно, а третьему не хватает подготовки и способностей. Таковы обязанности на кафедре математики».

Едва Гаусс нашел студентов, способных с пользой провести годы обучения, он очень ими заинтересовался. Его корреспонденция полна писем с советами, в которых он дает им подробные объяснения. Что касается неспособных или немотивированных студентов – что правда, то правда: Гаусс действительно проявлял в общении с ними мало терпения. Ученый всегда надеялся, что его ученики смогут работать и думать самостоятельно, так что гораздо важнее не объяснения преподавателей, а их собственные усилия. Однако подобное отношение вступало в конфликт с педагогическими идеями XIX века, и только по этой причине Гаусса часто описывают как плохого преподавателя, обеспокоенного только собственными исследованиями. Но тот факт, что Гаусс был наставником Бернхарда Римана (1826-1866) – возможно, самого известного математика второй половины XIX века, должен снять с него любые обвинения в нерадивом отношении к преподавательским обязанностям.

ГЛАВА 3
Метод нахождения планет

Едва достигнув 25 лет, Гаусс уже внес значительный вклад в математику. Однако слава об ученом распространилась по всему континенту благодаря его астрономическим работам, связанным с вычислением орбиты Цереры. Для этого Гаусс воспользовался методом наименьших квадратов – одним из своих важнейших математических открытий.

С юных лет Гаусс пользовался известностью и уважением среди коллег и преподавателей и получал материальную поддержку от герцога Брауншвейгского. Однако международная слава пришла к ученому только с первым успехом в области астрономии. Это произошло благодаря вычислению орбиты планеты Цереры, которая сегодня отнесена к карликовым планетам.

Догадка, что между орбитами Марса и Юпитера расположена неизвестная планета, была высказана Иоганном Элертом Боде (1747-1826) в 1772 году. Его рассуждения основывались на законе Тициуса – Боде, предложенном Иоганном Даниэлем Тициусом (1729-1796) в 1766 году. Еще со времен Коперника было очевидно, что расстояние между Марсом и Юпитером ненормально большое. Поэтому, по мере развития знаний об орбитах планет, астрономы пытались найти закон, который объяснял бы расстояния между орбитами и с помощью которого можно было бы открывать новые небесные тела. Первый закон такого типа (строго говоря, его следовало бы называть правилом) был предложен немецким физиком Иоганном Даниэлем Тициусом в то время, когда были известны только планеты Солнечной системы до Сатурна. Согласно этому закону расстояние от каждой планеты до Солнца в астрономических единицах (1 а.е. равна расстоянию от Земли до Солнца) задано следующим правилом:

a = (n+4)/10

где n = 0, 3, 6, 12, 24, 48, то есть каждое значение n, начиная с 3, в два раза больше предыдущего, и а представляет собой наибольшую полуось орбиты. Этот закон затем был использован директором обсерватории Берлина, Иоганном Боде, и стал известен как закон Тициуса – Боде. Если мы вычислим первые восемь чисел ряда, получим такие результаты.


nа (в а. е.)
00,4
30,7
61
121,6
242,8
485,2
9610
19219,6

При сравнении этих вычислений с известными расстояниями до открытых к тому времени планет получались следующие результаты.


ПланетаnРасстояние по закону Т-БРеальное расстояние
Меркурий00,40,39
Венера30,70,72
Земля611
Марс121,61,52
 242,8 
Юпитер485,25,2
Сатурн96109,54
 19219,6 

Как можно заметить, приближение довольно хорошее, хотя его можно было посчитать простым совпадением, поскольку Тициус никак не обосновал свое правило. Однако открытие Уильямом Гершелем (1738-1822) в 1781 году новой планеты, Урана, подтвердило справедливость закона Тициуса – Боде. Уран был обнаружен на расстоянии 19,18 а.е. от Солнца, в то время как правилом предполагалось 19,6. За открытие планеты Гершель получил пособие 200 фунтов в год и титул кавалера.

После открытия Урана астрономы начали искать новую планету в 2,8 а.е. от Солнца, что соответствовало n = 24. На астрономическом конгрессе в городе Гота в 1800 году (сегодня это территория Германии) француз Жозеф Лаланд (1732-1807) рекомендовал начать поиски. В том же году астроном Франц барон Ксавер фон Цах (1754-1832), владелец журнала Monatliche Korrespondenz («Ежемесячная корреспонденция»), самого известного немецкого астрономического издания тех лет, собрал в Лилиентале 24 астронома, чтобы организовать поиск этой гипотетической планеты Солнечной системы. Ученые разделили небо на 24 зоны, и каждый наблюдал за одной из них. Однако судьба была не на стороне группы из Лилиенталя, хотя ей удалось сделать другие значительные астрономические открытия. Удача пришла к Джузеппе Пиацци (1746-1826), который 1 января 1801 года объявил в Палермской обсерватории, что открыл новую планету, которую назвал Церера Фердинанда, в честь Цереры – римской богини плодородия и материнской любви, покровительницы Сицилии, и короля Неаполя и Сицилии Фердинанда IV, поддерживавшего его работу. Название «Фердинанда» затем было снято по политическим мотивам. Пиацци утверждал, что Церера вращается вокруг Солнца по орбите, которая, по-видимому, соответствовала закону Тициуса – Боде для п = 24. Открытие Цереры вызвало всеобщий энтузиазм и было объявлено чудесным предзнаменованием для развития новой науки. Казалось, что это именно та планета, которую ученые с таким интересом искали, и что человечество способно понимать природу и делать научные предсказания.

Чтобы была понятнее важность, которая придавалась этому открытию, следует обрисовать общее состояние науки на тот момент. В течение тысячелетий человечество считало, что им управляют капризные и непостижимые законы. Человек мало что мог противопоставить капризам богов или сверхъестественных сил. Однако научный прогресс XVIII века вновь поместил человека в центр Вселенной и сделал его хозяином своей судьбы. У явлений природы, воспринимаемых чувствами, была найдена причина, которую можно было изучать, таким образом, стало возможным прогнозирование будущего и даже контроль за ним. Благодаря научному прогрессу неизвестное и непредсказуемое в конце концов окажется во власти человека – такой была идея, которая бродила по Европе в начале XIX века, и каждое новое научное открытие увеличивало уверенность в том, что цивилизация приближается к моменту, когда человек сможет понимать, контролировать и предсказывать поведение природы. Сегодня мы знаем, что хотя научный прогресс помогает нам лучше понимать мир вокруг нас, однако всегда будут существовать случайные и непредсказуемые факторы, которые помешают нам достигнуть этой высокой цели.

Энтузиазм Пиацци сменился разочарованием через несколько недель наблюдений. Астроном следил за новым объектом в течение 42 дней, до ночи 11 февраля. Однако затем ученого свалил грипп, и он на некоторое время покинул пост у телескопа, а вернувшись к наблюдениям, не смог найти небесное тело. Планета исчезла, скрылась за Солнцем. Период наблюдений оказался слишком коротким, и Пиацци не смог точно установить орбиту Цереры и предсказать, где она снова появится на ночном небе. Его данные заканчивались дугой орбиты в 9 градусов.

Астрономам XIX века не хватало математических инструментов для вычисления полной орбиты на основе короткой траектории. Наблюдение Цереры стало предметом переписки между Пиацци, Боде и Лаландом – самыми известными астрономами того времени, и это придало вопросу публичный характер. Фон Цах созвал в Лилиентале новое собрание из пяти астрономов (Шрёдера, Хардинга, Ольберса, фон Эде и Тильдемайстера), чтобы заняться определением орбиты открытого небесного объекта.

Гаусс применил метод наименьших квадратов для вычисления орбиты Цереры, которая сегодня считается карликовой планетой. На рисунке можно сравнить размеры Земли, Луны и Цереры (слева внизу).

Гаусс в Гёттингенской обсерватории, директором которой он был с 1807 года до своей смерти.

Когда были проанализированы данные наблюдений, оказалось, что гелиоцентрическое расстояние объекта помещало его между Марсом и Юпитером, как, собственно, и ожидалось. В июне того же года группа, созванная Францем фон Цахом, пользуясь данными Пиацци, провела предварительное исследование орбиты, но абсолютно безуспешно.

Поскольку предполагаемая планета все не появлялась на небосводе, фон Цах послал данные молодому математику из Гёттингена, слава о котором уже начала распространяться по всей Германии. Речь, конечно же, шла о Гауссе, который после выполнения вычислений объявил, что знает, где астрономы должны искать потерянный объект. Других прогнозов не было, так что Цах решил проверить предположение Гаусса, хотя результаты его вычислений очень отличались от остальных. И совсем рядом с тем местом, которое было рассчитано Гауссом, была замечена маленькая светящаяся точка. Произошло это ночью 7 декабря. Наблюдения продолжались каждую ночь, если, конечно, это позволяли делать метеорологические условия, и наконец 1 января 1802 года в Бремене другой астроном из рабочей группы фон Цаха, Генрих Ольберс, смог абсолютно точно подтвердить, что объект, наблюдаемый на орбите, теоретически предсказанной Гауссом, соответствует всем данным наблюдений Пиацци, сделанным год назад.

Этот удивительный прогноз, не имевший прецедентов в астрономии, был сделан математиком, который обнаружил порядок там, где другие видели только крошечную непредсказуемую планету, с помощью математического инструмента, доказавшего со временем свою эффективность для вычисления планетарных орбит. Это был закон наименьших квадратов, открытый Гауссом за шесть лет до описанных событий и до 1809 года не опубликованный. Возможности применения этого метода выходили далеко за рамки астрономии и были такими широкими, что его использование для вычисления орбиты Цереры сегодня кажется анекдотом. Благодаря своему открытию Гаусс немедленно превратился в звезду первой величины в международном научном сообществе.


ПОЧЕМУ НОЧЬ ТЕМНА?

Немецкий астроном Генрих Ольберс (1758-1840) в течение 40 лет работал врачом в городе Бремене. Однако одновременно он был увлечен астрономией и проводил большую часть ночи, наблюдая за небосводом через маленький телескоп, установленный на крыше. В 1779 году он разработал новый метод, названный методом Ольберса, для вычисления орбиты кометы.

Метод продемонстрировал эффективность для некоторых частных случаев круглых или параболических орбит, но оказался неприменим для определения эллиптической орбиты Цереры.

1 января 1802 года Ольберс обнаружил Цереру в положении, предсказанном Гауссом. Через некоторое время он открыл Палладу и предположил, что оба этих астрономических объекта связаны фрагментами большего тела, и начал искать эти фрагменты на небосводе. Для вычисления орбиты Паллады астроном пригласил в Бремен немецкого математика, который задержался в городе на три недели, и Ольберс стал свидетелем применения новейших математических методов, в частности метода наименьших квадратов. Отношения с Гауссом Ольберс поддерживал до конца своей жизни.


Парадокс Ольберса

Сегодня этого врача и астронома вспоминают в основном благодаря тому, что он в 1823 году предложил знаменитый парадокс, носящий его имя, согласно которому в евклидовом пространстве, бесконечном, статичном и равномерно заполненном звездами, ночное небо должно сверкать, как поверхность Солнца. Объяснения этого парадокса состояли в том, чтобы отрицать, что Вселенная бесконечна или что она заполнена звездами равномерно. Теория относительности находит очевидную причину, поскольку от галактик, удаленных от Земли на более чем 14000 миллионов световых лет (предполагается, что именно таков возраст Вселенной), до нас пока не дошел свет, так как его скорость конечна. Это означает, что, по крайней мере относительно галактик, которые мы видим, Вселенная конечна. С другой стороны, Вселенная расширяется, то есть она не статична.


Его подвиг в первой половине XIX века был символом власти математики, ведь именно в это время происходил расцвет науки. Хотя астрономы открыли планету случайно, математик использовал свои аналитические способности для объяснения того, что произойдет в будущем. Благодаря расчету орбиты Цереры к концу первого года нового века Гаусс был не только одним из самых известных математиков, но и самым популярным астрономом в Европе.

В марте 1802 года Ольберс открыл еще один астрономический объект – Палладу, которая имеет меньший размер, чем Церера, и предложил Гауссу описать ее орбиту, пока тот в течение трех недель находился в Бремене по приглашению самого Ольберса. Метод наименьших квадратов снова подтвердил свою силу, и Ольберс своими глазами увидел мощь примененных Гауссом математических техник. А когда возникли споры о первенстве открытия метода наименьших квадратов, Гаусс призвал Ольберса в качестве свидетеля того, что этот метод применялся уже в начале века.

В ноябре того же года молодой Гаусс, которому было всего 25 лет, был объявлен членом Королевского научного общества в Гёттингене. Успех принес ученому много почестей, среди них было и приглашение стать руководителем астрономической обсерватории в Петербургской академии наук. В России существовала давняя традиция приглашать в свои научные институты иностранных ученых, как в случае с Леонардом Эйлером. В 1802 году, когда Гаусс еще только обдумывал это приглашение, Ольберс предупредил об этом своего друга, фон Геерена, преподавателя Гёттингенского университета и советника правительства Ганновера. Ольберс не хотел, чтобы Гаусс уезжал из Германии, и использовал свои связи для того, чтобы ученому предложили руководство новой Гёттингенской обсерваторией, строительство которой еще даже не началось. Серьезные переговоры о переезде Гаусса в Гёттинген начались только в 1804 году и успешно завершились в 1807-м.


МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

Задача, предложенная Гауссу, касалась вычисления траекторий планет на основе минимального количества наблюдений (по крайней мере, трех). Математически она была чрезвычайно сложной, поскольку нужно было решить шесть уравнений с шестью неизвестными. При этом вычислить точные решения было невозможно и нужно было найти приближенные. Да, решение линейной системы какой-либо задачи, в которой столько же неизвестных, сколько и уравнений, может быть довольно трудоемким, но не предполагает технических сложностей. Однако в этом случае система уравнений была нелинейной. Вычисление орбиты Цереры, как и почти все вычисления Гаусса, включало в себя искусное использование последовательных приближений. Следует отметить прагматизм ученого, который использовал любой доступный математический инструмент. При этом он ввел множество идей, полное доказательство которых далеко не тривиально.

На первом этапе нужно было определить возможную орбиту, а затем, что еще сложнее, осуществить постепенную коррекцию. В целом наблюдаются три типа орбит: эллиптические, параболические и гиперболические. До Гаусса были достигнуты некоторые успехи, например в определении орбиты Урана, но это было довольно просто, поскольку изначальное предположение о том, что Уран описывает круг вокруг Солнца, было недалеко от истины ввиду очень небольшого эксцентриситета орбиты планеты. Кроме того, имелись многочисленные наблюдения, помогавшие скорректировать любую ошибку. В случае с Церерой Гаусс располагал результатами только 41 дня наблюдений; кроме того, ее орбита имела высокую степень эксцентриситета, поэтому гипотеза круга, на которой основывались Ольберс и фон Цах, не сработала. Подход Гаусса был основан только на имевшихся наблюдениях, и для решения задачи ученый пользовался эвристическими методами, то есть улучшал результат шаг за шагом. В эвристических методах используется итерация, при которой найденные частичные решени я служат основой для нахождения новых решений, более близких к реальному решению задачи.

Метод наименьших квадратов, созданный Гауссом, – это техника числового анализа, состоящая в математической оптимизации. Цель – нахождение функции, которая бы наилучшим образом подходила известным данным. Математическая идея следующая: пусть (x1, y1), (х2, y2), ..., (xn, yn) – пары данных, полученных при реальных наблюдениях за переменными X и Y. Теперь предположим, что между переменными X и Y существует связь, определяемая функцией ƒ, так что ƒ(хi) = уi. В случае с планетой Церерой, который изучал Гаусс, пары были образованы положением в пространстве (переменная Y) и временем (переменная X). Определить траекторию планеты было равносильно нахождению вида функции ƒ, так, чтобы при введении данных времени (х) мы могли вычислить ее положение (у) на основе значения ƒ(хi). Нужно выявить метод нахождения функции, при которой были бы минимальными ошибки или вычеты, определяемые как разница между реальным значением переменной Y (положение планеты) и ее вычислением с помощью функции ƒ. Сумма этих ошибок должна быть как можно меньше. Чтобы ошибки взаимно не исключались отрицательными и положительными числами, они возводятся в квадрат; у этой процедуры также есть дополнительное преимущество – она сокращает значение более мелких ошибок, большинство из которых вызваны неточностью взятых данных. Итак, проблема наименьших квадратов сводится к нахождению такой функции ƒ, чтобы минимизировалась сумма квадратов ошибок, то есть чтобы


    Ваша оценка произведения:

Популярные книги за неделю