Текст книги "Истину можно вычислить"
Автор книги: Анатолий Фоменко
Жанры:
Публицистика
,сообщить о нарушении
Текущая страница: 2 (всего у книги 26 страниц) [доступный отрывок для чтения: 10 страниц]
Грубая идея состоит в следующем. Для количественной оценки близости точек всплесков поступим так. Вычислим число f(X, Y) – сумму квадратов чисел f[k], где f[k] – расстояние в годах от точки всплеска с номером «k» графика объема X до точки всплеска с номером «k» графика объема Y. Если оба графика делают всплески одновременно, то моменты всплесков с одинаковыми номерами совпадают и все числа f[k] равны нулю. Рассмотрев достаточно большой фиксированный запас различных реальных текстов H, и вычисляя для каждого из них число f(X, H), отберем затем только такие тексты H, для которых это число не превосходит числа f(X, Y). Подсчитав долю таких текстов во всем запасе текстов H, получаем коэффициент, который – при гипотезе о распределении случайного вектора H – можно интерпретировать как вероятность p(X, Y) [904], [908], [1137], [884]. Если коэффициент p(X, Y) мал, то летописи X и Y зависимы, то есть описывают приблизительно один и тот же «поток событий». Если же коэффициент велик, то летописи X и Y независимы, то есть сообщают о разных «потоках событий».
Перейдем теперь к более детальному описанию статистической модели. Конечно, для реальных графиков объема одновременность их всплесков может иметь место лишь приблизительно. Для оценки того, насколько одновременно оба графика делают всплески, математический аппарат статистики позволяет определить некоторое число p(X, Y), измеряющее несовпадение лет, подробно описанных в летописи X, и лет, подробно описанных в летописи Y. Оказывается, если рассматривать наблюдаемую близость всплесков обоих графиков как случайное событие, то число p(X, Y) можно рассматривать как вероятность этого события (что, впрочем, вовсе не обязательно для эффективности метода). Чем меньше это число, тем лучше совпадают годы, подробно описанные в X, с годами, подробно описанными в Y. Дадим математическое определение коэффициента p(X, Y).
Рассмотрим интервал времени (А, В) и график объема vol X(t), который достигает локальных максимумов в некоторых точках m1, …, mn-1. Мы считаем для простоты, что каждый локальный максимум (всплеск) достигается ровно в одной точке. Эти точки, то есть годы, m разбивают интервал (А, В) на некоторые отрезки, вообще говоря, разной длины, см. рис. 6. Измеряя длины получившихся отрезков в годах, то есть, измеряя расстояния между точками соседних локальных максимумов mi и mi+1, мы получаем последовательность целых чисел а(X) = (x1, …, xn). То есть число x1 – это расстояние от точки А до первого локального максимума. Число x2 – это расстояние от первого локального максимума до второго. И так далее. Число xn – это расстояние от последнего локального максимума mn-1 до точки В.
Рис. 6. Точки всплесков графика объема летописи разбивают отрезок времени (А, В) на интервалы.
Эту последовательность можно изобразить вектором а(X) в евклидовом пространстве Rn размерности n. Например, в случае двух локальных максимумов, то есть если n = 3, мы получаем целочисленный вектор а(X) = (х1, х2, x3) в трехмерном пространстве. Назовем вектор а(X) = (x1, …, xn) ВЕКТОРОМ ЛОКАЛЬНЫХ МАКСИМУМОВ летописи X.
Для другой летописи Y мы получим, вообще говоря, другой вектор a(Y) = (y1, …, ym). Будем считать, что летопись Y описывает события на интервале времени (С, D), длина которого равна длине интервала (А, В), то есть В – А = D – С. Чтобы сравнить графики объемов летописей X и Y, мы предварительно совместим друг с другом два отрезка времени (А, В) и (С, D) одинаковой длины, наложим их друг на друга. Конечно, число локальных максимумов у графиков vol X(t) и vol Y(t) может быть различно. Однако без ограничения общности можно считать, что число максимумов одинаково, а потому векторы а(X) и a(Y) двух сравниваемых летописей X и Y имеют одинаковое число координат. В самом деле, если число максимумов у двух сравниваемых графиков различно, то можно поступить так. Будем считать некоторые максимумы КРАТНЫМИ, то есть считать, что в этой точке слились вместе несколько локальных максимумов. При этом длины соответствующих отрезков, отвечающих этим кратным максимумам, можно считать равными нулю. Пользуясь этим соглашением, можно уравнять число локальных максимумов у графиков объемов летописей X и Y. Конечно, такая операция – введение кратных максимумов – неоднозначна. Фиксируем пока какой-либо вариант введения кратных максимумов. В дальнейшем мы избавимся от указанной неоднозначности, минимизировав нужные нам коэффициенты близости по всем возможным способам введения кратных максимумов. Отметим, что введение кратных максимумов означает, что у вектора а(X) на некоторых местах появляются нулевые компоненты, то есть отрезки нулевой длины.
Итак, сравнивая летописи X и Y, можно считать, что оба вектора а(X) = (х1, …, xn) и а(Y) = (y1, …, yn) имеют одно и то же число координат и поэтому лежат в одном и том же евклидовом пространстве Rn. Отметим, что у каждого из этих векторов сумма его координат одна и та же и равна В – А = D – С, то есть длине интервала времени (А, В). Итак:
x1 + … + xn = y1 + … + yn = В – А.
Рассмотрим теперь множество всех целочисленных векторов с = (с1, …, cn), у которых все координаты неотрицательны и их сумма c1 + … + cn равна одному и тому же числу, а именно В – А, то есть длине временнóго интервала (А, В). Обозначим множество всех таких векторов через S. Геометрически эти векторы можно изобразить так. Будем считать, что все они выходят из начала координат, то есть из точки О в Rn. Рассмотрим концы всех таких векторов с = (с1, …, cn). Все они лежат на многомерном симплексе L, определяемом в пространстве Rn уравнением
c1 + … + cn = В – А,
где все координаты c1, …, cn являются вещественными неотрицательными числами. Множество S геометрически изображается как множество всех точек из L, имеющих целочисленные координаты.
Ясно, что концы векторов локальных максимумов а(X) и а(Y) для летописей X и Y принадлежат множеству S, рис. 7.
Рис. 7. Векторы локальных максимумов а(X) и а(Y) двух сравниваемых летописей X и Y можно условно изобразить двумя векторами в евклидовом пространстве.
Фиксируем теперь вектор а(X) = (х1, …, xn) и рассмотрим все векторы с = (с1, …, cn) с вещественными координатами, принадлежащие симплексу L, и такие, что они удовлетворяют еще одному дополнительному соотношению:
(c1 – x1)2 + … + (cn – xn)2 < (y1 – x1)2 + … + (yn – xn)2.
Множество всех таких векторов с = (c1, …, сn) мы обозначим через К.
Математически эти векторы описываются как удаленные от фиксированного вектора а(X) на расстояние, не превышающее расстояния r(X, Y) от вектора а(X) до вектора а(Y). Говоря здесь о расстоянии между векторами, мы имеем в виду расстояние между их концами. Напомним, что величина
(y1 – x1)2 + … + (yn – xn)2
равна квадрату расстояния r(X, Y) между векторами а(X) и а(Y). Поэтому множество К – это часть симплекса L, попавшая в n-мерный шар радиуса r(X, Y) с центром в точке а(X).
Подсчитаем теперь, сколько целочисленных векторов содержится в множестве К и сколько – в множестве L. Полученные числа обозначим через m(К) и m(L) соответственно. В качестве «предварительного коэффициента» р'(X, Y) мы возьмем отношение этих двух чисел, то есть
р'(X, Y) = m(К)/m(L).
Так как множество К составляет лишь часть множества L, то число р'(X, Y) заключено на отрезке [0,1].
Если векторы а(X) и а(Y) совпадают, то р'(X, Y) = 0. Если векторы, напротив, далеки друг от друга, то число р'(X, Y) близко к единице и даже может оказаться равным единице.
Отметим здесь полезную, хотя и необязательную для дальнейшего, интерпретацию числа р'(X, Y). Предположим, что вектор с = (с1, …, cn) случайным образом пробегает все векторы из множества S, причем он с одинаковой вероятностью может оказаться в любой точке этого множества. В таком случае говорят, что случайный вектор с = (c1, …, cn) распределен РАВНОМЕРНО на множестве S, то есть на множестве «целых точек» (n-1)-мерного симплекса L. Тогда определенное нами число р'(X, Y) допускает вероятностную интерпретацию. Оно просто равно вероятности случайного события, заключающегося в том, что случайный вектор с = (с1, …, cn) оказался на расстоянии от фиксированного вектора а(X), не превышающем расстояния между векторами а(X) и а(Y). Чем меньше эта вероятность, тем менее случайна наблюдаемая нами близость векторов а(X) и а(Y). Другими словами, в этом случае их близость указывает на наличие какой-то ЗАВИСИМОСТИ между ними. И эта зависимость тем больше, чем меньше число р'(X, Y).
Равномерность распределения случайного вектора с = (c1, …, cn) на симплексе L, точнее, на множестве S его «целых точек», может быть обоснована тем, что этот вектор изображает расстояния между соседними локальными максимумами функции объема «глав» исторических летописей или каких-то аналогичных текстов, описывающих заданный период времени (А, В). При рассмотрении всевозможных летописей, говорящих об истории всевозможных государств во всевозможные исторические эпохи, естественно предполагать, что локальный максимум может «с равной вероятностью» появиться в произвольной точке временнóго интервала (А, В).
Описанное построение было выполнено в предположении, что мы фиксировали некоторый вариант введения кратных максимумов у графиков объема летописей. Таких вариантов, конечно, много. Рассмотрим все такие варианты и для каждого из них подсчитаем свое число р'(X, Y), после чего возьмем наименьшее из всех получившихся чисел. Обозначим его через р''(X, Y). То есть мы минимизируем коэффициент р'(X, Y) по всем возможным способам введения локальных максимумов у графиков vol X(t) и vol Y(t).
Наконец, вспомним, что при подсчете коэффициента р''(X, Y) летописи X и Y оказались в неравноправном положении. Дело в том, что выше мы рассматривали «n-мерный шар» радиуса r(X, Y) с центром в точке а(X). Чтобы устранить возникшее неравноправие между летописями X и Y, просто поменяем их местами и повторим описанную выше конструкцию, взяв теперь за центр «n-мерного шара» точку a(Y). В результате получится некоторое число, которое мы обозначим через p''(Y, X). В качестве «симметричного коэффициента» p(X, Y) мы возьмем среднее арифметическое чисел р''(X, Y) и p''(Y,X), то есть
½ (р''(X, Y) + p''(Y, X)).
Для наглядности поясним смысл предварительного коэффициента р'(X, Y) на примере графиков объема всего лишь с двумя локальными максимумами. В этом случае оба вектора
а(X) = (х1, x2, х3) и a(Y) = (у1, у2, у3)
являются векторами в трехмерном евклидовом пространстве. Концы этих векторов лежат на двумерном равностороннем треугольнике L, отсекающем от координатных осей в пространстве R3 одно и то же число В – А. Рис. 8. Если расстояние от точки а(X) до точки а(Y) обозначить через |а(X) – а(Y)|, то множество К – это пересечение треугольника L с трехмерным шаром, центр которого находится в точке а(X), а радиус равен |а(X) – а(Y)|. После этого нужно подсчитать количество «целых точек», то есть точек с целочисленными координатами, в множестве К и в треугольнике L. Взяв отношение получившихся чисел, мы и получим коэффициент р'(X, Y).
Рис. 8. Векторы а(X) и а(Y) определяют «шар», часть которого попадает в симплекс L.
При конкретных вычислениях удобно пользоваться приближенным способом вычисления коэффициента p(X, Y). Дело в том, что подсчет числа целых точек в множестве К довольно затруднителен. Но оказывается, эту трудность можно обойти, перейдя от «дискретной модели» к «непрерывной модели». Хорошо известно, что если (n-1)-мерное множество К в (n-1)-мерном симплексе L достаточно велико, то число целых точек в К примерно равно (n-1)-мерному объему множества К. Поэтому с самого начала в качестве предварительного коэффициента р'(X, Y) можно брать просто отношение (n-1)-мерного объема K к (n-1)-мерному объему L, то есть
Например, в случае двух локальных максимумов в качестве коэффициента р'(X, Y) следует взять отношение
Конечно, при малых значениях В – А «дискретный коэффициент» и «непрерывный коэффициент» различны. Но в наших исследованиях мы будем иметь дело с временны́ми интервалами В – А в несколько десятков и даже сотен лет, так что для интересующих нас целей можно, не делая большой ошибки, уверенно пользоваться «непрерывной моделью» р'(X, Y). Точные математические формулы для подсчета «непрерывного коэффициента» р'(X, Y), для его оценки сверху и снизу, приведены в работе [884], с. 107.
Укажем еще одно уточнение описанной статистической модели. При работе с конкретными графиками объема исторических текстов следует «сглаживать» эти графики, чтобы устранить мелкие случайные всплески. Мы проводили такое сглаживание графика, «усредняя по соседям», то есть, заменяя значение функции объема в каждой точке t на среднее арифметическое трех значений функции, а именно в точках t – 1, t, t + 1.В качестве «окончательного коэффициента» p(X, Y) следует взять его значение, подсчитанное для таких «сглаженных графиков».
Сформулированный выше принцип корреляции максимумов подтвердится, если для большинства пар заведомо зависимых текстов X и Y коэффициент p(X, Y) окажется «малым», а для большинства пар заведомо независимых текстов, напротив, – «большим».
1.4. Экспериментальная проверка принципа корреляции максимумов
Примеры зависимых и независимых исторических текстов
В 1978–1985 годах автором был проведен первый обширный вычислительный эксперимент по подсчету чисел p(X, Y) для нескольких десятков пар конкретных исторических текстов-хроник, летописей и т. п. Детали см. в [904], [908], [1137], [884].
Оказалось, что коэффициент p(X, Y) достаточно хорошо различает ЗАВЕДОМО ЗАВИСИМЫЕ и ЗАВЕДОМО НЕЗАВИСИМЫЕ пары исторических текстов. Было обнаружено, что для всех исследованных нами пар реальных летописей X, Y, описывающих ЗАВЕДОМО РАЗНЫЕ события (разные исторические эпохи или разные государства), то есть для НЕЗАВИСИМЫХ текстов, число p(X, Y) колеблется от 1 до 1/100 при количестве локальных максимумов от 10 до 15. Напротив, если исторические летописи X и Y ЗАВЕДОМО ЗАВИСИМЫ, то есть описывают одни и те же события, то число p(X, Y) не превосходит 10-8 для того же количества максимумов.
Таким образом, между значениями коэффициента для зависимых и независимых текстов обнаруживается разрыв на несколько порядков. Подчеркнем, что здесь важны не абсолютные величины получающихся коэффициентов, а тот факт, что «зона коэффициентов для заведомо зависимых текстов» отделена НЕСКОЛЬКИМИ ПОРЯДКАМИ от «зоны коэффициентов для заведомо независимых текстов». Приведем типичные примеры. Точные значения функций объемов для особо интересных летописей приведены в книге А.Т. Фоменко «Методы».
ПРИМЕР 1.
На рис. 9-11 показаны графики объемов двух заведомо зависимых исторических текстов.
Рис. 9. Функции объема летописи «античного» Тита Ливия и современного учебника Сергеева. Налицо ярко выраженная корреляция. Первая часть.
Рис. 10. Функции объема летописи «античного» Тита Ливия и современного учебника Сергеева. Вторая часть.
Рис. 11. Функции объема летописи «античного» Тита Ливия и современного учебника Сергеева. Третья часть.
А именно, в качестве текста X мы взяли историческую монографию современного автора В.С. Сергеева «Очерки по истории Древнего Рима» (T. 1–2. М.: ОГИЗ, 1938).
В качестве текста Y мы взяли «античный» источник, а именно «Римскую историю» Тита Ливия (T. 1–6, М.: 1897–1899).
Согласно скалигеровской хронологии, эти тексты описывают события на интервале якобы 757–287 годы до н. э. Итак, здесь А = 757 год до н. э., В = 287 год до н. э. Оба текста описывают одну и ту же историческую эпоху, примерно одни и те же события. Наглядно видно, что графики объемов делают свои ОСНОВНЫЕ всплески практически одновременно. Для количественного сравнения функций следует предварительно сгладить «мелкую зыбь», то есть вторичные всплески, накладывающиеся на основные, первичные колебания графиков. При вычислении коэффициента p(X, Y) мы сгладили, усреднили эти графики, чтобы выделить лишь их ОСНОВНЫЕ локальные максимумы, в количестве, не превышающем пятнадцати. Оказалось, что здесь p(X, Y) = 2 × 10-12. Малая величина коэффициента указывает на ЗАВИСИМОСТЬ сравниваемых текстов. В данном случае это неудивительно. Как мы уже отмечали, оба текста описывают один и тот же период в истории «античного» Рима. Малое значение коэффициента p(X, Y) показывает, что если рассматривать наблюдаемую близость точек всплесков обоих графиков как случайное событие, то его вероятность чрезвычайно мала. Как мы видим, современный автор В.С. Сергеев достаточно аккуратно воспроизвел в своей книге «античный» оригинал. Конечно, он дополнил его своими соображениями и комментариями, но, как выясняется, они не влияют на характер зависимости этих текстов.
Теперь в качестве «летописи» X' возьмем снова книгу В.С. Сергеева, а в качестве «летописи» Y' – ее же, но заменив порядок лет в тексте на противоположный. То есть, грубо говоря, прочитав книгу Сергеева «задом наперед». Оказывается, в этом случае p(X', Y') будет равняться ⅓· Таким образом, получается значение, существенно более близкое к единице, чем предыдущее, и указывающее на независимость сравниваемых текстов. Что и неудивительно, так как проведенная нами операция «перевертывания летописи» очевидно дает два заведомо независимых текста.
ПРИМЕР 2.
Возьмем следующие заведомо зависимые исторические тексты, две русские летописи:
X – Никифоровская летопись [672],
Y – Супрасльская летопись [672].
Следующий интервал времени описан в обеих летописях: якобы 850-1256 годы.
Графики их объемов приведены на рис. 12. Оба графика объемов «глав» на интервале якобы 850-1255 годы н. э. имеют 31 всплеск и делают эти всплески практически одновременно, в одни и те же годы. Подсчет дает, что здесь p(X, Y) = 10-24. Это значение весьма малó, что подтверждает зависимость этих текстов. В [ХРОН1], приложение 5.1, мы приводим точные численные значения функций объемов этих летописей.
Рис. 12. Графики объемов зависимых летописей: Супрасльской и Никифоровской. Всплески графиков – практически одновременны.
ПРИМЕР 3.
Рассмотрим следующие две русские летописи:
X – Холмогорская летопись [672],
Y – Повесть временных лет.
Следующий интервал времени описан в обеих летописях: якобы 850-1000 годы н. э. Графики объемов летописей также достигают локальных максимумов ПРАКТИЧЕСКИ ОДНОВРЕМЕННО. И снова это не случайно, а закономерно, иначе реализовался бы единственный шанс из 1015 шансов. Здесь p(X, Y) = 10-15. На указанном временнóм интервале эти две летописи зависимы. На рис. 13 представлены сразу три графика объемов: для Супрасльской летописи, для Никифоровской летописи и для Повести Временных Лет. Последняя летопись «богаче», поэтому ее график имеет больше локальных максимумов и зависимость не столь очевидна. Тем не менее, после сглаживания выясняется, что между этими тремя графиками также имеется ярко выраженная зависимость. Подробнее о сравнении «богатых» и «бедных» летописей рассказано в книге А.Т. Фоменко «Методы». Распределение объемов указанных летописей приведено в [ХРОН1], приложении 5.1.
Рис. 13. Графики трех зависимых летописей: Супрасльской, Никифоровской и «более богатой» Повести временных Лет. Подсчеты показывают, что имеется ярко выраженная зависимость точек всплесков.
ПРИМЕР 4.
Приведем пример из средневековой римской истории.
X – фундаментальная монография немецкого историка Фердинанда Грегоровиуса «История города Рима в средние века», тома 1–5 [196]. Эта книга написана в XIX веке на основе огромного числа средневековых светских и церковных документов.
Y – Liber Pontificalis (T. Mommsen. «Gestorum Pontificum Romanorum», 1898). Это «Книга Понтифексов», то есть список и жизнеописания римских пап Средних веков, была восстановлена немецким историком XIX века Теодором Моммзеном на основе средневековых римских текстов. Здесь, оказывается, p(X, Y) = 10-10, что указывает на яркую зависимость этих двух текстов. В предположении случайности такой близости реализовался бы один шанс из 10 миллиардов.
Во всех обработанных нами примерах исторических текстов, как ЗАВЕДОМО ЗАВИСИМЫХ, так и ЗАВЕДОМО НЕЗАВИСИМЫХ, наша теоретическая модель подтвердилась. Таким образом, удалось обнаружить закономерности, позволяющие статистически характеризовать ЗАВИСИМЫЕ исторические тексты, то есть описывающие один и тот же период времени, одни и те же «потоки событий» в истории одного и того же региона, государства. В то же время, как показали эксперименты, если два исторических текста X и Y, напротив, НЕЗАВИСИМЫ, то есть описывают заведомо разные исторические эпохи, или разные регионы, или существенно разные «потоки событий», то графики объемов vol X(t) и vol Y(t) делают всплески в существенно разные годы. То есть никакой корреляции не наблюдается. В этом последнем случае типичное значение для коэффициента p(X, Y), при количестве локальных максимумов от 10 до 15, колеблется от 1 до 1/100. Приведем типичный пример.
ПРИМЕР 5.
Вновь обратимся к «античной» истории Рима. В качестве сравниваемых текстов X и Y мы взяли следующие два фрагмента из книги В.С. Сергеева «Очерки по Истории Древнего Рима» [767]. Первый фрагмент описывает период якобы 520–380 годы до н. э., а второй фрагмент – якобы 380–240 годы до н. э. Считается, что эти периоды независимы. Подсчет коэффициента p(X, Y) дает, что здесь он равен ⅕. Это значение разительно, на несколько порядков, отличается от типичных значений 10-12 – 10-6 для заведомо зависимых текстов, с аналогичным количеством локальных максимумов. Таким образом, эти два текста, «две половины» книги В.С. Сергеева оказываются действительно НЕЗАВИСИМЫМИ.
Выше мы использовали такую числовую характеристику «главы», как ее объем. Однако, как показали наши исследования, аналогичные статистические закономерности, для достаточно больших исторических текстов, обнаруживаются и при использовании других числовых характеристик. Например, можно рассматривать количество имен в каждой «главе», количество ссылок на другие летописи и т. п. В нашем вычислительном эксперименте сравнивались:
• древние тексты с древними,
• древние с современными,
• современные с современными.
Как мы уже сказали, наряду с графиками объемов «глав», исследовались и другие количественные характеристики текстов. Например, графики числа упомянутых имен, графики числа упоминаний данного года в тексте, графики частот ссылок на какой-либо другой фиксированный текст [904], [908], [1137], [884].
Оказалось, что для всех этих характеристик выполняется тот же ПРИНЦИП КОРРЕЛЯЦИИ МАКСИМУМОВ. А именно графики зависимых текстов делают всплески практически одновременно, а для независимых текстов точки всплесков графиков никак не коррелируют.
Сформулируем еще одно следствие из нашей основной модели, статистической гипотезы.
А именно, если два исторических текста ЗАВЕДОМО ЗАВИСИМЫ, то есть описывают один и тот же «поток событий» на одном и том же интервале времени в истории одного и того же государства, то для любой пары указанных выше числовых характеристик соответствующие им графики делают всплески приблизительно в одни и те же годы. Другими словами, если какой-то год в обеих летописях описан подробнее, чем соседние годы, то увеличится (локально) число упоминаний этого года в обеих летописях, увеличится количество имен персонажей, упомянутых в этом году в обеих летописях, и т. п. Напротив, если тексты ЗАВЕДОМО НЕЗАВИСИМЫ, то никакой корреляции между указанными числовыми характеристиками быть не должно.
Проверка этого «вторичного принципа корреляции максимумов» подтвердила его справедливость на конкретных, заведомо зависимых исторических текстах [884], с 110–111.