355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Амит Госвами » Самосознающая вселенная. Как сознание создает материальный мир » Текст книги (страница 8)
Самосознающая вселенная. Как сознание создает материальный мир
  • Текст добавлен: 14 сентября 2016, 23:21

Текст книги "Самосознающая вселенная. Как сознание создает материальный мир"


Автор книги: Амит Госвами


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 8 (всего у книги 22 страниц)

Рис. 24. Идея Эйнштейна: начальная щель на пружинах для двухщелевого эксперимента. Если перед прохождением через перегородку с двумя щелями (не показана) электроны проходят через щель в диафрагме, установленной на пружинах, то можно ли определять, через какую щель проходит электрон, не уничтожая интерференционную картину?

Однако предположим далее, что действует принцип дополнительности и что иногда макроскопический прибор все же приобретает квантовую дихотомию (как показывает спор Бора—Эйнштейна), но что в другие моменты этого не происходит – как в случае с измерительным прибором. Эта оригинальная идея, именуемая макрореализмом, исходит от блестящего физика Тони Леггетта, чья работа привела к созданию великолепного экспериментального устройства под названием SQUID (СКВИД – Сверхпроводящий Квантово-Интерференционный Детектор).

Обычные проводники проводят электричество, но всегда оказывают некоторое сопротивление прохождению электрического тока, что приводит к потере электрической энергии в виде тепла. По контрасту с этим сверхпроводники позволяют току течь без сопротивления. Если вы создали электрический ток в сверхпроводящем контуре, то этот ток будет течь практически вечно – даже без источника энергии [27]27
  Конечно, при условии, что энергия не рассеивается в форме магнитного поля. – Прим. пер.


[Закрыть]
. Сверхпроводимость обусловлена особой корреляцией между электронами, распространяющейся по всему сверхпроводнику. Для того чтобы вырваться из этого коррелированного состояния, электронам требуется энергия, и потому такое состояние относительно невосприимчиво к беспорядочному тепловому движению, присутствующему в обычном проводнике [28]28
  В большинстве случаев явление сверхпроводимости наблюдается при крайне низких температурах (вблизи 273° К, или «абсолютного нуля»), когда хаотическое тепловое движение практически отсутствует. – Прим. пер.


[Закрыть]
.

СКВИД представляет собой кусок сверхпроводника с двумя отверстиями, которые почти соприкасаются в точке, именуемой «слабым звеном» (рис. 25). Предположим, мы создаем ток в контуре вокруг одного из отверстий. Ток создает магнитное поле, точно так же, как любой электромагнит, и силовые линии магнитного поля проходят через отверстие – это тоже обычное явление. В случае сверхпроводника, необычное заключается в том, что магнитный поток – число силовых линий на единицу площади – является квантованным; магнитный поток, проходящий через отверстие, дискретен. Это дало Леггетту его ключевую идею.

Рис. 25. Будет ли линия потока делиться между двумя отверстиями, показывая квантовую интерференцию на макроскопическом уровне?

Предположим, что мы создаем настолько малый ток, что имеется только один квант потока. Тогда мы создали ситуацию двухщелевой интерференции. Если есть только одно отверстие, то очевидно, что квант может быть где угодно в нем. Если звено между двумя отверстиями будет слишком толстым, то поток будет локализован только в одном отверстии. Можно ли при подходящем размере слабого звена создать квантовую интерференцию, чтобы квант потока был нелокализованным, находясь в обоих отверстиях одновременно? Если да, то квантовые когерентные суперпозиции явно сохраняются даже на уровне макроскопических тел. Если никакой такой делокализации не наблюдается, то мы можем сделать вывод, что макроскопические тела действительно являются классическими и не допускают когерентных суперпозиций в качестве своих разрешенных состояний.

До сих пор нет никаких свидетельств нарушения квантовой механики в случае СКВИДа, но Леггетт упорно ожидает краха квантовой теории. На недавней конференции он говорил: «Но временами, когда ярко светит полная луна, я делаю то, что в физическом сообществе может быть интеллектуальным эквивалентом превращения в оборотня: я задаюсь вопросом, является ли квантовая механика полной и окончательной истиной о физической вселенной... Я склонен считать, что в каком-томесте между атомом и человеческим мозгом она [квантовая механика] не только может, но должнатерпеть крах».

Он говорил как подлинный материальный реалист!

Многие физики чувствуют склонность задавать те же вопросы, которые вдохновляют Леггетта, так что исследования со СКВИДом продолжаются. Я подозреваю, что однажды они дадут свидетельства в пользу квантовой механики и покажут, что квантовые когерентные суперпозиции явно присутствуют даже в макроскопических телах.

Если мы не отрицаем, что, в конечном счете, все объекты приобретают квантовую дихотомию, тогда, как впервые доказывал фон Нойманн, если цепочка материальных механизмов измеряет квантовый объект в состоянии когерентной суперпозиции, все они по очереди приобретают дихотомию объекта, до бесконечности (рис. 26). Как выбраться из тупика, который создает цепочка фон Нойманна? Ответ поразителен: выскакивая из системы, из материального порядка реальности.

Рис. 26. Цепочка фон Нойманна. В соответствии с доказательством фон Нойманна, даже наш мозг-ум заражается дихотомией кошки, так что каким же образом заканчивается цепочка?

Мы знаем, что наблюдение сознательным наблюдателем прекращает дихотомию. Поэтому совершенно очевидно, что сознание должно действовать извне материального мира; иными словами, сознание должно быть трансцендентным – нелокальным.


Парадокс Рамачандрана

Если вас все еще беспокоит трансцендентность сознания, то вы, возможно, получите удовольствие от рассмотрения парадокса, который придумал нейрофизиолог Рамачандран.

Предположим, что благодаря некой супертехнологии можно записывать с помощью электродов или чего-то такого все, что происходит в мозгу, когда на него действуют внешние стимулы. Вы можете вообразить, что исходя из этих данных и с помощью некой сверхматематики вы можете получить полное и подробное описание состояния мозга в ситуации действия данного стимула.

Предположим, что стимулом служит красный цветок; вы показываете его нескольким людям, собираете данные, анализируете их и получаете набор состояний мозга, соответствующий восприятию красного цветка. Вы ожидаете, что за исключением незначительных статистических отклонений вы каждый раз будете получать, по существу, одно и то же описание состояния (что-то вроде того, что имела место реакция определенных клеток в определенной области мозга, вовлеченной в восприятие цвета).

Вы могли бы даже вообразить, что с помощью супертехнологии регистрируете и анализируете данные своего собственного мозга (при видении красного цветка). Состояние мозга, которое вы обнаруживаете у себя, не должно иметь никаких заметных отличий от всех других.

Обдумайте следующий любопытный поворот эксперимента: у вас нет никаких причин подозревать, что описание состояний мозга всех других людей не полно (особенно, если вы полностью верите в свою сверхнауку). И в то же время в отношении состояния своего собственного мозга вы знаете, что нечто упущено – а именно, ваша роль как наблюдателя – ваше осознание опыта, соответствующего состоянию вашего мозга, действительное сознательное восприятие красного. Ваш субъективный опыт не может быть частью объективного состояния мозга, поскольку в такой ситуации, кто бы наблюдал мозг? Точно так же был озадачен знаменитый канадский нейрохирург, обдумывая перспективу операции на собственном мозге: «Где субъект и где объект, если вы оперируете свой собственный мозг?»

Должно существовать различие между вашим мозгом, как наблюдателя, и мозгами тех, кого вы наблюдаете. Единственный альтернативный вывод заключается в том, что состояния мозга, которые вы конструируете даже с помощью сверхнауки, являются неполными. Поскольку состояние вашего мозга неполно, а состояния мозга других людей идентичны вашему, то они тоже должны быть неполными, ибо они не учитывают сознание.

Для материальных реалистов это парадокс, поскольку с их точки зрения ни одно из приведенных выше решений не желательно. Материальный реалист не захочет давать особые привилегии отдельному наблюдателю (что было бы равносильно солипсизму), однако также не будет склонен признавать, что любое достижимое описание состояния мозга с использованием материалистической науки было бы ipso factoнеполным.

Важный ключ дает вопрос нейрохирурга – где субъект и где объект, если вы оперируете свой собственный мозг? Суть проблемы передает выражение: «То, что мы ищем, – это то, что ищет». Сознание предполагает парадоксальное самоотнесение – принимаемую как нечто само собой разумеющееся способность относиться к самим себе отдельно от окружающего.

Эрвин Шрёдингер говорил: «Неосознанно, и не будучи строго последовательными в этом вопросе, мы исключаем Субъекта Познания из сферы природы, которую пытаемся понимать». Теория квантового измерения, которая осмеливается ссылаться на сознание в делах квантовых объектов, должна иметь дело с парадоксом самоотнесения. Давайте уточним это понятие.


Когда завершается измерение? (Резюме)

Из утверждения, что трансцендентное сознание вызывает коллапс волновой функции квантового объекта, можно сделать тонкое критическое замечание: сознанием, вызывающим коллапс волновой функции, могло бы быть сознание вечного, вездесущего Бога, как в следующем шутливом отрывке:

Однажды был человек, который сказал: «Богу

должно казаться чрезвычайно странным,

Если Он обнаруживает, что это дерево

продолжает быть,

когда поблизости никого нет».

Дорогой сэр, ваше удивление странно,

Я всегда поблизости,

и именно поэтому дерево будет продолжать быть,

поскольку его наблюдаю Я,

искренне ваш, Бог.

Однако вездесущий Бог, вызывающий коллапс волновой функции, не разрешает парадокс измерения, поскольку мы можем спросить: «В какой момент измерение закончено, если Бог всегда смотрит?» Ответ имеет решающее значение: измерение не полно без включения имманентного осознания. Самый привычный пример имманентного осознания – это, разумеется, осознание ума-мозга человеческого существа.

Когда измерение завершено? Когда трансцендентное сознание вызывает коллапс волновой функции посредством имманентного ума-мозга, смотрящего с осознанием. Эта формулировка согласуется с нашим обыденным наблюдением, что никогда не бывает опыта материального объекта без сопутствующего ментального объекта, т. е. мысли: «Я вижу этот объект», или, по крайней мере, без осознания.

Заметьте, что необходимо проводить различие между сознанием с осознанием и без осознания. Коллапс волновой функции происходит в первом случае, но не в последнем. В психологической литературе сознание без осознания называется бессознательным.

Конечно, в том представлении, что для завершения измерения требуется имманентное осознание, есть определенный причинный круг, поскольку без завершения измерения не может быть никакого имманентного осознания. Что раньше, осознание или измерение? Что является первопричиной? Не столкнулись ли мы с неразрешимым вопросом «курица или яйцо?».

Сходный оттенок имеет одна суфийская история. Однажды ночью мулла Насреддин шел по пустынной дороге, когда заметил приближающуюся группу всадников. Мулла занервничал и побежал. Всадники увидели, что он бежит, и поскакали за ним. Теперь мулла действительно испугался. Достигнув стен кладбища и гонимый страхом, он перескочил через стену, нашел пустую могилу и лег в нее. Всадники увидели, что он перескочил через стену, и последовали за ним на кладбище. После небольших поисков они нашли муллу, боязливо смотревшего на них снизу вверх.

«Что-нибудь случилось? – спросили муллу всадники. – Можем ли мы вам как-то помочь? Почему вы здесь?»

«Ну, это длинная история, – отвечал мулла. – Если говорить кратко, то я здесь из-за вас, ия могу видеть, что вы здесь из-за меня».

Если нам навязывают только один порядок реальности – физический порядок вещей, то вот подлинный парадокс, для которого не существует никакого решения в рамках материального реализма. Джон Уиллер назвал круговой характер квантового измерения «круговоротом значения». Это очень проницательное описание, но действительный вопрос в том, кто читает значение [29]29
  Именно значениеявляется ключом ко всем описываемым парадоксам. Для их разрешения достаточно признать, что мы живем не в мире вещей, а в мире значений, или, как сказал бы Коржибский, в мире ярлыков,которые мы навешиваем на сущности, обладающие независимой от нас реальностью.Все разговоры о проблеме измерения, квантовой нелокальности и квантовом коллапсе происходят от допущения, что этот коллапс происходит «где-то там», в «реальном» мире. В действительности – и на это намекал Бор – коллапс происходит у нас в уме,когда мы переходим от квантового описания(символического описания, не основывающегося на чувственных данных) к макроскопическому описанию(в конечном счете, основывающемуся на символическом представлении чувственных данных). – Прим. пер.


[Закрыть]
. Здесь нет никакого парадокса только для идеализма, поскольку сознание действует извне системы и завершает круговорот значения.

Это решение похоже на решение так называемой проблемы заключенного – элементарной задачи из теории игр. Вы планируете убежать из тюремной камеры через тоннель, вырытый с помощью вашего друга (рис. 27). Очевидно, что ваш побег будет намного легче, если вы и ваш друг будете копать с противоположных сторон одного и того же угла камеры; однако вы не можете общаться, и в камере шесть углов, из которых нужно выбирать. Шансы на побег не выглядят слишком хорошими, не так ли? Но подумайте немного о форме вашей камеры, и вы поймете, что, вероятнее всего, вы решите копать в углу номер 3. Почему? Потому что это единственный угол, который выглядит другим (вогнутым) снаружи. Поэтому вы ожидали бы, что ваш друг начнет копать именно здесь. Точно так же, только угол номер 3 вогнут изнутри, так что ваш друг, вероятно, будет ожидать, что вы тоже начнете копать в этом месте.

Рис. 27. Дилемма заключенного: какой угол выбрать?

Но в чем заключается мотивация вашего друга копать в этом углу? Это вы! Он представляет, что вы выбираете этот угол, по той же причине, по которой вы представляете, что он выбирает его. Заметьте, что в данном случае мы не можем устанавливать никакой причинной последовательности и, значит, никакой простой иерархии уровней. Вместо линейной причинной иерархии мы имеем круговую причинную иерархию. Никто не выбирал план. Вместо этого план был совместным творением, направляемым более высокой целью – побегом заключенного.

Дуглас Хофштедтер назвал ситуацию такого типа сложной иерархией – иерархией, которая настолько запутана, что невозможно выделить более высокие и более низкие уровни на иерархическом тотемном столбе. Хофштедтер полагает, что самоотнесение может происходить от подобной сложной иерархии. Я подозреваю, что в ситуации с мозгом-умом, в которой сознание вызывает коллапс волновой функции, но лишь тогда, когда присутствует осознание, наше имманентное самоотнесение происходит от сложной иерархии. Цепочка фон Нойманна заканчивается именно наблюдением самосоотносящейся системой [30]30
  Самоотнесение представляет собой просто более широкую формулировку общеизвестного психологического термина «самосознание», буквально означающую полагание «я» а качестве субъекта сознания (я сознаю, что я вижу нечто). Однако, в действительности, самоотнесение вовсе не требует сознания (в психологическом понимании). Согласно общей теории систем и теореме Гёделя, свойство саморефлексивности (или самоописания, самоотнесения и т.д.) спонтанно возникает в любой достаточно сложной системе (характеризующейся сложной, а не линейной иерархией). – Прим. пер.


[Закрыть]
.


Необратимость и стрела времени

Когда заканчивается измерение? Идеализм утверждает, что оно заканчивается только когда произошло самосоотносительное наблюдение. По контрасту с этим, некоторые физики доказывают, что измерение заканчивается, когда детектор обнаруживает квантовое событие. Чем же детектор отличается от прежнего измерительного прибора? Эти физики утверждают, что обнаружение детектором необратимо.

Что такое необратимость? В природе есть некоторые процессы, которые можно называть обратимыми, поскольку наблюдая эти процессы в обратном порядке, невозможно определить направление хода времени. Примером может служить движение маятника (по крайней мере, в течение короткого промежутка): если вы снимете его движение на кинопленку и затем пустите ее в обратную сторону, то не обнаружите никакого видимого различия. По контрасту с этим, киносъемку необратимого процесса нельзя прокручивать в обратную сторону, не раскрывая ее секрет. Например, предположим, что, снимая движение маятника на столе, вы также снимаете чашку, которая падает на пол и разбивается. Когда вы прокручиваете фильм в обратную сторону, осколки, взлетающие с пола и снова становящиеся целой чашкой, раскроют ваш секрет – что вы прокручиваете фильм в обратную сторону.

Чтобы понять разницу между обратимым измерительным прибором и детектором, рассмотрим следующий пример. Фотоны имеют характеристику, именуемую поляризацией, которая может принимать два значения: это некоторая ось, направленная (или поляризованная) только в одном из двух взаимно перпендикулярных направлений. Поляризованные солнцезащитные очки поляризуют обычный неполяризованный свет. Они пропускают только те фотоны, ось поляризации которых параллельна оси поляризации очков. Вы можете это проверить, поставив двое поляризованных очков перпендикулярно друг другу и посмотрев через них. Вы увидите только темноту. Почему? Потому что одно поляризованное стекло поляризует фотоны, скажем, вертикально, а другое пропускает только фотоны, поляризованные горизонтально. Иными словами, оба стекла вместе действуют как двойной фильтр, который задерживает весь свет.

Фотон, поляризованный под углом 45°, представляет собой когерентную суперпозицию наполовину вертикально и наполовину горизонтально поляризованных состояний. Если такой фотон проходит через поляризационную коробку с вертикально и горизонтально поляризованными каналами, то он случайным образом появляется либо в вертикально поляризованном, либо в горизонтально поляризованном канале. Об этом можно судить по показаниям детекторов, помещенных за каждым из каналов (рис. 28, а).

Теперь предположим, что в установке, изображенной на рис. 28, а, мы помешаем между поляризационной коробкой и детекторами поляризатор с углом поляризации 45° (рис. 28, б). Оказывается, что фотон восстанавливает свое первоначальное состояние поляризации под углом 45° – состояние когерентной суперпозиции; он возрождается. Таким образом, для измерения фотонов одного поляроида недостаточно – поскольку фотоны по-прежнему сохраняют свой потенциал становиться когерентной суперпозицией. Для измерения необходим детектор, в котором происходят необратимые процессы, например флуоресцентный экран или фотографическая пленка.

Рис. 28. Эксперименты с фотонами, поляризованными под углом 45°

Если думать с точки зрения обращения времени, то движение фотонов, поляризованных под углом 45°, которые проходят через поляризационную коробку, а потом опять через поляризатор с углом поляризации 45°, обратимо во времени. Однако если фотоны обнаруживаются неким детектором с необратимыми процессами, то, представляя себе этот процесс в обратном направлении, вы способны различать между движением вперед и назад.

Вспомните историю о сцене, снимавшейся для немого кино. Предполагалось, что героиня привязана к рельсам перед приближающимся поездом. По сюжету фильма героиня должна была быть спасена – поезд в последнее мгновение останавливался. Поскольку актриса (по понятным соображениям) не хотела рисковать своей жизнью, режиссер снимал всю сцену задом наперед – начиная с момента, когда актриса привязана к рельсам, а поезд неподвижно стоит рядом с ней. Затем поезд начинал двигаться задом. Но что, как вы думаете, видели зрители, когда фильм прокручивали в обратную сторону? В те дни поезда водили паровозы, работавшие на угле. В фильме, запущенном в обратную сторону, дым входил в паровозную трубу, вместо того чтобы выходить из нее, тем самым раскрывая секрет фильма. Образование дыма – необратимый процесс.

Означает ли это, что близко решение проблемы квантового измерения – причем без допущения участия сознания? Нам нужно только признать необратимость определенных измерительных приборов, именуемых детекторами, и тогда, возможно, мы можем вырваться из цепочки фон Нойманна. Как только детекторы сработали, когерентная суперпозиция больше не может быть восстановлена, и, следовательно, можно сказать, что она действительно закончилась.

Но так ли это на самом деле? Достаточно ли детектора для окончания цепочки фон Нойманна? Сам фон Нойманн отвечает – нет. Детектор должен становиться когерентной суперпозицией показаний стрелки, по той простой причине, что он тоже подчиняется квантовой механике. То же справедливо и для любого последующего измерительного прибора – обратимого или «необратимого». Цепочка фон Нойманна продолжается.

Суть в том, что квантовое уравнение Шредингера обратимо во времени: оно не меняется при перемене знака времени. Как показал математик Жюль Анри Пуанкаре, поведение любого макроскопического тела, подчиняющегося уравнению, обратимому во времени, не может быть подлинно необратимым. Поэтому складывается общепринятая точка зрения, что абсолютная необратимость невозможна; кажущаяся необратимость, которую мы наблюдаем в природе, обусловлена низкой вероятностью обращения пути эволюции макроскопического тела к исходной конфигурации, обладающей большей относительной упорядоченностью.

Учет необратимости дает важный урок. Хотя, в конечном счете, все объекты представляют собой квантовые объекты, видимая необратимость некоторых макрообъектов позволяет нам проводить приблизительное различие между классическим и квантовым. Мы можем говорить, что квантовый объект восстанавливается, тогда как время восстановления классического объекта чрезвычайно велико. Иными словами, можно говорить, что в то время как квантовые объекты не имеют заметного сохранения своей истории – не имеют памяти, классические объекты – например, детекторы – обладают памятью, в том смысле, что для стирания памяти требуется длительное время.

Возникает еще один важный вопрос: если в движении материи нет абсолютной необратимости, то как идеалистическая интерпретация справляется с представлением об однонаправленном течении времени, стреле времени? Согласно идеалистической интерпретации, в трансцендентной области время представляет собой улицу с двусторонним движением, демонстрируя признаки лишь приблизительной необратимости для движения все более и более сложных объектов. Когда сознание коллапсирует волновую функцию ума-мозга, оно проявляет наблюдаемое нами однонаправленное время. Необратимость и стрела времени входят в природу в процессе самого коллапса – квантового измерения, – как много лет назад подозревал физик Лeo Сциллард.

По-видимому, необратимость детекторов не решает проблему измерения. К подобному решению можно обращаться только если мы готовы признавать необратимость в форме неупорядоченности, еще более фундаментальной, чем квантовая механика. Существует предложение поступать именно так.

Предположим, что материя фундаментально беспорядочна и беспорядочное поведение субстрата частиц посредством случайных флуктуаций порождает приблизительно упорядоченное поведение, которое мы можем называть квантовым. Если бы это было так, то сама квантовая механика была бы эпифеноменом – как и все другое упорядоченное поведение. В поддержку такого рода теории нет никаких экспериментальных данных, хотя если бы ее можно было доказать, это было бы оригинальное решение проблемы измерения. Однако некоторые физики все же допускают, что существует скрытая основополагающая среда, вызывающая случайность; они проводят аналогию с беспорядочным движением молекул, вызывающим видимое в микроскоп беспорядочное движение частиц пыльцы в воде (именуемое броуновским движением). Однако допущение наличия основополагающей среды противоречит данным эксперимента Аспекта, если только не включает в себя нелокальность. А в рамках материального реализма трудно принимать нелокальное броуновское движение.


Девять жизней

Стивен Хоукинг говорит: «Всякий раз, когда я слышу о кошке Шредингера, мне хочется схватить пистолет». Аналогичное побуждение испытывает почти каждый физик. Все хотят убить кошку – то есть парадокс кошки, – но у нее, судя по всему, девять жизней.

В первой жизни кошку трактуют статистически, как часть ансамбля. Кошка оскорблена (поскольку эта интерпретация лишает ее своеобразия), но невредима.

Во второй жизни философы макрореализма рассматривали кошку как пример дихотомии квантового/классического. Кошка отказывается менять свою дихотомию жизни/смерти на еще одну дихотомию.

В третьей жизни кошке предъявляют необратимость и случайность, но кошка говорит – докажите это.

В четвертой жизни кошка встречается со скрытыми переменными (идеей, что ее состояние никогда не становится двойственным, но, в действительности, полностью определяется скрытыми параметрами), и то, что происходит, остается скрытым [31]31
  Решающим (хотя, возможно, не последним) ударом по идее скрытых переменных стала так называемая теорема Белла, согласно которой никакая теория локальных скрытых переменных не может давать всех предсказаний квантовой теории(то есть не может быть более полной, чем квантовая теория). – Прим. пер.


[Закрыть]
.

В пятой жизни представители нео-Копенгагенской школы пытаются избавиться от кошки, используя философию логического позитивизма. По большинству оценок кошка остается невредимой.

В шестой жизни кошка встречается с множественными мирами. Как знать, возможно, она погибла в какой-то вселенной, но насколько мы можем судить, не в этой.

В седьмой жизни кошка встречается с Бором и его принципом дополнительности, но ее спасает вопрос: что составляет измерение?

В восьмой жизни кошка лицом к лицу встречается с сознанием (дуалистического сорта), но ее спасает друг Вигнера.

Наконец, в девятой жизни кошка находит спасение в идеалистической интерпретации. На этом заканчивается история девяти жизней кошки Шрёдингера.


    Ваша оценка произведения:

Популярные книги за неделю