355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Алексей Москалев » Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия » Текст книги (страница 1)
Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия
  • Текст добавлен: 26 сентября 2016, 13:57

Текст книги "Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия"


Автор книги: Алексей Москалев



сообщить о нарушении

Текущая страница: 1 (всего у книги 12 страниц) [доступный отрывок для чтения: 5 страниц]

Алексей Москалев
Как победить свой возраст? 8 уникальных способов, которые помогут достичь долголетия

Фото на обложке и рисунки в книге из личного архива автора

© Москалев А., 2016

© Оформление. ООО «Издательство «Э», 2016

Мнение эксперта

Позвольте представить вам исключительно своевременную книгу. У меня нет сомнений, что эта книга понадобится людям, причем здесь и сейчас.

Книга о старении и биомаркерах этого процесса, происходящего с каждым из нас, написана Алексеем Москалевым – известным российским биогеронтологом. К счастью для всех нас, Алексей обладает редким, но важным для настоящего ученого талантом, я бы даже сказала – даром простого и понятного изложения чрезвычайно сложных концепций современной науки.

Казалось бы, о старении организма знает каждый. Повзрослев, мы начинаем стареть, каждый день понемногу, настолько медленно, что не замечаем этого, а заметив, как правило, огорчаемся.

И вот наконец настало время сообщить друг другу о хорошей новости – ученые уверены, что у разных людей процесс старения происходит с разной скоростью. А это, в свою очередь, означает, что этот неотвратимый процесс может быть ускорен или замедлен, точно так же, как может быть ускорен или замедлен автомобиль.

Человек, желающий замедлить свое старение, должен тщательно следить за тем, как тикают его биологические часы – точно так же, как и водитель машины, держащийся в рамках ограничения скорости и потому наблюдающий за стрелкой спидометра.

Взгляд на приборную панель своего организма – не праздное любопытство, а насущная необходимость. Книга Алексея Москалева описывает доступные каждому научные инструменты, помогающие отслеживать появление возрастных изменений, – биомаркерные тесты. Знание – сила, а знание скорости движения – необходимое условие, чтобы не получить от жизни неожиданный «штраф». Живите долго и счастливо, старейте медленно!

д. б.н. Анча Баранова
Директор по науке Биомедицинского холдинга «Атлас»,
главный научный сотрудник лаборатории генетической эпидемиологии Медико-Генетического научного центра РАМН

Введение

В развитых странах мира средняя продолжительность жизни год от года увеличивается примерно на три месяца. Исследование глобальной заболеваемости, опубликованное в журнале «Ланцет», показало, что в интервале между 1990 и 2013 годами для 188 разных стран ожидаемая общая продолжительность жизни при рождении для обоих полов увеличилась с 65,3 до 71,5 года, а ожидаемая продолжительность здоровой жизни выросла с 56,9 до 62,3 года. Таким образом, в общемировом масштабе при этом здоровье людей улучшается, увеличивается средний возраст населения планеты. Одновременно старение населения приводит к увеличению доли людей, страдающих опухолевыми, сердечно-сосудистыми и метаболическими расстройствами, нейродегенеративными заболеваниями. Нагрузка на системы здравоохранения остается высокой и будет все возрастать. Важно понимать, что охрана здоровья нуждается в постоянной поддержке, и основным способом такой поддержки, может стать профилактика и ранняя диагностика проблем со здоровьем и возрастзависимых изменений. Какие биомаркеры и клинические тесты помогут выявить возрастзависимые патологии на самых ранних стадиях? Существуют ли способы профилактики возрастных изменений и как их применять? Как определить свой биологический возраст? Ожидает ли нас здоровое долголетие или, напротив, ускоренное старение?

В последний год ведущие производители электроники Apple, Samsung, Intel выпустили на рынок компактные носимые устройства наподобие часов, способные определять интенсивность физической нагрузки, частоту сердечных сокращений и качество сна не инвазивным[1]1
  Неинвазивный – не связанный с проникновением через естественные барьеры тела (под кожу, слизистые оболочки и т.п.).


[Закрыть]
способом. Наконец, появились домашние мини-лаборатории и устройства, с помощью которых каждый может оценить состояние своего метаболизма[2]2
  Метаболизм – обмен веществ.


[Закрыть]
и выявить его отклонения на самых ранних стадиях. Как подобные устройства помогут нам жить дольше и меньше болеть?

Все эти и многие другие вопросы персональной медицины и активного долголетия являются предметом рассмотрения в данной книге.

Лекарства и нелекарственные методы, способствующие излечению одних людей, могут навредить другим. Именно поэтому персональный подбор лечения возрастзависимых изменений – будущее медицины. В странах с инновационным укладом экономики наблюдается подъем персональной медицины и персональной науки.

Книга состоит из нескольких глав. Первая глава посвящена обзору современных представлений о биомаркерах старения человека. Во второй главе описаны подходы к оценке биологического возраста человека, опирающиеся на данные функциональной диагностики здоровья и биохимические анализы. В третьей главе рассмотрены особенности людей-долгожителей, позволяющие уже сейчас понять, имеете ли вы задатки долгожителя. В четвертой главе представлен краткий обзор носимых устройств, помогающих отслеживать изменения в нашем здоровье. В пятой главе рассказывается про компактные и доступные приборы, позволяющие в домашних условиях оценить некоторые параметры своей жизнедеятельности и здоровья. Шестая глава целиком посвящена основным группам возрастзависимых заболеваний, их симптоматике и методам профилактики.

В сборе материала для книги неоценимую помощь оказали студенты РНИМУ им. Н.И. Пирогова Василий Цветков и Денис Новиков, сотрудники клиники «Атлас» врач-эндокринолог Лариса Бавыкина, врач-генетик Дмитрий Никогосов, врач-невролог Ольга Курушина (Волгоградский государственный медицинский университет), врач-терапевт Ольга Бубенцова (медицинский центр «Гиппократ», Архангельск). Подготовка рукописи была бы невозможна без организационной поддержки Алексея Петикова, Станислава Еникеева и Лады Фоменко. Благодарю Алексея Алексеева (сотрудника МГУ им. М.В. Ломоносова, физический факультет), Лейлу Кузнецову (аспирантку МГУ им. М.В. Ломоносова), Александра Фединцева (сотрудника НИИ антимикробной химиотерапии) и Елену Шарфину за редакторскую правку текста рукописи и ценные замечания. В работе над книгой использованы материалы сотен научных статей и десятков книг, докладов на научных конференциях, а также материалы информационно-образовательных порталов для врачей, в частности Univadis. RU и MyFamilyDoctor.RU.

Глава 1. Биомаркеры старения

Старение – это процесс возрастзависимого снижения функциональных возможностей организма, способности противостоять изменениям окружающей среды и стрессам. При этом вовсе не обязательно стареющий организм перестает отвечать на стресс[3]3
  Стресс – состояние повышенного напряжения организма как защитная реакция на различные неблагоприятные факторы (голод, холод, физические или психические травмы и т.п.).


[Закрыть]
. Напротив, его реакция может быть чрезмерной, что изнашивает организм. Например, избыточное выделение гормонов стресса (адреналина, кортизола) или хроническое воспаление, которые являются также характерными признаками старения.

При старении снижается способность адаптироваться к различным изменениям и поддерживать постоянство физиологических параметров. Это происходит потому, что организм в каждый момент времени вынужден противостоять негативным изменениям во внешней и внутренней среде. Например, недостатку или избытку тех или иных питательных веществ, воздействию высоких и низких температур, ионизирующих излучений[4]4
  Ионизирующие излучения – потоки фотонов, элементарных частиц или осколков деления атомов, способные ионизировать вещество.


[Закрыть]
, свободных радикалов[5]5
  Свободные радикалы – неустойчивые молекулы, которые вступают в реакцию с другими молекулами и повреждают их.


[Закрыть]
, гипоксии[6]6
  Гипоксия – пониженное содержание кислорода в организме.


[Закрыть]
, инфекций, воспаления, неферментативной реакции сахаров и белков[7]7
  Реакция сахаров с белками при высоких температурах (гликирование) дает характерную корочку при поджаривании продуктов питания, такие же деструктивные процессы, но более медленные, происходят в стенках сосудов и в тканях тела.


[Закрыть]
. Постоянная адаптация к стрессовым условиям имеет свою цену – перенапряжение и износ адаптивных функций. С возрастом такой износ способствует все большим рискам заболеваемости и смертности. Эти процессы затрагивают все органы и ткани нашего тела и вызывают целый букет заболеваний (сахарный диабет 2-го типа[8]8
  Сахарный диабет 2-го типа – метаболическое заболевание, характеризующееся повышенным уровнем сахара в крови.


[Закрыть]
, атеросклероз[9]9
  Атеросклероз – заболевание артерий, при котором в стенке сосуда происходит отложение холестерина.


[Закрыть]
, нейродегенерация[10]10
  Нейродегенерация – прогрессирующая гибель нервных клеток, ведущая к слабоумию и двигательным нарушениям.


[Закрыть]
), которые значительно снижают качество и продолжительность жизни.

Темпы старения у разных людей одного возраста могут существенно отличаться. Отличаются они и для разных систем и органов в пределах одного организма. Старение одной системы вызывает изменения во многих других. Например, старение сердечно-сосудистой системы может способствовать нейродегенерации и когнитивным[11]11
  Когнитивные нарушения – снижение памяти, умственной работоспособности и др.


[Закрыть]
нарушениям, болезням печени и почек. Метаболический синдром[12]12
  Метаболический синдром – увеличение массы жира вокруг внутренних органов, снижение чувствительности периферических тканей к инсулину и повышенная выработка инсулина, ведущие к развитию ожирения, сахарного диабета 2-го типа и артериальной гипертонии.


[Закрыть]
влияет на старение иммунной системы. Таким образом, помимо возраста по паспорту (календарного, хронологического) у каждого человека есть биологический возраст, определяемый индивидуальной скоростью его старения. Темпы старения зависят от генетических особенностей человека и в значительной степени от взаимодействия факторов внешней среды с системами поддержания гомеостаза (постоянства) внутренней среды организма.

Когда говорят о скорости старения, в классической биогеронтологии[13]13
  Биогеронтология – наука о процессах старения и путях борьбы с ним.


[Закрыть]
, как правило, имеют в виду изменение средней и максимальной продолжительности жизни у модельных животных. Однако продолжительность жизни человека так велика, что исследовать показатели его долголетия под влиянием образа жизни, диеты, различных лекарств, генных и клеточных терапий долго и затратно. Поэтому возникла идея выявить взаимосвязь с возрастом различных физиологических[14]14
  Механические, физические и биохимические функции живых организмов.


[Закрыть]
и метаболических изменений, мониторинг которых помог бы в оценке эффективности антивозрастной терапии.

Принятая в современной медицине физиологическая норма для многих показателей изменяется при старении. Это создает предпосылки для того, чтобы наблюдать и измерять возрастные отклонения. В то же время нарастает уровень стохастичности (случайности) отклонений, что обусловливает сложности в интерпретации данных о скорости старения.

Биомаркеры старения – это измеряемые параметры, которые воспроизводимо качественно и количественно изменяются при старении человека.

Диагностические биомаркеры старения имеют большой потенциал для ранней диагностики и прогноза развития хронических возрастзависимых заболеваний, а также наблюдения за эффективностью их профилактики и лечения.

Многие возрастзависимые патологии развиваются длительное время в скрытой форме. На ранних стадиях развития болезни ее клинические проявления оказываются неспецифическими, то есть общими с другими возрастными изменениями. При этом чем раньше выявляются подобные отклонения от нормы, связанные с риском конкретного заболевания, тем эффективнее профилактика, тем вероятнее успех в предотвращении опасных для жизни состояний.

Р. Батлер, директор и основатель Национального института старения США, в 2004 году выделил несколько критериев, которым должны отвечать биомаркеры старения. Во-первых, они должны меняться с возрастом. Во-вторых, позволять предвидеть ранние стадии конкретного возрастзависимого заболевания. И, наконец, быть доступными для большинства пациентов по стоимости и минимально инвазивными – не требовать серьезного вмешательства в организм или болезненной процедуры. На их основе мы можем прогнозировать ускоренное или замедленное старение индивида, отслеживать эффективность процедур, направленных на профилактику старения, таких как изменение диеты, образа жизни, увеличение физической активности, действенность геропротекторных[15]15
  Геропротекторные препараты – общее название для группы веществ, в отношении которых обнаружена способность увеличивать продолжительность жизни животных и замедлять старение.


[Закрыть]
препаратов.

Биомаркеры старения представляют собой общий качественный и количественный индикатор функционального состояния человека, и в этом их ключевое отличие от факторов риска конкретных возрастзависимых патологий (сахарного диабета 2-го типа, сердечно-сосудистых заболеваний, болезни Альцгеймера[16]16
  Болезнь Альцгеймера – дегенеративное заболевание центральной нервной системы, характеризующееся постепенной потерей памяти и когнитивных способностей.


[Закрыть]
или Паркинсона[17]17
  Болезнь Паркинсона – хроническое заболевание нервной системы у пожилых людей, при котором наблюдается замедленность движений, скованность и дрожание мышц.


[Закрыть]
), которым будет посвящена отдельная глава нашей книги.

Как отмечает профессор университета Джорджа Мейсона Анча Баранова, главное в биомаркере – максимальная предсказательная сила. Поэтому биомаркер вовсе не обязан иметь известную функциональную связь с процессом, который по нему оценивают. Например, до сих пор не ясна функция используемых в клинике онкомаркеров CEA[18]18
  Канцеро-эмбриональный антиген – маркер на колоректальный рак, рак молочной железы, легких, желудка, поджелудочной железы, мочевого пузыря, почек, некоторых опухолей щитовидной железы, шейки матки, яичников, печени.


[Закрыть]
и PSA[19]19
  Простатический специфический антиген – маркер рака предстательной железы.


[Закрыть]
или биологическое значение маркера сахарного диабета HbA1c[20]20
  Гликированный гемоглобин – часть всего гемоглобина, циркулирующего в крови, которая оказывается химически связана с глюкозой.


[Закрыть]
. Однако это нисколько не уменьшает их значение в выявлении серьезных заболеваний.

При поиске потенциальных биомаркеров выяснилось, что достаточно трудно выбрать какой-либо один показатель в качестве биомаркера старения, который удовлетворял бы всем этим критериям. Каждый биомаркер имеет как свои преимущества, так и ограничения. Поэтому оценка биомаркеров скорости старения должна быть комплексной.

В настоящее время развиваются подходы, в которых предлагается использовать совокупность нескольких десятков биомаркеров.

Приведем пример, поясняющий необходимость комплексного подхода, хотя он и из другой области. Если нам предложат оценить, что изображено на компьютерной фотографии, но вместо целой картинки дадут посмотреть лишь кусочек в пару десятков пикселей[21]21
  Пиксель – наименьший элемент двумерного цифрового изображения в растровой графике.


[Закрыть]
, сможем ли мы это сделать? Вероятно, нет. Так и выявление наследственной предрасположенности к различным заболеваниям требует анализа сотен тысяч однонуклеотидных полиморфизмов ДНК[22]22
  Отличия последовательности ДНК размером в один нуклеотид (одну букву) в геноме.


[Закрыть]
, а степень старения организма должна оцениваться по отклонениям от нормы многих тысяч показателей крови, мочи, слюны, кожи, физиологических параметров тела, когнитивных функций. Исследования подтвердили, что многомаркерный алгоритм дает более достоверную картину изменений, чем основанный на каком-либо одном маркере.

В настоящий момент можно выделить четыре основных подхода к разработке биомаркеров старения человека: клинический, экспериментальный, «омиксный» и интегративный.

Советский геронтолог В.М. Дильман в 1987 году опубликовал книгу «Четыре модели медицины», в которой обосновал использование достаточно простых методов оценки преждевременного старения организма, применимых в повседневной клинической практике. Повышенная масса тела или, точнее, содержание жира в теле, которое косвенно может быть рассчитано по показателю роста, массы тела и данных измерения толщины кожно-жировых складок, позволяет судить о склонности к целому ряду серьезных заболеваний (сердечно-сосудистым, сахарному диабету 2-го типа, инсульту[23]23
  Инсульт – острое нарушение мозгового кровообращения.


[Закрыть]
, остеоартриту[24]24
  Остеоартрит – хроническое заболевание суставов.


[Закрыть]
, гипертонической болезни[25]25
  Гипертония – заболевание, характеризующееся повышением артериального давления.


[Закрыть]
). Общий уровень в крови липопротеидов[26]26
  Липопротеиды – состоящий из белка и липида.


[Закрыть]
и триглицеридов[27]27
  Триглицериды – природные органические соединения, состоящие из глицерина и жирных кислот.


[Закрыть]
– маркер предрасположенности к атеросклерозу, коронарной болезни сердца[28]28
  Коронарная болезнь – заболевание сосудов, питающих сердце.


[Закрыть]
, инфаркту миокарда[29]29
  Инфаркт миокарда – кислородное голодание и гибель клеток сердечной мышцы.


[Закрыть]
, панкреатиту[30]30
  Панкреатит – воспаление поджелудочной железы.


[Закрыть]
. Отклонение от нормы уровня холестерина[31]31
  Холестерин – одна из разновидностей липидов, жирный спирт.


[Закрыть]
и холестерина в составе липопротеидов низкой плотности[32]32
  «Плохой» холестерин крови, предрасполагающий к развитию атеросклероза.


[Закрыть]
– предрасположенность к атеросклерозу, коронарной болезни сердца. Превышение над нормой количества глюкозы в плазме крови натощак (≥ 6,1) и через 2 часа после приема внутрь 75 г глюкозы[33]33
  Глюкоза – виноградный сахар, моносахарид, играющий ключевую роль в энергетическом метаболизме клеток.


[Закрыть]
(≥ 11,1) говорит о сахарном диабете 2-го типа. Величина артериального давления сигнализирует о вероятности сердечно-сосудистых заболеваний, риске инсульта, коронарной болезни сердца.

Исследования, выполненные в ведущих лабораториях мира в последние годы, позволили выявить более тонкие изменения, по которым можно оценить скорость старения организма. Поскольку не все они успели найти клиническое применение, отнесем их к группе экспериментальных (рис. 1).


Рис. 1. Группы экспериментальных биомаркеров старения.

Изменения на клеточном уровне

Прежде чем раскрыть сложную и многогранную тему молекулярных и клеточных биомаркеров старения, хотелось бы напомнить читателю, как устроена живая клетка, и ввести ключевые понятия, которые встретятся далее в книге.

Кирпичиком жизни на Земле является клетка. Именно она несет в себе все отличительные свойства живого – способность самовоспроизведения, обмена веществ, хранения и передачи наследственной информации. Живая клетка больше всего похожа на крупный химический завод, в котором параллельно осуществляется множество химических процессов. Чтобы один процесс не мешал другому (а некоторые из них могут быть взаимоисключающими), пространство клетки разделено на изолированные отсеки – органеллы[34]34
  Органеллы – внутриклеточные структуры, выполняющие различные функции для поддержания деятельности клетки.


[Закрыть]
. Например, функцию клеточного дыхания[35]35
  Совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды с запасанием выделяющейся энергии в молекуле АТФ.


[Закрыть]
(выработки энергии для жизненных процессов) выполняют органеллы, называемые митохондриями, за хранение инструкций для создания белков отвечает ядро; адресную доставку, созревание и сортировку наномашин внутри клетки, поглощение и перемещение веществ в клетку и из клетки совместно выполняют эндоплазматическая сеть[36]36
  Органелла клетки, представляющая собой разветвленную систему из окруженных мембраной уплощенных полостей, пузырьков и канальцев и служащая для транспорта белков, синтеза и транспорта липидов и стероидов, формирования ядерной оболочки, запасания внутриклеточного кальция.


[Закрыть]
и аппарат Гольджи[37]37
  Эта органелла представляет собой образованную мембраной систему плоских цистерн, вакуолей и мелких пузырьков. В аппарат Гольджи поступают синтезированные на мембранах эндоплазматической сети белки и липиды, к ним могут присоединяться полисахариды. Дозревшие таким образом макромолекулы используются самой клеткой или выводятся из нее (так, например, выделяется слизь и пищеварительные ферменты). Аппарат Гольджи образует лизосомы, необходимые для внутриклеточного переваривания устаревших частей клетки, вирусов и бактерий.


[Закрыть]
; функцию утилизации устаревших конструкций берут на себя лизосомы. Барьерную функцию между отсеками, а также между клеткой и внешней средой выполняют мембраны, тонкие пленки, в основном состоящие из жиров, холестерина и некоторого количества специализированных белков. Что же производит этот необычный «завод»? Он делает все необходимые для жизни самой клетки детали и осуществляет их сборку.

Важнейшим продуктом жизнедеятельности клетки являются макромолекулы – органические полимеры, составленные из повторяющихся простых блоков. Например, белки (или протеины) состоят из чередующихся между собой 20 различных аминокислот. В зависимости от длины и состава последовательности аминокислот каждый белок обладает своей особой функцией. Общее количество функций белков огромно. Например, белок гемоглобин переносит кислород, белки коллаген и эластин придают упругость стенке сосуда, кератин – защищает покровы тела от механического повреждения. Есть белки, которые служат переносчиками сигналов между клетками (пептидные гормоны, цитокины) или играют роль приемников таких сигналов (рецепторы). Однако наиболее разнообразны белки-ферменты, которые ускоряют каждый свой аспект метаболизма (образование или расщепление того или иного сахара, аминокислоты, макромолекулы). В отсутствие ферментов биохимические процессы в клетке шли бы в тысячи раз медленнее, если вообще были бы возможны. Иногда ферменты собираются в большие нанофабрики, такие как рибосомы (заведующие сборкой новых белков, согласно инструкциям, поступающим из клеточного ядра), протеасомы (фабрики по утилизации просроченных или избыточных белков), сплайсосомы (наномашины для доработки инструкций – матричных РНК).

На вторых ролях находятся различные РНК (рибонуклеиновые кислоты). Они служат инструкциями для сборки белков (матричные РНК, мРНК), помогают процессу сборки (рибосомальные и транспортные РНК), регулируют образование новых инструкций (микроРНК). С тех пор как были открыты ферментативные возможности некоторых РНК, возникло предположение, что первые «клетки» вообще могли обходиться без белков. РНК кодировала и воспроизводила сама себя. Даже энергетическая валюта клетки – АТФ[38]38
  АТФ (аденозин трифосфат: аденин, связанный с тремя фосфатными группами) – молекула, которая служит источником энергии для всех процессов в организме, в том числе для движения.


[Закрыть]
– является маленьким кусочком РНК.

Как уже упоминалось, необходимые для деятельности клетки инструкции хранятся в ядре. Они записаны в энциклопедии жизни – линейной последовательности молекулы ДНК (дезоксирибонуклеиновая кислота), разбитой на тома – хромосомы. Вся ядерная ДНК человека помещается в 46 хромосомах. Честь иметь свою собственную энциклопедию помимо ядра удостоились митохондрии, и то потому, что они когда-то давно в эволюции произошли от симбиотических[39]39
  Симбиоз – совместное существование организмов разных видов, приносящее им взаимную пользу.


[Закрыть]
альфа-протеобактерий. ДНК хранится в виде знаменитой двойной спирали, или «скрученной лестницы». Вся необходимая клетке информация закодирована в перекладинах этой лестницы, каждая из которых состоит из двух молекул нуклеотидов, азотистых оснований, расположенных строго друг напротив друга. Эти основания – аденин, гуанин, цитозин и тимин – обычно обозначают буквами А, Г, Ц и Т. Основания комплементарны друг другу. Это означает, что А может образовывать пару только с Т, а Г с Ц. Считывая информацию одной цепи ДНК методом секвенирования, вы получите последовательность оснований. Представьте себе эту последовательность как сообщение, написанное с помощью алфавита, в котором всего четыре буквы. Именно это сообщение и определяет поток химических реакций в клетке и, следовательно, особенности организма.

Длина молекулы ДНК, содержащейся в ядре, достигает 2 метров. В то время как само ядро имеет микроскопические размеры. Поэтому ДНК внутри ядра туго упакована при помощи особых белков – гистонов, которые выполняют также регуляторную и защитную роль.

Гены, открытые монахом Грегором Менделем в середине XIX века, на самом деле не что иное, как последовательности пар оснований на «лестнице жизни» – молекуле ДНК, которые кодируют матричные РНК, несущие в себе инструкции по сборке того или иного белка. А геном человека содержит приблизительно 20–25 тысяч генов, кодирующих белок. У высокоорганизованных организмов, в том числе и человека, гены настолько сложно устроены, что в среднем могут кодировать 10 разных белков, что на порядок увеличивает их разнообразие.

Информация, хранящаяся в ДНК, должна быть транслирована с помощью клеточного технического обеспечения в химические процессы в «теле» клетки. Однако ДНК слишком большая и не может покинуть пределы ядра, и тут в дело вступают очень на нее похожие, но гораздо более короткие молекулы – молекулы матричной рибонуклеиновой кислоты (мРНК). Мысленно разрежьте двуспиральную «лестницу» ДНК вдоль на две половины, разъединяя «ступеньки», и замените все молекулы тимина (Т) на химически сходные с ними молекулы урацила (У), сохранив по принципу комплементарности А, Г и Ц, – и вы получите молекулу РНК. Когда необходимо транслировать какой-либо ген в последовательность белка, специальные наномашины (геликазы) «расплетают» участок ДНК, содержащий этот ген. Теперь молекулы РНК-полимераз могут присоединиться к свободным основаниям молекулы ДНК и переписать ген на язык мРНК. В этом случае, так же как и в двойной спирали ДНК, могут образоваться лишь определенные связи. Например, с цитозином (Ц) молекулы ДНК может связаться только гуанин (Г) молекулы РНК, а с аденином (А) – только урацил (У). После того как все основания РНК выстроятся в цепочку вдоль ДНК, из них формируется зрелая мРНК. Сообщение, записанное основаниями РНК, так же относится к исходной молекуле ДНК, как негатив к позитиву. В результате этого процесса информация, содержащаяся в гене ДНК, переписывается на РНК. Данный процесс называется транскрипцией[40]40
  Транскрипция – перенос генетической информации с ДНК на РНК.


[Закрыть]
.

Этот класс молекул РНК называется матричными, или информационными РНК (мРНК, или иРНК). Поскольку мРНК намного короче, чем ДНК в хромосоме, они могут проникать через ядерные поры в цитоплазму клетки. Таким образом, мРНК переносят информацию из ядра («руководящего центра») в «тело» клетки.

В «теле» клетки (цитоплазме[41]41
  Цитоплазма – внутренняя среда клетки, кроме ядра, ограниченная плазматической мембраной.


[Закрыть]
) находятся молекулы РНК двух других классов, и они оба играют ключевую роль в сборке молекулы белка, кодируемого геном. Одни из них – рибосомные РНК, или рРНК. Они входят в состав клеточной структуры под названием рибосома[42]42
  Рибосома – немембранная органелла живой клетки, служащая для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой мРНК.


[Закрыть]
. Рибосому можно сравнить с конвейером, на котором происходит сборка белка из аминокислот. Другие находятся в «теле» клетки и называются транспортные РНК, или тРНК. Эти молекулы устроены так: с одной стороны находятся три азотистых основания, а с другой – участок для присоединения аминокислоты. Эти три основания на молекуле тРНК могут связываться с парными им основаниями молекулы мРНК. Каждое из возможных 64 сочетаний трех букв триплетного кода (генетического кода[43]43
  Генетический код – свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.


[Закрыть]
) кодирует положение в белке одной из 20 аминокислот, либо «знаки препинания», означающие сигнал начала и окончания биосинтеза белка. В процессе сборки белка на рибосоме в одном «окошке» происходит присоединение определенной молекулы тРНК, несущей на себе новую аминокислоту, к молекуле мРНК. В другом «окошке» сидит тРНК с уже синтезированным обрывком белка. На него перекидывается аминокислота из первого «окошка», и цепь белка удлиняется. В конце концов выстроится полная цепочка аминокислот, расположенных в определенном порядке, и почти готовый белок отсоединится от рибосомы. Последовательность аминокислот – это первичная структура белка, которая определена сообщением, записанным на гене молекулы ДНК. Затем этот белок сворачивается, принимая окончательную форму, и может выполнять свою функцию. Иногда для полного созревания к нему нацепляются цепочки сахаров или липиды.

Интересно отметить, что, хотя на ДНК различных живых организмов, будь то вирус, бактерия, ель, мышь или человек, размещаются разные «сообщения» – гены, все они записаны с использованием одного и того же генетического кода – у всех организмов каждому триплету (последовательности из трех «букв») на ДНК соответствует одна и та же аминокислота в образовавшемся белке. По этой причине мы можем методами генной инженерии заставить работать в клетке кишечной палочки или дрожжей любой ген, скажем, человека или пшеницы.

Очень важное понятие, которое часто встретится вам на страницах книги, – это транскриптом. Транскриптом – это просто совокупность всех матричных РНК данной клетки или организма, проще говоря – полное собрание всех используемых в данный момент в работе клетки инструкций. По изменению транскриптома можно судить о том, какие гены и насколько активны, то есть преобразуются в функциональный продукт – белок.

Как уже говорилось, дезоксирибонуклеиновая кислота (ДНК) – носитель наследственной информации о функциях всех клеток нашего тела. Она составляет основу кольцевых хромосом[44]44
  Кольцевые хромосомы – замкнутые в кольцо последовательности ДНК, в которых расположены гены. В клетке человека кольцевые хромосомы во множестве копий находятся в митохондриях.


[Закрыть]
митохондрий[45]45
  Митохондрии – структуры внутри клетки, отвечающие за выработку энергии (образование большей части АТФ, НАДН), окисление глюкозы, жиров. Источник свободных радикалов. Имеют собственные кольцевые ДНК, рибосомы и транспортные РНК.


[Закрыть]
и 46 линейных хромосом ядра[46]46
  Структуры внутри клетки, в которых хранится и функционирует основной генетический материал.


[Закрыть]
человеческой соматической клетки. В отличие от других биомолекул, каждый тип хромосом присутствует лишь в двух копиях на клеточное ядро, а в половых клетках (сперматозоидах или яйцеклетках) каждая хромосома находится вообще лишь в одной копии. Поэтому даже небольшая поломка ДНК в месте расположения жизненно важного гена[47]47
  Ген – структурная и функциональная единица наследственности живых организмов.


[Закрыть]
может стать фатальной. По причине множественного копирования при клеточном делении или под воздействием мутагенных факторов (ионизирующего излучения, свободных радикалов, токсичных веществ) с возрастом происходит накопление повреждений и утрата качества ДНК (рис. 2).


Рис. 2. Виды повреждений ДНК и их репарации.

Повреждения ДНК, как правило, быстро устраняются ферментами репарации, которые исправляют разрывы нити ДНК, удаляют ошибки и заполняют возникшие пробелы в последовательности нуклеотидов[48]48
  Нуклеотиды – буквы генетического кода.


[Закрыть]
, используя в качестве матрицы соответствующий участок второй цепочки молекулы ДНК. Однако с возрастом способность к репарации ухудшается. Угасание активности ферментов репарации ДНК является неплохим маркером старения клеток. На это есть несколько причин. Репарация – энергозатратный процесс, она требует большого количества молекулы АТФ («энергетической валюты» клетки), а ее выработка с возрастом снижается из-за дисфункции митохондрий, «энергетических станций» клетки. Упадок биосинтетических процессов приводит к нехватке дезоксинуклеозидов – букв генетического кода, а репарация возможна только при их наличии. Наконец, эпигенетические изменения[49]49
  Модификации ДНК или связанных с ней белков, которые не приводят к изменению генетического кода, однако способны включать или выключать те или иные гены.


[Закрыть]
подавляют активность генов самих репарационных белков. Неустранимые повреждения в ДНК служат причиной мутаций – однобуквенных замен в генетических последовательностях либо удвоений (дупликаций) и выпадений целых участков (делеций) или поломок хромосом (аберраций). Нередко случаются и перемещения генетического материала с одного места на другое – транслокации и транспозиции, вызывающие генетическую нестабильность[50]50
  Множественные изменения локализации, структуры или числа копий генов (или их частей) в геноме клетки или особи.


[Закрыть]
. Мутации и аберрации являются одной из причин возрастного нарушения функции клетки, гибели клеток или их опухолевого перерождения.

Уровень накопления клетками повреждений, мутаций и хромосомных аберраций служит эффективным маркером скорости старения. Существуют различные лабораторные методы, позволяющие оценить состояние клеток организма (рис. 3).


Рис. 3. Методы оценки количества повреждений ДНК.

Микроядра – патологические структуры внутри клеток, как правило, возникающие вокруг отставших во время деления обломков хромосом. Они выявляются при специальном окрашивании клеток и их анализе под световым микроскопом. С возрастом количество клеток, имеющих микроядра, становится больше, например, среди лейкоцитов[51]51
  Лейкоциты – белые кровяные клетки, участвующие в реализации иммунитета.


[Закрыть]
крови или клеток кожи. Чем быстрее стареет организм, тем в более раннем возрасте наблюдается увеличение количества таких клеток.

Исследование с помощью люминесцентного микроскопа[52]52
  Люминесцентный микроскоп – прибор, с помощью которого можно наблюдать свечение окрашенного специальным флуоресцентным красителем объекта при освещении невидимым ультрафиолетовым или синим светом.


[Закрыть]
светящихся (флуоресцентных) ДНК-зондов[53]53
  Меченый фрагмент ДНК, использующийся для гибридизации со специфическим участком молекулы ДНК.


[Закрыть]
, имеющих сродство к тем или иным участкам хромосом человека, позволяет выявлять тонкие перестройки (транслокации, делеции, дупликации) в каждой из 46 хромосом человеческой клетки. Этот метод получил название FISH-окрашивания хромосом.

Еще один маркер старения – двухцепочечные разрывы ДНК, как правило, вызывающие фатальные для клетки повреждения либо ведущие к генетической нестабильности и опухолевому перерождению. Однако именно их с возрастом становится все больше и больше. Специальное гистохимическое окрашивание (так называемые фокусы гамма-H2AX и 53BP1) позволяет подсчитать под люминесцентным микроскопом число таких разрывов на ядро и тем самым оценить скорость старения изучаемой ткани (в молодых клетках обычно нет таких разрывов, хотя они могут появиться при действии на организм ионизирующей радиации).

При наличии повреждений молекула ДНК становится более подвижной в электрическом поле. Круглое ядро клетки с поврежденной ДНК при электрофорезе[54]54
  Электрофорез – перемещение заряженных молекул или частиц в электрическом поле.


[Закрыть]
становится вытянутым, а мелкие фракции разорванной ДНК формируют при этом «хвост кометы». Чем более выражен хвост, тем более повреждена клеточная ДНК. Данный метод имеет различные модификации, позволяющие полуколичественно (не поштучно, но с помощью конкретного числового показателя) учитывать разные типы повреждений – одно– и двухцепочечные разрывы ДНК, различные окисленные основания ДНК. Наши исследования, проведенные на клетках периферической крови, бравшейся прижизненно у мышей разного возраста, доказали возможность применения данного подхода для оценки интенсивности старения организма. Таким образом, устойчивость к повреждению, как и стрессоустойчивость в целом, в результате старения падает.

Выделенные из крови человека лимфоциты можно культивировать в лаборатории. Показатели гибели клеток, индуцированной повреждением ДНК или иммунной активацией, являются отличными маркерами скорости старения данного человека.

Собственно, мутации[55]55
  Мутации – внезапные наследуемые изменения генетического материала, вызывающие изменения каких-либо признаков и свойств организма.


[Закрыть]
позволяет выявлять метод секвенирования ДНК – побуквенного прочтения закодированной генетической информации. Накопление с возрастом одно– или многобуквенных изменений последовательности ДНК в жизненно важных генах – фактор старения или озлокачествления клетки.

С каждым делением клетки хромосомы укорачиваются с обоих концов. Концы хромосом защищены особыми «заглушками» – теломерами. Однако, когда теломеры укорачиваются и утрачиваются при многократном копировании ДНК, хромосомы начинают сливаться друг с другом, разрываться и индуцировать ответ клетки на повреждение, заканчивающийся выходом клетки из цикла делений или гибелью клетки. Как показали исследования под руководством нобелевского лауреата Э. Блекберн, длина теломер некоторых клеток крови (лимфоцитов) – надежный показатель скорости старения. Многолетние измерения показали, что люди с более короткими теломерами отличаются более высокими темпами старения, повышенной вероятностью сердечно-сосудистых проблем, рака и возрастзависимой макулярной дегенерации (форма старческой слепоты). Укорочению теломер способствует высокий уровень стрессовых гормонов (кортизола, адреналина, норадреналина) и курение.


    Ваша оценка произведения:

Популярные книги за неделю