355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Марков » Эволюция. Классические идеи в свете новых открытий » Текст книги (страница 10)
Эволюция. Классические идеи в свете новых открытий
  • Текст добавлен: 21 сентября 2016, 18:01

Текст книги "Эволюция. Классические идеи в свете новых открытий"


Автор книги: Александр Марков


Соавторы: Елена Наймарк

Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 10 (всего у книги 37 страниц) [доступный отрывок для чтения: 14 страниц]

Почему самцов и самок почти всегда поровну?

Завершая главу о сексе, нельзя не упомянуть еще об одной эволюционной загадке, с ним связанной.

У большинства раздельнополых животных поддерживается соотношение полов, близкое к 1:1. Это рационально для моногамных видов, образующих устойчивые брачные пары. Но моногамия – редкое явление в животном мире. Гораздо больше существует видов, у которых о потомстве заботятся только самки, а роль самца ограничивается спариванием. Например, самцы павлинов тратят кучу энергии на отращивание своих прекрасных хвостов, едят пищу, которая пригодилась бы самкам, – короче говоря, только зря топчут землю и занимают жизненное пространство. Животноводам известно, что на большое стадо коров достаточно одного быка, остальных самцов можно смело пускать на мясо. Если тщательно отнестись к выбору производителя, то никакого вырождения породы от этого не происходит. Природа, как кажется, производит самцов с большим избытком. У стадных копытных самцы могут быть полезны для коллективной обороны стада от хищников, но чаще самцы не делают и этого. Даже если рассмотреть виды, у которых от самцов есть какая-то польза, кроме производства спермы, все равно нет оснований полагать, что при любом климате, образе жизни, способе питания и вражеском окружении соотношение полов 1:1 является оптимальным для любого вида животных. Если бы это соотношение определялось интересами вида, мы бы наверняка наблюдали разноесоотношение полов у разных видов. Однако мы за редчайшими исключениями везде наблюдаем одно и то же соотношение 1:1 – у моногамных и полигамных видов, у заботящихся о потомстве и у тех, кто бросает детей на произвол судьбы, у хищников и их жертв, у тех, кто организует коллективную оборону от хищников, и тех, кто этого не делает.

Красивое решение загадки предложил Рональд Фишер (а дальнейшие изыскания подтвердили, что решение было правильное). Дело в том, что равное соотношение полов в большинстве случаев является единственной эволюционно стабильной стратегией. Это значит, что только при таком соотношении полов никакая мутация, меняющая эта соотношение, не окажется выгодной для ее носителя. Рассмотрим воображаемую ситуацию, когда у некоего вида самки рожают сыновей и дочерей не поровну, а в пропорции 1:4. Соответственно, в популяции на каждого самца будет приходиться четыре самки. Допустим, что это соотношение является оптимальным с точки зрения «интересов вида». Но такая ситуация эволюционно нестабильна, и вот почему. В нашей популяции хоть самцов и меньше, чем самок, каждый детеныш все равно имеет только одну мать и одного отца. Допустим, популяция состоит из 1000 особей, из них 200 самцов и 800 самок, и каждый год в популяции рождается 1000 детенышей. Тогда получается, что каждая самка оставит в среднем 1000/800 = 1,25 детеныша, а самец – 1000/200 = 5. Получается, что самцы размножаются в четыре раза эффективнее! Иными словами, в такой популяции быть самцом в четыре раза выгоднее, чем самкой.

Теперь посмотрим, что произойдет, если в популяции появится мутантный аллель, носительницы которого рожают больше детенышей мужского пола – например, не по одному сыну на каждые четыре дочери, а по одному сыну на две дочери. Очевидно, что самка, несущая этот аллель, оставит больше внуков, чем прочие самки. Следовательно, мутантный аллель начнет распространяться в популяции. Вскоре он неизбежно вытеснит конкурирующий (старый, немутантный) аллель, заставляющий самок рожать детей в соотношении 1:4. В итоге соотношение полов в популяции изменится: теперь самцов будет не вчетверо, а только вдвое меньше, чем самок. Нетрудно увидеть, что подобные мутации будут до тех пор менять соотношение полов, пока оно не станет равным 1:1. Только при таком соотношении никакая новая мутация, меняющая число рождаемых мальчиков и девочек, уже не станет полезной для самки и не будет поддержана отбором.

Итак, в популяции установится соотношение полов 1:1, и никого не волнует, что вид в целом от этого только проиграет. Вид может в конце концов даже вымереть – что ж, тем хуже для него. Соотношение полов 1:1 – это не адаптация, полезная для вида, а почти неизбежный побочный эффект раздельнополости. Это следствие конкуренции между эгоистичными репликаторами, не имеющее отношения к благу вида или биосферы.

Из этого правила есть ряд исключений, которые, как водится, только подверждают его. Например, у некоторых насекомых (бабочек, мух, жуков) доля самцов в популяции может быть снижена из-за деятельности паразитической бактерии вольбахии. Вольбахия живет внутри клеток насекомого-хозяина и не может передаваться горизонтально, т. е. заражать других насекомых. Вместо этого она передается вертикально, т. е. наследуется, причем только по материнской линии. Она проникает из материнского организма в яйцеклетки и таким образом передается потомству зараженной самки. В сперматозоид бактерия проникнуть не может – он слишком мал, и поэтому бактерии, живущие в самце, обречены погибнуть вместе с ним. С точки зрения бактерии хозяева-самцы – это тупик, западня. Поэтому отбор поддерживает у вольбахии такие мутации, которые способствуют уменьшению числа самцов в зараженной популяции. Некоторые штаммы вольбахии «научились» достигать этой цели, избирательно убивая эмбрионов мужского пола. В результате в зараженных популяциях насекомых на сотню самок может приходиться всего 1–2 самца. Как ни странно, такие популяции чувствуют себя отлично и не собираются вымирать. Некоторые эксперты предполагают, что насекомые на самом деле выигрывают от того, что вольбахия помогает им поддерживать оптимальное соотношение полов. Сами насекомые не могут этого добиться из-за конфликта интересов своих «эгоистичных генов», но бактерия приходит на помощь.

Исключения, подтверждающие правило

«Принцип Фишера», объясняющий, почему у раздельнополых животных рождается равное количество сыновей и дочерей, работает только при соблюдении ряда условий (что было отмечено самим Фишером).

Во-первых, энергетические затраты родителей на потомков обоего пола должны быть равными. Если сыновья обходятся дороже, чем дочери, эволюционно стабильное соотношение полов будет смещено в сторону преобладания самок, и наоборот. Это, кстати, жестоко подтверждается и человеческой историей. В некоторых странах были такие исторические периоды, когда беднякам было выгодно иметь сыновей, но не дочерей. Сын мог поддержать немощных родителей в старости, поэтому растить его было выгодно. А дочь, вырастив, приходилось отдавать в чужой дом замуж – или, еще хуже, собирать ей дорогостоящее приданое. Поэтому крестьяне попросту не заботились о дочерях или вообще убивали их, «случайно» оставляя на скотном дворе с некормлеными свиньями. В результате соотношение мальчиков и девочек резко смещалось в сторону мальчиков. Когда выгода от выращивания мальчиков и девочек выравнивалась и устанавливались другие социальные и экономические условия, соотношение возвращалось к исходному 1:1.

Во-вторых, при отдаленной гибридизации нередко наблюдается повышенная смертность одного из полов. Как правило, это гетерогаметныйпол – тот, у которого половые хромосомы разные. У млекопитающих и мух это самцы, у птиц и бабочек – самки. В этом случае самке, скрестившейся с «чужаком», выгодно сместить соотношение полов у своего потомства в сторону преобладания более жизнеспособного ( гомогаметного) пола. Такая ситуация описана у австралийских птиц Erythrura gouldiae(амадин Гульда), которые делятся на две разновидности: красноголовую и черноголовую. Амадины предпочитают «одноцветные» браки, потому что дочери от смешанных браков обладают пониженной жизнеспособностью. Оказалось, что самки амадины Гульда, вынужденные взять в мужья самца с «неправильным» цветом головы, производят на свет вчетверо больше сыновей, чем дочерей. Это позволяет им сгладить последствия неудачного замужества. Самок можно обмануть, перекрасив голову красноголового самца в черный цвет. Красноголовая самка, спарившаяся с таким перекрашенным самцом, производит на свет преимущественно сыновей. Это значит, что соотношение полов у потомства зависит не от совместимости генотипов родителей, а исключительно от мнения самки о том, насколько удачен ее брак. Каким образом самке удается регулировать соотношение полов у своих птенцов – пока неизвестно ( Pryke, Griffith, 2009).

Наконец, как показал великий эволюционист Уильям Гамильтон (1936–2000), острая конкуренция за самок между близкородственными самцами должна смещать стабильное соотношение полов в сторону преобладания дочерей. Высокая соревновательность наблюдается, когда спаривание происходит в пределах небольших групп родственных особей. Рассмотрим предельный случай – когда спариваются друг с другом сыновья и дочери одной самки. У некоторых членистоногих это в порядке вещей. Один самец может оплодотворить много самок, и чем больше у него будет партнерш, тем выше его репродуктивный успех. У самки нет столь веских причин гнаться за количеством партнеров: вполне хватит и одного, чтобы оплодотворить все ее яйцеклетки. Поэтому братья будут конкурировать за самок, а между сестрами такой конкуренции не будет. В итоге все сестры будут оплодотворены и оставят потомство, а многие из братьев останутся бездетными. В такой ситуации самке выгодно производить на свет побольше дочерей и поменьше сыновей. Ее репродуктивный успех (который удобно измерять количеством внуков) напрямую зависит от количества дочерей и почти не зависит от количества сыновей. Даже если сыновей будет мало, их все равно хватит, чтобы оплодотворить всех сестер. Если родить побольше сыновей, от этого ничего не изменится (внуков не прибавится). Поэтому при высокой родственной конкуренции соотношение полов под действием отбора должно смещаться в пользу самок.

Теория Гамильтона подтверждается тем, что у видов с высоким уровнем конкуренции между родственными самцами в потомстве действительно преобладают самки, тогда как виды с низкой родственной конкуренцией имеют соотношение полов, близкое к 1:1. Но это все-таки косвенное подтверждение, которое при большом желании можно истолковать как-то иначе. Надо сказать, что биологи уже много лет с неослабевающим энтузиазмом ломают копья по поводу теорий Гамильтона. Он был великим теоретиком и придумал столько красивых теорий, что их еще надолго хватит.

Недавно французским и португальским биологам удалось показать работоспособность идеи Гамильтона в эволюционном эксперименте на паутинных клещах Tetranychus urticae ( Macke et al., 2011). Паутинные клещи удобны для таких исследований по двум причинам. Во-первых, у них часто наблюдается острая конкуренция за самок между родственными самцами. Клещи не жалуют далекие путешествия. Они обычно спариваются неподалеку от того места, где вылупились из яйца, а расселительную функцию берут на себя оплодотворенные самки. Уровень конкуренции определяется тем, сколько самок отложат яйца на данном микроучастке (например, на данном листе растения). Если мать-основательница всего одна, ее сыновья будут отчаянно конкурировать друг с другом за право спариться с сестрами. Чем больше родительниц, тем ниже братская конкуренция.

Во-вторых, для паутинных клещей характерно гаплодиплоидное определение пола (как у перепончатокрылых насекомых). Самки клещей диплоидные и развиваются из оплодотворенных яиц, а самцы – гаплоидные и развиваются из неоплодотворенных яиц. Самка сохраняет полученную от партнера сперму и пользуется ей по собственному усмотрению, либо оплодотворяя откладываемые яйца – и тогда из них выведутся дочери, либо оставляя их неоплодотворенными – тогда получатся сыновья. Склонность самки производить на свет дочерей и сыновей в том или ином соотношении определяется отчасти средой, отчасти генами. Влияние среды состоит в том, что самка откладывает больше «мужских» (т. е. неоплодотворенных) яиц, если поблизости откладывают яйца другие самки, а значит, ее сыновьям придется конкурировать не столько друг с другом, сколько с неродственными самцами. Самка клеща, таким образом, модифицирует свою репродуктивную стратегию в зависимости от ожидаемого уровня конкуренции между братьями. Это яркий пример модификационной изменчивости.

В популяциях паутинных клещей существует также и наследственная (генетически обусловленная) изменчивость по данному признаку, т. е. одни самки от рождения склонны откладывать больше «мужских» (неоплодотворенных) яиц, чем другие. Именно это обстоятельство и позволило использовать клещей для проверки идеи Гамильтона о влиянии родственной конкуренции на эволюцию соотношения полов. У многих других животных наследственной изменчивости по соотношению полов нет или она очень мала: соотношение 1:1 у них слишком жестко «вписано» в саму систему хромосомного определения пола. Например, попытки вывести породу коров, рожающих больше телочек, чем бычков, пока остаются безуспешными – скорее всего, именно по этой причине. За миллион лет необходимые мутации, наверное, накопились бы и у коров, но для эволюционного эксперимента это многовато.

На основе одной и той же природной популяции паутинных клещей авторы создали девять лабораторных популяций. Первые три популяции в течение 54 поколений выращивали в условиях максимальной конкуренции между братьями: спаривания происходили только между потомками одной и той же самки. Во второй тройке популяций группы спаривания состояли из потомства десяти самок, в третьей – включали потомков 100 самок.

По завершении эволюционного эксперимента клещи в течение одного поколения жили в стандартных условиях двух типов: откладывая яйца в одиночестве и в группах по 40 самок. Стандартизация необходима, чтобы выявить наследственные (генетические) изменения, возникшие в ходе эксперимента, исключив влияние модификационной изменчивости.

Затем авторы подсчитали соотношение полов в потомстве самок из разных линий. Были выявлены достоверные различия между тремя линиями по соотношению откладываемых мужских и женских яиц. В популяциях, приспособившихся к острой конкуренции между братьями, самки произвели на свет 23 % сыновей и 77 % дочерей.

В популяциях из второй тройки сыновей оказалось 45 %, третьей – 50 %. Эти цифры удивительно точно совпадают с теоретическими ожиданиями. По Гамильтону, эволюционно стабильное соотношение полов должно соответствовать формуле (N−1)(2N−1)/N(4N−1), где N – количество самок, чье потомство составляет одну «группу спаривания». Для второй тройки популяций (N = 10) эта формула предсказывает 44 % самцов, для третьей (N = 100) – 49 %. Для первой тройки (N = 1) формула вообще-то предсказывает 0 % самцов, но понимать это следует как «минимальное число самцов, необходимое для оплодотворения всех сестер». Таким образом, эксперимент блестяще подтвердил идею Гамильтона о влиянии конкуренции между братьями на эволюционно стабильное соотношение полов, а заодно и теорию Фишера о том, что при свободном скрещивании соотношение должно стремиться к 1:1.

Глава 4
Эволюция на наших глазах

Часто для того, чтобы принять факт, нам нужно его увидеть. Факт эволюции некоторым людям принять непросто именно потому, что увидеть эволюцию воочию очень трудно. Ведь по меркам человеческой жизни эволюция – чудовищно медленный процесс. Как правило, для того, чтобы эволюционные изменения стали заметны, нужно ждать сотни тысяч, а то и миллионы лет. Две изолированные популяции должны оставаться изолированными примерно 3 млн лет, чтобы полностью утратить репродуктивную совместимость (способность производить плодовитое гибридное потомство). Но это в среднем. К счастью для нас (биологов, изучающих эволюцию), ее темпы крайне неравномерны. Некоторые виды – так называемые живые ископаемые – могут оставаться почти неизменными десятки и даже сотни миллионов лет, зато другие демонстрируют настолько быстрые изменения, что их вполне можно заметить даже на протяжении одной-единственной человеческой жизни. В лаборатории, подобрав подходящие условия, можно заставить некоторые организмы эволюционировать еще быстрее, так что даже появляется шанс получить интересные результаты всего за несколько лет работы. Поэтому эволюционные эксперименты в лаборатории важны и с точки зрения понимания эволюционных механизмов, и с точки зрения восприятия самого факта эволюции.

Для таких экспериментов нужно тщательно выбирать подходящие лабораторные объекты и знать, куда смотреть. Последнее зависит от того, какие именно эволюционные события мы надеемся увидеть. Конечно, не превращение мухи в слона [48]48
  Последний общий предок мухи и слона жил более 650 млн лет назад и был похож на червяка. Если мы хотим воспроизвести в эксперименте эволюционные изменения такого масштаба, нужно заставить муху эволюционировать вспять до кого-то похожего на этого предка, а потом – вперед к слону. Ожидаемая продолжительность такого опыта – 1300 млн лет – вряд ли вдохновит экспериментаторов. В лаборатории, конечно, эволюционный процесс можно ускорить, но не в миллионы раз.


[Закрыть]
. Обычно экспериментаторы надеются увидеть любую наследуемую адаптацию к окружающим условиям, дающую выигрыш в эффективности размножения. Если на наших глазах объект сумел адаптироваться к предложенным условиям и передал новые свойства потомкам, значит, мы увидели самую настоящую эволюцию. Осталось разобраться, как именно он это сделал, какие получил мутации.

Никто, конечно, не проводит эволюционные эксперименты на баобабах и слонах. Любому исследователю хочется дожить до результатов своего опыта. А ведь нужно еще ежегодно отчитываться перед работодателями, иначе вас выгонят с работы или не продлят финансирование по гранту. «Баобабы на нашей плантации подросли еще на полметра, лет через 50 надеемся получить первые семена» – за такой годовой отчет вас по головке не погладят. Но вот, например, бактерии, у которых смена поколений происходит несколько раз в сутки, – превосходный объект для эволюционных экспериментов. Годятся дрожжи Saccharomyces cerevisiae, круглые черви C. elegans, насекомые, растения с коротким жизненным циклом, аквариумные рыбки, шпорцевые лягушки и другие быстро плодящиеся существа. Но с бактериями работать проще всего, и не только из-за рекордной скорости смены поколений. Немаловажно и то, что многомиллионная популяция запросто помещается в одной колбе.

В этой главе мы разберем, какие эволюционные процессы можно наблюдать своими глазами в лаборатории или в природе. Такие наблюдения подобны процессу препарирования: разрезая лягушку, примерно знаешь, что там будет внутри, но детали строения всегда неожиданны и информативны.

Приспособленность меняется постепенно

Начнем с самого масштабного и самого известного эволюционного эксперимента. В 1988 году группа биологов из Университета штата Мичиган под руководством Ричарда Ленски начала – и продолжает по сей день – уникальный эксперимент на бактериях, который позволил с небывалой доселе детальностью проследить ход эволюции как на уровне генома (накопление мутаций), так и на уровне целого организма (развитие адаптаций).

Эксперимент проводится параллельно с 12 популяциями кишечной палочки Escherichia coli. Эта бактерия – обычный обитатель кишечника теплокровных животных, включая человека. Все 12 подопытных популяций живут в аэробных условиях [49]49
  То есть в присутствии кислорода.


[Закрыть]
в жидкой прозрачной среде, где единственной пищей является глюкоза. Именно количество глюкозы является лимитирующим фактором, ограничивающим размножение микробов. С интервалом в сутки из каждой популяции берут небольшую часть (0,1 мл содержимого колбы) и пересаживают в новую колбу с 9,9 мл свежей питательной среды. Там бактерии быстро размножаются, пока не исчерпают запасы глюкозы. Таким образом, в течение каждого суточного цикла начальный период изобилия, когда численность популяции быстро растет, сменяется периодом голода, когда бактерии перестают размножаться и их численность стабилизируется. Численность бактерий оценивают по мутности среды – обычный и весьма надежный метод при наличии соответствующего оборудования.

Периодически часть каждой популяции замораживают при −80 °C (что ничуть не вредит здоровью микробов) и сохраняют для последующего изучения. Это мудро, потому что аналитические методики – в том числе методики секвенирования («прочтения») геномов – сейчас стремительно развиваются и столь же стремительно дешевеют.

Регулярно проводится и оценка приспособленности. Для этого сравнивают скорость размножения подопытных и контрольных бактерий, причем в роли вторых выступают размороженные предки первых – исходный штамм, из которого были взяты родоначальники всех 12 экспериментальных популяций.

Кишечные палочки выгодно отличаются от баобабов тем, что позволяют Ленски и его коллегам ежегодно получать интересные результаты и публиковать статьи в ведущих журналах. Так, в 2009 году они опубликовали в Natureотчет об эволюции одной из 12 популяций ( Barrick et al., 2009). К этому времени длительность эксперимента уже была достаточной для того, чтобы каждая из возможных точечных мутаций (нуклеотидных замен) успела произойти в популяции более одного раза [50]50
  Размер генома подопытных штаммов кишечной палочки – 4,6×10 6пар нуклеотидов; частота мутирования – 1,6 мутации на 10 10пар нуклеотидов за одно клеточное деление; число поколений, прошедших с начала эксперимента, – свыше 4×10 4(6,64 поколения в сутки).


[Закрыть]
.

Авторы следили за темпом закрепления мутаций и изменением приспособленности. Напомним, что возникновение мутации и ее закрепление – не одно и то же. Далеко не всякая возникшая мутация закрепляется (фиксируется) в популяции. Каждая мутация изначально возникает только у одного микроба. Чтобы мутация зафиксировалась, т. е. достигла 100-процентной частоты, потомки этого микроба должны вытеснить всех остальных микробов в своей колбе. Вредная мутация, скорее всего, будет отсеяна отбором. Полезная мутация под действием отбора может закрепиться, но может и случайно потеряться, пока ее носители еще не успели как следует размножиться. Наконец, нейтральные мутации должны фиксироваться с постоянной скоростью, равной скорости мутирования (обо всем этом мы говорили в главе 1).

За первые 20 тыс. поколений в подопытной популяции зафиксировалось 45 мутаций, в том числе 29 однонуклеотидных замен и 16 иных мутаций (вставок, выпадений, инверсий, встраиваний мобильных элементов). Самое интересное, что скорость накопления мутаций на этом этапе была постоянной. Приспособленность вела себя иначе: сначала она быстро росла, а затем ее рост замедлился (см. рисунок).

Постоянная скорость фиксации, согласно теории, характерна для нейтральных мутаций. Однако все 45 мутаций не могли быть нейтральными. Ясно, что по крайней мере некоторые из них были полезными – об этом свидетельствует рост приспособленности. Полученные результаты трудно увязать и с гипотезой о том, что все 45 мутаций были полезными. Ведь в этом случае обе величины – приспособленность и число накопленных мутаций, – скорее всего, должны были бы меняться сходным образом, т. е. или расти с постоянной скоростью, или параллельно замедляться.

Простейшее объяснение состоит в том, что среди 45 зафиксировавшихся мутаций большинство были нейтральными, а некоторые – полезными. Основная масса полезных мутаций зафиксировалась вскоре после начала эксперимента, т. е. после попадания микробов в новые для них условия, к которым они были плохо приспособлены. Но возможности для «полезного мутирования» быстро исчерпались, и в дальнейшем фиксировались в основном нейтральные мутации.

Есть, однако, четыре аргумента против такого объяснения.

1. В случае преобладания нейтральных мутаций должно быть повышено число синонимичных нуклеотидных замен. Вопреки этим ожиданиям все без исключения зафиксировавшиеся мутации в кодирующих областях генов оказались значимыми (несинонимичными). Резкое преобладание значимых замен над синонимичными – это характернейшая «подпись», оставляемая в геноме положительным отбором.

2. В случае преобладания нейтральных мутаций следует ожидать, что во всех 12 экспериментальных популяциях за 20 тыс. поколений мутации зафиксировались в разныхгенах. Напротив, мутации в одних и тех же генах, закрепившиеся независимо в разных популяциях, будут доводом в пользу того, что мутации фиксировались под действием положительного отбора, а не генетического дрейфа (т. е. мутации были полезными). Чтобы проверить это, авторы отсеквенировали у бактерий поколения № 20 000 из остальных одиннадцати экспериментальных популяций 14 генов, в которых у первой популяции закрепились мутации. Оказалось, что в большинстве случаев в других популяциях эти гены тоже изменились.

3. Если бы большинство мутаций были нейтральными, наблюдалась бы значительная внутрипопуляционная изменчивость по этим локусам (потому что полезные мутации под действием отбора фиксируются быстро, а нейтральные сначала должны долго «случайно блуждать» между нулевой и 100-процентной частотой). Это предположение не подтвердилось.

4. При помощи генной инженерии авторы смогли напрямую определить степень полезности девяти мутаций из рассматриваемых 45. Эти мутации искусственно внедряли в геном предкового штамма. В восьми случаях из девяти приспособленность бактерий резко повысилась [51]51
  Еще одно бесспорное доказательство того, что полезные мутации – вещь вполне нормальная и не такая уж редкая.


[Закрыть]
. Что касается девятой мутации, то авторы думают, что она тоже полезна, но не сама по себе, а в сочетании с другими мутациями, потому что точно такая же мутация закрепилась у других подопытных популяций.


Накопление мутаций(черные линии и кружки) и рост приспособленности(серые линии и квадраты) в экспериментальной популяции. По горизонтальной оси – номер поколения. Видно, что число зафиксировавшихся мутаций росло линейно (тонкие ломаные линии очерчивают 95-процентные доверительные интервалы линейной модели). Приспособленность сначала росла очень быстро, а потом ее рост замедлился. «Прыжки» серых квадратов вверх и вниз относительно серой линии не выходят за пределы статистической погрешности, т. е. не требуют специальных объяснений. На маленьком графике в правом нижнем углу показано резкое ускорение накопления мутаций начиная примерно с поколения № 26 000, когда в популяции зафиксировалась мутация, повышающая темп мутагенеза. ИзBarrick et al., 2009 .

Таким образом, в течение первых 20 тыс. поколений в популяции фиксировались преимущественно полезные мутации, причем их фиксация шла с постоянной скоростью. Замедление роста приспособленности, очевидно, было связано с тем, что средняя степень полезности мутаций постепенно снижалась. Наиболее радикальные адаптивные изменения произошли в течение первых 2 тыс. поколений, а затем происходила более тонкая настройка.

До сих пор речь шла только о первой половине эксперимента. Во второй его половине эволюционная динамика популяции резко изменилась. Дело в том, что после 26 тыс. поколений зафиксировалась мутация в гене mutT. Этот ген кодирует белок, участвующий в репарации (починке) ДНК. В результате частота мутирования выросла примерно в 70 раз (от 1,6×10 −10до 1,1×10 −8на нуклеотид за поколение). Как следствие, более чем на порядок выросла и частота фиксации мутаций. В течение второй половины эксперимента зафиксировалось 609 мутаций – в 13,5 раза больше, чем за первые 20 тыс. поколений.

Аналогичные мутации, увеличившие темп мутагенеза, закрепились и в нескольких других экспериментальных популяциях. Из этого следует, что рост темпов мутагенеза дал бактериям адаптивное преимущество. Это, между прочим, противоречит распространенной идее о том, что в стабильных условиях организмам было бы выгодно [52]52
  «Было бы выгодно»– напомним еще раз, что это пример метафорического языка, привычного для биологов, но часто вводящего в заблуждение неспециалистов. В переводе на более строгий научный язык «выгодно»значит «способствует более эффективному (быстрому) размножению», «повышает приспособленность»или «было бы поддержано отбором»– эти три формулировки идентичны по смыслу.


[Закрыть]
снизить темп мутирования до нуля – и этого не происходит только из-за технической невозможности обеспечить абсолютную точность копирования ДНК.

Мутаторы

Мутации, повышающие скорость мутирования, закрепляются во многих эволюционных экспериментах на бактериях. Гены (точнее, генетические варианты – аллели), несущие такие мутации, называют аллелями-мутаторами или просто мутаторами. Аллелем-мутатором может стать любой ген, нормальная работа которого важна для точной репликации или репарации, если его слегка «подпортит» случайная мутация.

Нужно иметь в виду, что «полезность» мутаторов не прямая, а косвенная. Сама по себе повышенная скорость мутагенеза снижает приспособленность организмов, потому что большинство мутаций, как известно, вредны. Все очень просто: чем интенсивнее мутагенез, тем больше мутаций у потомков и, следовательно, тем ниже их средняяприспособленность. Это и значит, что мутатор не приносит прямой пользы – наоборот, он приносит прямой вред. Косвенная же польза заключается в том, что нет-нет да и возникнет у какого-нибудь носителя аллеля-мутатора редкая, маловероятная полезная мутация. Причем настолько полезная, что ее польза перевесит вред, приносимый мутатором напрямую. Поскольку полезная мутация маловероятна, она скорее возникнет у носителя аллеля-мутатора, чем у организма с низкой скоростью мутирования. В результате адаптивное преимущество получит организм, несущий редкую полезную мутацию, а заодно и аллель-мутатор – в качестве неприятной, но неизбежной «нагрузки». Этот организм и его потомки будут размножаться быстрее других, постепенно вытесняя из популяции конкурентов и распространяя в генофонде обе свои генетические особенности – полезную мутацию и аллель-мутатор. Генетики называют такой способ распространения аллелей hitchhiking– езда автостопом. Имеется в виду, что мутатор «едет автостопом» на полезной мутации, распространяясь в генофонде вопреки тому, что сам по себе он вообще-то вреден.

«Автостоп» прекрасно работает в бесполых популяциях, где связку «полезная мутация – аллель-мутатор» невозможно разорвать. Обычно именно с такими бактериями – бесполыми, нарочно лишенными способности к горизонтальному переносу генов – и работают экспериментаторы. В эксперименте Ленски тоже используются бесполые кишечные палочки. Если бы бактерии могли меняться генами, эволюционные судьбы двух аллелей не были бы столь неразрывными. Обязательно появились бы бактерии, несущие полезную мутацию, но не имеющие мутатора. Эти бактерии стали бы вытеснять тех, у кого два аллеля остались «в связке».

При действующем горизонтальном переносе генов мутатору куда труднее зафиксироваться. Он может даже быть полностью вытеснен из генофонда – конечно, если не успеет до этого момента сгенерировать у кого-то из своих носителей еще одну полезную мутацию.

Мутация, повысившая темп мутагенеза, увеличила вероятность возникновения новых полезных мутаций, когда простые (высоковероятные) пути для этого уже были пройдены. И в этом состояло единственное благо от ускорения мутагенеза. Но при этом в качестве побочного эффекта должно было вырасти число вредных и нейтральных мутаций.

Поэтому следовало ожидать, что теперь большинство фиксирующихсямутаций будут не полезными, а нейтральными. Как мы помним, скорость фиксации нейтральных мутаций в популяции равна скорости мутагенеза. Действительно, в первые 20 тыс. поколений фиксировалось очень мало нейтральных мутаций, а большая часть из 609 «поздних» мутаций оказались нейтральными.

Результаты эксперимента оказались во многом неожиданными. Например, мало кто ожидал, что постоянный темп накопления полезных мутаций может сопровождаться замедляющимся ростом приспособленности или что соотношение темпов фиксации нейтральных и полезных мутаций может так резко меняться. Очевидно, количественные соотношения между разными аспектами эволюционного процесса (нейтральностью и адаптивностью, дрейфом и отбором, темпами изменений на уровне генотипа и фенотипа) могут быть более сложными, неоднозначными и переменчивыми, чем предполагалось.


    Ваша оценка произведения:

Популярные книги за неделю